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Abstract: Nanostructured aluminum, tantalum, and vanadium oxide layers on glass substrates were
obtained by electrochemical anodizing in oxalic and sulfuric–oxalic electrolytes. The morphological
and optical properties of the obtained structures were investigated experimentally by scanning
electron microscopy and transmission spectroscopy. Obtained oxide coatings are quasi-ordered arrays
of vertical (aluminum oxide/tantalum oxide, aluminum oxide/vanadium oxide, and aluminum
oxide obtained in the oxalic electrolyte) or non-ordered tree-like (aluminum oxide obtained in the
sulfuric–oxalic electrolyte) pores depending on the initial film metal and anodizing technology.
The light transmission in the range of 750–1200 nm is up to 60% for aluminum oxide/tantalum
oxide/glass (annealed) and quasi-ordered aluminum oxide/glass structures, and around 40% for
aluminum oxide/tantalum oxide/glass (not annealed) and aluminum oxide/vanadium oxide. Non-
ordered aluminum oxide is characterized by low transmission (no more than 8%) but has a developed
surface and may be of interest for the formation of films with poor adhesion on smooth substrates,
for example, photocatalytic active xerogels. The refractive indices of dispersion of the obtained
layers were calculated from the transmission spectra by the envelope method. The dispersion of the
refractive indices of the obtained oxide films is insignificant in a wide range of wavelengths, and the
deviation from the average value is assumed to be observed near the intrinsic absorption edges of
the films. The glasses with proposed semi-transparent nanostructured oxide layers are promising
substrate structures for subsequent sol–gel coating layers used in photocatalytic purification systems
or up-conversion modules of tandem silica solar cells with forward and reverse illumination.

Keywords: valve metals oxides; porous anodic films; transmission spectra; refractive index; transpar-
ent substrates; nanostructured oxide layers

1. Introduction

Multilayer oxide and semiconductor films of nanostructured materials on optically
transparent substrates are currently being actively studied for optics and microelectronics
applications as interference filters, for controlling the absorption and reflection coefficients
of semi-transparent structures, elements of conducting electrodes, hydrophobic coatings, as
well as for the formation of the optically active material on them, including the possibility of
obtaining nanostructured film scintillators with improved characteristics in the pores [1–7].
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Nanostructured oxides of valve metals can be obtained by electrochemical anodizing in
acidic and alkalic electrolytes with the possibility of controlling the geometrical parameters
of oxide films by electrolyte concentration and temperature, anodic current and voltage,
etc. While the anodic oxidation of aluminum leads to Al2O3 amorphous oxide forms,
vanadium and tantalum anodic oxides consist of non-stoichiometric chemical compounds
TaxOy (or VxOy), which during heat treatment are oxidized to higher oxides with known
optical, physical, and chemical properties [8–12].

The formation of anodic films on transparent substrates has been of interest to many
research groups in recent years [13–20]. Most of the provided experiments focused on
obtaining oxides on glasses as intermediate materials for further use as substrates for
xerogels, conductive electrodes, templates for the synthesis of nanopillars, etc. [17–21].
The production of anodic oxide on the dielectric glass substrate is associated with several
difficulties. Therefore, in most cases, glasses with conductive coatings are used, such as,
for example, ITO/glass structure. Anodizing aluminum on such a conductive substrate is
simpler, but the conductive layer may later turn out to be redundant for some applications.
Moreover, the preparation of conductive coatings on glasses increases the complexity of
creating the final structure. In most cases, to obtain an ordered structure, anodization
of aluminum layers occurs in two stages, or the finished oxide is exposed to additional
chemical etching to expand the mouths of the pores. Both of those methods have limits. So,
the two-stage process requires more thickness from initial films, but sputtering processes
may not always provide sufficient adhesion and formation of an integral layer, which can
lead to the undesirable formation of multilayer films. Figure 1 represents, for example, an
anodic aluminum oxide film obtained from sputtered 5 µm film on a Si substrate.
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Figure 1. Cross-section of the aluminum oxide anodic film obtained in 1 M phosphoric acid at 100 V
from 5 µm Al film on a Si substrate.

