УДК 537.3+537.8

Электрические свойства твёрдых растворов $Ni_{1-x}M_xMnSb$ (M = Ti, V, Cr)

Г.С. РИМСКИЙ¹, А.В. РУТКАУСКАС², М.А. БУНЕВИЧ³

В работе представлены результаты исследования влияния катионного замещения никеля железом и кобальтом на электрические свойства твердых растворов Ni_{1-x}M_xMnSb (M = Ti, V, Cr). В качестве объекта исследования выступали поликристаллы в виде прямоугольного параллелепипеда. Исследованы температурные зависимости удельного электросопротивления, магниторезистивного эффекта и эффекта Зеебека. Определены фундаментальные характеристики: величины удельного электросопротивления при 3K, остаточное электросопротивление, магниторезистивный эффект и температуры смены знака коэффициента Зеебека.

Ключевые слова: интерметаллиды, электропроводность, магниторезистивный эффект, эффект Зеебека.

The paper presents the results of studying the effect of cationic substitution of nickel with iron and cobalt on the electrical properties of Ni_{1-x}M_xMnSb (M = Ti, V, Cr) solid solutions. The object of the study was polycrystals in the form of a rectangular parallelepiped. The temperature dependences of the electrical resistivity, the magnetoresistive effect, and the Seebeck effect are studied. The fundamental characteristics are determined: the values of electrical resistivity at 3K, the residual electrical resistance, magnetoresistive effect, and the temperature of the sign change of the Seebeck coefficient. **Keywords:** intermetallics, electrical conductivity, magnetoresistive effect, Seebeck effect.

Введение. Поиск функциональных материалов, обладающих определенными магнитными и электрическими свойствами, является одной из наиболее актуальных задач современной физики конденсированного состояния. Ферромагнитные полугейслеровские сплавы проявляют широкий спектр физических свойств и представляют интерес для технологии микроэлектронной промышленности [1]. В частности, к таким материалам относится соединение NiMnSb, которое является исходным соединением исследуемой в данной работе системы Ni_{1-x}M_xMnSb. Из-за наличия полуметаллического характера, структурного сходства с полупроводниками (подобие электронной и кристаллической структуры с структурой полупроводников типа цинковой обманки, а также сходство химических связей, связанное с наличие занятых неосновных d-состояний марганца) и относительно высокой температуры Кюри (~750 K), NiMnSb позиционируются как материал с потенциальным применением в спинтронике для инжекции поляризованных спинов в гетероструктурах [2]. В полугейслеровских сплавах именно количество валентных электронов отвечает за физические свойства соединений [3], а учитывая сложные магнитные взаимодействия между магнитными подрешетками системы, нелинейные зависимости магнитных взаимодействий в этой системе определяют научный интерес к подобным соединениям. Поэтому частичное замещение никеля другим переходным элементом может существенно изменить магнитные и транспортные свойства исходного соединения [4], [5]. Синтез новых материалов позволит изучать закономерности изменения механизмов проводимости и магнитных свойств в зависимости от концентрации и типа замещающего элемента. Ранее проведено исследование кристаллической структуры и магнитных характеристик твердых растворов систем Ni_{1-x}M_xMnSb (M = Ti, V, Cr) [6], [7], [8]. Целью данной работы является изучение влияние переходных элементов (M = Ti, V, Cr) в системе $Ni_{1-r}M_rMnSb$ на транспортные свойства в широком диапазоне температур и магнитных полей.

Методика проведения эксперимента. Твердые растворы систем Ni_{1-x}M_xMnSb (M = Ti, V, Cr) для эксперимента синтезированы методом твердофазных реакций в вакуумированных кварцевых ампулах. Чистота исходных порошков составляла для Mn (99,98 %), Ni, Ti, V и Cr (99,99 %), Sb (99,999 %). Синтез осуществлён при температуре 1020 K в течении 24 часов с последующей закалкой. Изучение кристаллической структуры и оценка фазового состава осуществлена методом дифракции рентгеновских лучей в Cu-K α – излучении (λ = 1,5418 Å) при комнатной температуре. Удельное электросопротивление и термоЭДС измерены на образцах прямоугольной формы четырехконтактным методом на постоянном токе в интервале температур 4–900 K в магнитных полях до 6 Тл. При измерении магнитосопротивления ориен-

тация магнитного поля через образец была перпендикулярна электрическому току (B⊥I). Установка для измерений зависимостей коэффициента Зеебека (термо-ЭДС) прокалибрована по температурным зависимостям термо-ЭДС Fe и Ni относительно меди. Градиент величиной 10–15 градусов поддерживался во всем диапазоне температур измерения коэффициента Зеебека.