Chemical etching of the anodic films bears the risk of removing oxide layers from
the substrate as well as violating the porosity and integrity of the walls of the cell pore.
We propose to consider the possibility of creating translucent anode layers of valve met-
als on substrates by a one-stage anode process without additional chemical treatment
after anodizing.

Submicron layers of porous anodic aluminum oxide (PAAO) on transparent substrates
make it possible to provide the necessary adhesion to the films obtained by the sol–gel
method and form luminescent or photocatalytic structures on their basis [3,4] while main-
taining a sufficient degree of light transmission in a given wavelength range. The PAAO is
possessed of the high reactivity outer layer of the porous anodic oxide, which is due to the
residues of organic compounds, the presence of –OH groups, and the developed porous
surface of the oxide. These properties are important for obtaining coatings on PAAO by
chemical methods such as deposition, immersion, sol–gel, etc. In turn, the formation of
PAAO on nanometer layers of tantalum or vanadium provides sufficient adhesion of the



Coatings 2022, 12, 1678 3 of 12

porous layer to a smooth substrate and makes it possible to form large-area films. The
transmittance degree and refractive index are important parameters of the coatings for
optical applications, both single-oxide and combined.

In general, anodic aluminum oxide is transparent to visible and infrared light, with
its transparency dependent on several factors, including the thickness of an anodic layer,
concentration and type of impurities, and the diameter and ordering of pores [22–25]. The
best results show highly ordered structures, which can be obtained, at the simplest level,
by two-stage anodizing [22,24–28]. Thus, one of the main tasks is to find a balance between
the complexity of the manufacturing technology and the required defect-freeness for high
transparency in coatings.

Interesting properties of PAAO and other porous semiconductors are the phenomena
of birefringence in a porous oxide, as in a disordered structure with anisotropy on the
scale of the radiation wavelength, and an asymmetric light reflectance effect [29,30]. These
underlie the prospects of using PAAO as a birefringent material in the optical region of
the spectrum as a replacement for expensive, strictly ordered photonic crystal materials
and natural crystals. PAAO has a large working surface area, the ability to control the
magnitude of birefringence due to a controlled change in the geometry of the porous oxide,
a relatively low cost, and relative ease of manufacturing [28].

In addition, one of the promising areas for using porous anodic oxides is as a host
matrix or template for synthesizing composite materials, in particular nanowires, to
obtain biocompatible structures and structures with special magnetic properties and
surface characteristics [30–41].

This article presents the results of modifying the transmission degree and refractive
index of glasses by forming micron layers of PAAO as well as combined oxide coatings from
PAAO on submicron layers of semiconductor oxide compounds of vanadium and tantalum.

2. Materials and Methods

Porous anodic films were obtained on glass slides with dimensions of 26 × 76 × 1 mm.
Layers of initial metals were formed on glass substrates from high-purity (99.5%) vana-
dium and tantalum and high-purity (99.99%) aluminum metal sources on the 01-NE-7004
ORATORIYA-9 vacuum sputtering equipment (JSC “Kvartz”, Kaliningrad, Russia). The
following characteristics were implemented for technological processes of metal deposi-
tion: current 0.9 A, voltage 8 kV, sputtering time 7 min for Al; current 0.9 A, voltage 8 kV,
sputtering time 2 min 40 s for Ta; current 0.4 A, voltage 8 kV, sputtering time 45 s for V. The
thickness of the sublayer of Ta or V was 300 Å, while the thickness of the aluminum films
was 1 µm.