Результаты и их обсуждение. Ранее проведено исследование кристаллической структуры и магнитных характеристик твердых растворов систем $Ni_{1-x}M_xMnSb$ (M = Ti, V, Cr) с помощью рентгеновской дифракции, пондеромоторным и вибрационным методами [6], [7], [8]. Численные значения основных величин, описывающих кристаллическую структуру и магнитные характеристики, представлены в таблице 1.

Таблица 1 – Значения параметров *a*, расчетной $d_{\text{расч.}}$ и экспериментальной $d_{\text{эксп.}}$ плотности кристаллической ячейки, значения среднего магнитного момента при 80 К μ_{80K} и температур Кюри T_C в твердых растворах Ni_{1-x}M_xMnSb (M = Ti, V, Cr)

x	а, нм	$d_{\text{расч.}},$ г/см ³	$d_{_{\rm ЭКСП.}},$ г/см ³	μ _{80K} , μ _Б	T_C, K		
NiMnSb							
0,00	0,592(6)	7,51	7,19	3,81	725		
Ni _{1-x} Ti _x MnSb							
0,05	0,592(9)	7,48	7,16	3,77	702		
0,10	0,593(2)	7,45	7,10	3,58	664		
0,15	0,594(3)	7,39	7,11	3,28	631		
0,20	0,595(5)	7,33	6,99	2,94			
0,25	0,596(0)	7,30	6,99	2,76			
Ni _{1-x} V _x MnSb							
0,05	0,593(0)	7,48	7,13	3,80	673		
0,10	0,593(2)	7,46	7,19	3,71	611		
0,15	0,593(8)	7,43	7,10	3,62	559		
0,20	0,594(5)	7,39	7,08	3,47			
Ni _{1-x} Cr _x MnSb							
0,05	0,592(9)	7,49	7,19	3,92	688		
0,10	0,593(2)	7,47	7,10	3,89	659		
0,15	0,593(6)	7,44	7,13	3,74	_		

С целью дальнейшего изучения данных соединений проведено исследование температурных зависимостей удельного электросопротивления, магнитосопротивления и эффекта Зеебека.

Температурная зависимость удельного электросопротивления $\rho_{xx} = f(T)$ в соединении NiMnSb представлена на рисунке 1 и согласуется с литературными данными [9], [10].

Рисунок 1 – Температурные зависимости удельного электросопротивления (*a*) и магнитосопротивление в поле 6 Тл (*b*) и 1 Тл (*c*) соединения NiMnSb

Исходное соединение NiMnSb при 4 К имеет удельное электросопротивление ρ_{4K} ~7 мкОм см. При аппроксимации температурных зависимостей удельного электросопротивления можно выделить 2 участка. Первый участок в интервале температур 4–70 К описывается квадратичной функцией $\rho = \rho_0 + B_1 T^2$ ($\rho_0 = 7,05$ мкОм·см, $B_1 = 36$ нОм·см/K²) и соответствует полуметаллическому состоянию. Второй участок в области 70–300 К описывается функцией $\rho = A_2 + B_2 T^{1,35}$ ($A_2 =$ = 7,15 мкОм·см, $B_2 = 45,2$ нОм·см/ $K^{1,35}$), что скорее всего связано со спиновым беспорядком выше 70 К и соответствует состоянию нормального ферромагнетика. Следует отметить, что у других авторов имеется разброс значений степени температуры 1,35 < α < 1,65 [9], [10], [11].