Electrochemical oxidation of metal layers was carried out in potentiostatic mode in
a solution of oxalic acid H2C2O4 (0.3 mol/L) at a temperature of 6–7 ◦C, under a voltage
of 60 V, as well as in a combined electrolyte containing 1.2 mol/L of sulfuric (H2SO4)
and 0.6 mol/L of oxalic acid, at a temperature of 12 ◦C and a voltage of 20 V. All used
reagents were of the chemical purity class. Distilled water was used for the preparation
of electrolytes. Electrochemical oxidation was carried out over the entire thickness of the
sputtered layers. After anodizing, the samples were dried at 100 ◦C in the air for an hour
to remove physically bonded water and pre-oxidize tantalum and vanadium. We had
assumptions that heat treatment could positively affect the transmission of structures.
However, no significant effect was found. Registered changes in transmission were obtained
only for the Al/Ta oxide structure after the annealing at 450 ◦C for 30 min, which is given
in the article.

The morphological features of the obtained PAAO/oxide sublayer/glass structures
were investigated by scanning electron microscopy (SEM) on a Hitachi S-4800 microscope
(Hitachi High-Technologies Corporation, Tokyo, Japan). The transmittance and absorp-
tion spectra were measured on a Cary-500 Scan UV-VIS-NIR spectrophotometer (Varian,
Melbourne, Australia).
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The schemes of the experiment for the study of transparency are provided in Figure 2.
For visually transparent samples, which we call “semi-transparent” below, the scheme
from Figure 2a is used, and part Figure 2b represents the scheme for an “almost non-
transparent” sample.
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Figure 2. Schematic representation of experiments to evaluate the visual transmission of semi-
transparent (a) and almost non-transparent (b) samples.

To assess the visual transparency, we placed a card with the sample number behind
the sample (Figure 2a,b, top) and fixed the result with a portative 5 megapixel photo camera
based on module K2A201E1CP (Samsung Electronics Co., Ltd., Suwon, South Korea). There
are two variants of transparency when applying the sample to the card. It was possible
to see the number on the card without additional light sources through samples 1–4 since
these samples turned out to be sufficiently transparent (Figure 2a); the bottom shows the
trimetric projection of the experiment, and the sample is raised for visibility, but during
the experiment and photographing, the sample lay tightly on the card. The card was not
visible through sample 5 in daylight (Figure 2b, top). When a light source was placed
behind sample 5 (Figure 2b, bottom), it was possible to consider the oxide boundary and the
presence of a light source. However, the photos with opposite lighting are not informative
enough, and we do not provide them below.

3. Results and Discussion

According to the SEM analysis, PAAO has formed a quasi-ordered structure of vertical
and tree-like pores arrays with a diameter of 20–30 nm depending on the anodizing mode,
and the ordering of PAAO does not depend on the nature of the semiconductor sublayer.
In Figures 3 and 4, SEM images of the structure of PAAO obtained in oxalic electrolytes
and structures of Al/Ta and Al/V anodic oxides are represented.

Quasi-ordered aluminum oxide is a porous structure. The tantalum and vanadium
oxide sublayers are formed as granular fragments repeating the pattern of the bottoms of
the pores, and in addition, the granularity of the vanadium sublayer is less pronounced.
The Al/Ta, Al/V, and aluminum oxides obtained in oxalic electrolyte films are visually
transparent under daylight (on inserts in Figure 3a–d, figures with the sample numbers
are placed behind them). According to SEM, the thickness of the anodic oxide sublayer of
tantalum is 84 nm and that of vanadium is 70 nm. Considering that the layers of sputtered
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Ta and V had the same thickness, we can assume the formation of a denser oxide in the
case of vanadium.
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Figure 4. SEM images of surfaces of quasi-ordered valve metals functional thin films on the glass
substrate (samples 1–4): (a) Al/Ta oxide; (b) Al/Ta annealed oxide; (c) Al/Va oxide; (d) Al oxide
obtained in the oxalic electrolyte.

In contrast to the cross-section, for the surface, the influence of the electrolytes and
sublayer on the structure is more pronounced (Figure 4).