Результаты эксперимента по изучению магниторезистивных свойств NiMnSb MR = f(T) в магнитных полях 1 и 6 Тл представлены на рисунке 1. Выявлена зависимость изменения величины и знака поперечного магнитосопротивления (MR = ($\rho_B - \rho_0$) / ρ_0)·100 %) от величины индукции магнитного поля. Установлено, что в магнитном поле с индукцией B = 1 и 6 Тл магниторезистивный эффект NiMnSb отрицателен в интервале температур 4–100 К, после чего становится положительным. В интервале температур 4–100 К магнитосопротивление принимает положительные значения, а выше 100 К становится отрицательным. Положительное значение MR = f(T) наблюдается в области температур, где зависимость $\rho(T)$ описывается квадратичной зависимостью и имеет полуметаллический тип проводимости. Выявлено, что с ростом магнитного поля магниторезистивный эффект смещается в сторону положительных значений. Значения MR, полученные для NiMnSb в поле 6 Тл, согласуются с ранее полученными результатами [10], [11].

Температурные зависимости удельного электросопротивления твердых растворов систем $Ni_{1-x}M_xMnSb$ (M = Ti, V, Cr) представлены на рисунке 2.

Рисунок 2 – Температурные зависимости удельного электросопротивления твердых растворов систем Ni_{1-x}M_xMnSb (M = Ti (x = 0,10 (a) и x = 0,20 (b)), V (x = 0,10 (c) и x = 0,20 (d)), Cr (x = 0,05 (e) и x = 0,15 (f)))

Температурная зависимость удельного электросопротивления твердых растворов системы $Ni_{1-x}Ti_xMnSb$ при x = 0,10 описывается двумя функциями: в интервале температур 3 K $\leq T \leq 150$ K $\rho_1 = \rho_0 + B_1 T^{1,28}$ и в интервале температур 150 К $\leq T \leq 300$ К $\rho_2 = \rho_0 + B_2 T^{1,28}$. В районе 150 К наблюдается аномалия в виде небольшого перегиба (рисунок2а). Увеличение концентрации титана до x = 0,20 в системе Ni_{1-x}Ti_xMnSb приводит к изменению температурной зависимости удельного электросопротивления (рисунок 2b). Зависимость ρ (T) в интервале температур 3 K \leq T \leq 160 K имеет полупроводниковой характер, а выше 160 К становится металлической и описывается функцией: $\rho = A + B_1 T^{1,16}$ и возможно связана с температурой кристаллического и магнитного фазового перехода. В твердых растворах $Ni_{1-x}M_xMnSb$ (M = V, Cr) удельное электросопротивление имеет металлическую зависимость (рисунок 2 с-f). Обнаружено, что увеличение замещения никеля катионами Ti, V и Cr приводит к увеличению удельного электросопротивления и уменьшению остаточного электросопротивления, что обусловлено увеличением дефектности кристаллической структуры. Полученные значения удельного электросопротивления при 3 К и остаточного электросопротивления ($RR = \rho_{300K}/\rho_{3K}$) всех исследованных твердых растворов представлены в таблице 2. Установлено, что замещение никеля титаном и ванадием приводит к заметному уменьшению остаточного электросопротивления, чем замещение хромом, что может быть связано с различием в ионных радиусах никеля и замещающих металлов.

Таблица 2 – Численные значения удельного электросопротивления при 3 К (ρ_{3K}), остаточного электросопротивления (*RRR*) и температуры смены знака коэффициента Зеебека ($T_{trans.}$) в твердых растворах систем Ni_{1-x}M_xMnSb (M = Ti, V, Cr)

Состав	<i>ρ_{3K}</i> , 10 ⁻⁶ Ом∙м	RRR	T _{trans.} , K
NiMnSb	7,05	2,45	220
Ni _{0,90} Ti _{0,10} NiSb	128,4	1,25	337
Ni _{0,80} Ti _{0,20} NiSb	601,2	-	444
Ni _{0,90} V _{0,10} NiSb	86,7	1,25	365
Ni _{0,80} V _{0,20} NiSb	214,9	1,30	465
Ni _{0,95} Cr _{0,05} NiSb	30,3	1,60	401
Ni _{0,90} Cr _{0,10} NiSb	41,4	1,51	450
Ni _{0,85} Cr _{0,15} NiSb	51,4	1,49	503

Температурные зависимости магнитосопротивления в твердых растворах систем Ni_{1-x} M_x MnSb (M = Ti, V, Cr) в магнитных полях 1 и 6 Тл представлены на рисунке 3a,b,c.

Рисунок 3 – Температурные зависимости магниторезистивного эффекта твердых растворов систем Ni_{1-x}M_xMnSb (M = Ti (a), V (b), Cr (c)) в магнитном поле 6 Тл. На вставках представлены температурные зависимости магниторезистивного эффекта в поле 1 Тл.

Усиление отрицательного эффекта магнитосопротивления в твердых растворах $Ni_{1,x}M_xMnSb$ (M = Ti, V, Cr) с увеличением магнитного поля и концентрации замещающего элемента вызвано появлением магнитного порядка в этой системе. В твердых растворах $Ni_{1,x}Ti_xMnSb$ максимальное значение отрицательного магнитосопротивления обнаружено при T = 50 K, а смена знака магнитосопротивления для x = 0,2 происходит при 160 K, там, где меняется тип проводимости. В $Ni_{1,x}Cr_xMnSb$ увеличение концентрации приводит к увеличению температуры при которой наблюдается смена знака магнитосопротивления от 70 K (x = 0,05) до 170 K (x = 0,15). Причем увеличение магнитного поля на эту температуру для x = 0,05 не влияет, а для x = 0,15 приводит к появлению отрицательного магнитосопротивления при T > 170 K. В $Ni_{1,x}V_xMnSb$ увеличение концентрации приводит к смене знака магнитосопротивления на отрицательный во всей области температур. Магнитное поле, оказывая упорядочивающее влияние на магнитные моменты ионов марганца, приводит к снижению магнитного вклада в рассеяние. При увеличении концентрации замещающих катионов происходит переход от полуметаллического характера проводимости в NiMnSb к почти металлическому, что выражается в малой величине значении магниторезистивного эффекта твердых растворах систем $Ni_{1,x}M_xMnSb$ (M = Ti, V, Cr).

Температурные зависимости коэффициента Зеебека в твердых растворах систем $Ni_{1-x}M_xMnSb$ (M = Ti, V, Cr) представлены на рисунке 4.

Рисунок 4 – Температурные зависимости коэффициента Зеебека в твердых растворах $Ni_{1-x}M_xMnSb$ (M = Ti (a), V(b), Cr (c))

В исходном соединении NiMnSb коэффициент Зеебека (α) в абсолютном значении находится в относительно небольшой области значений, что свидетельствует о скомпенсированной двух типов носителей заряда. Положительное значение коэффициента α в интервале температур 77 К \leq T \leq 220 К указывает на то, что доминирующим носителем заряда являются дырки, тогда как выше 220 К отрицательный знак коэффициента α свидетельствует, что носителями заряда являются электроны.

Замещение никеля титаном, ванадием и хромом показывает влияние дырочного допирования на транспортные свойства системы Ni_{1-x}M_xMnSb (M = Ti, V, Cr) в интервале температур 100–900 К. По мере увеличения катионного замещения обнаружено смещение температуры перехода из отрицательных в положительные значения термо-ЭДС от 220 К для x = 0,00 до 444 К для x = 0,25 для системы с Ni; до 465 К для x = 0,20 для системы с V и до 503 К для x = 0,15 для системы с хромом [12].

Смена знака коэффициента α в твердых растворах Ni_{1-x}M_xMnSb (M = Ti, V, Cr) с ростом температуры может быть связана либо с ростом термически возбужденных электронов, либо с увеличением подвижности электронов. Наблюдающийся рост α с концентрацией замещающего элемента (Ti, V и Cr) в системе Ni_{1-x}M_xMnSb свидетельствует о том, что эти элементы выступает в качестве акцепторной примеси. Ионы Ti, V и Cr препятствуют проводимости п-типа и стимулируют проводимость р-типа. Установленные значения температуры смены знака коэффициента Зеебека всех исследованных твердых растворов представлены в таблице 1.

Заключение. Исходное соединение NiMnSb является полуметаллическим ферромагнетиком. Установлено, что твердые растворы систем Ni_{1-x}M_xMnSb при замещении никеля Ti, V и Cr, демонстрируют температурные зависимости удельного электросопротивления характерные металлическому типу проводимости. Интересным является то, что дырочное допирование в случае титана и ванадия меняет знак магнитосопротивления на отрицательный. Только в случае с хромом магнитосопротивление остается положительным в низкотемпературной области. Обнаружено, что замещение катионов никеля катионами титана, ванадия и хрома увеличивает температуру смены коэффициента Зеебека.

Благодарности. Работа выполнена в рамках совместного гранта для молодых ученых «БРФФИ-РФФИ М-2021» (грант № Т21РМ-029 и № 20-52-04003 Бел мол а).

Литература

1. Hirohata, A. Review on spintronics : Principles and device applications / A. Hirohata, K. Yamada, Y. Nakatani [et al.] // J. Magn. Magn. Mater. – 2020. – Vol. 509. – Article ID : 166711.

2. Schmidt, G. Spin injection into semiconductors, physics and experiments / G. Schmidt, L. W. Molenkamp // Semiconductor Science and Technology. – 2002. – Vol. 17, № 4. – P. 310–321.

3. Graf, T. Simple rules for the understanding of Heusler compounds / T. Graf, C. Felser, S. S. P. Parkin // Progress in Solid State Chemistry. – 2011. – Vol. 39, №. 1. – P. 1–50.

4. Ren, S. K. Magnetic behavior of half-Heusler alloy CuxNi1-xMnSb / S. K. Ren, W. Q. Zou, J. Gao [et al.] // J. Magn. Magn. Mater. – 2005. – Vol. 288. – P. 276–281.

5. Ren, S. K. Effects of substitution of Zn for Ni in NiMnSb alloys / S. K. Ren, J. Gao, X. L. Jiang, [et al.] // Journal of Alloys and Compounds. – 2004. – Vol. 384, № 1-2. – P. 22–24.

6. Римский, Г. С. Кристаллическая структура и магнитные характеристики твердых растворов Ni_{1-x}Cr_xMnSb / Γ. С. Римский, К. И. Янушкевич, А. В. Руткаускас // Вес. Нац. акад. навук Беларусі. Сер. фіз.-техн. навук. – 2021. – Т. 66, № 6. – С. 263–269.

7. Римский, Г. С. Особенности кристаллической структуры и магнитных характеристик твердых растворов Ni_{1-x}Ti_xMnSb (0,00 ≤ x ≤ 0,50) / Г. С. Римский, К. И. Янушкевич, А. В. Руткаускас // Вестн. фонда фундамент. исследований. – 2021. – Т. 95, № 1. – С. 34–41.

8. Римский, Г. С. Влияние катионного замещения на кристаллическую структуру и магнитные характеристики твердых растворов MnNi_{1-x}V_xSb / Γ. С. Римский, К. И. Янушкевич // Весн. Брэсц. унта. Сер. 4, Фізіка. Матэматыка. – 2021. – № 1. – С. 34–40.

9. Gardelis, S. Synthesis and physical properties of arc melted NiMnSb / S. Gardelis, J. Androulakis, P. Migiakis [et al.] // Journal of Applied Physics. – 2004. – Vol. 95, № 2. – P. 8063–8068.

10. Hordequin, C. On the cross-over from half-metal to normal ferromagnet in NiMnSb / C. Hordequin, D. Ristoiu, L. Ranno, J. Pierre // The European Physical Journal B. – 2000. – Vol. 16, № 2. – P. 287–293.

11. Borca, C. N. Evidence for temperature dependent moments ordering in ferromagnetic NiMnSb(100) / C. N. Borca, T. Komesu, H.-K. Jeong [et al.] // Physical Review B. -2001. - Vol. 64, No 5. - Article ID : 052409.

12. Vedernikov, M. V. The thermoelectric powers of transition metals at high temperature / M. V. Vedernikov // Advances in Physics. – 1969. – Vol. 18, № 74. – P. 337–370.

¹Научно-практический центр НАН Беларуси по материаловедению

²Объединенный институт ядерных исследований

³Белорусский государственный университет информатики и радиоэлектроники

Поступила в редакцию 13.10.2022