The surfaces do not have an obvious ordered structure with pores of small diameter,
which is due to the single-stage anodization. When carrying out a two-stage process,
it is possible to obtain a surface with widened pore mouths, but this was not the goal
of this synthesis. For the samples with Ta sublayer, a more enlarged domain structure
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with pore mouths about 20 nm in diameter is observed (Figure 3a,b), and the samples
without a sublayer have a more pronounced granularity of surface with about 20 nm mouth
diameters (Figure 3d). The Al/V oxide layer is characterized by the smoothest surface,
and the diameter of the pores reaches 30 nm, which makes it possible to form thin films
with unexpressed relief on such samples without additional preparation. The developed
surface of samples 1, 2, and 4 is a promising basis for the formation of films of materials for
photocatalysis on them, as well as films with insufficient adhesion on smooth substrates.

Non-ordered PAAO is an array of tree-like pores with a pronounced granular barrier
layer, and the oxide film is translucent only against the light (Figure 5, the insert in (a)
demonstrates only a view of the sample under the experiment design from the top of
Figure 2b). The surface of this sample is also characterized by granularity and narrow pores
(about 10–20 nm).
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Figure 5. SEM image of the non-ordered anodic aluminum oxide film on the glass substrate ob-
tained in the sulfuric–oxalic electrolyte (sample 5): (a) cross-section and photo transparency (insert);
(b) surface.

At the same time, such a significant effect of the electrolyte as in the case of the cross-
section is not observed, and the sulfuric–oxalic electrolyte shortens the anodizing time. The
PAAO film formed in the combined electrolyte is the thinnest due to the higher dissolution
rate in the combined electrolyte containing sulfuric acid [39,42,43]. In addition, the current
density is much higher for anodization in combined electrolytes. In the presented exper-
iment, the average current density in the oxalic electrolyte was about 4–6 mA/cm2, and
in the sulfuric–oxalic electrolyte, about 33 mA/cm2. The maximum current density was
observed during anodization in the oxalic electrolyte of the Al/V structure, which was also
anticipated to affect its morphology (see Figures 2 and 3). Thus, the PAAO coating obtained
in combined electrolytes could be recommended for non-optical use as a porous adhesion
sublayer for the films. Summary information on the modes of obtaining and structural
features of the samples is represented in Table 1.

Table 1. Composition, synthesis mode, and physical properties of investigated porous anodic
oxide films.

Sample No. Film
Composition *

Anodizing
Mode

Thermal
Treatment

Orderliness of
Porous Oxide

Refractive
Index
(Calculation)

Film
Thickness, µm
(Calculation)

Film
Thickness, µm
(SEM)

1 TaxOy/Al2O3
0.3 M H2C2O4,
60 V, 7 ◦C

100 ◦C,
30 min quasi-ordered 1.526 1.98 1.82

2 TaxOy/Al2O3
0.3 M H2C2O4,
60 V, 7 ◦C

450 ◦C,
60 min quasi-ordered 1.524 1.69 1.81

3 VxOy/Al2O3
0.3 M H2C2O4,
60 V, 7 ◦C

100 ◦C,
30 min quasi-ordered 1.521 1.98 1.68

4 Al2O3
0.3 M H2C2O4,
60 V, 7 ◦C

100 ◦C,
30 min quasi-ordered 1.521 1.45 1.33

5 Al2O3

1.2 M H2SO4 +
0.6 M H2C2O4
20 V, 12 ◦C

100 ◦C,
30 min non-ordered 1.710 2.08 1.13

* Ta and V anodic oxides not specified.
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The transmission spectra of the obtained oxide films on glass are shown in Figure 6.
Alternations of minima and maxima are observed in the transmission spectra due to
the interference of light in the quasi-periodic structure of the anodic oxide films. This
characteristic of the transmission spectra makes it possible to determine the total refractive
indices of oxide films, including combined oxide films, by the envelope method [5,44,45].
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In accordance with the envelope method, the maximum Tmax (λ) and the minimum
Tmin (λ) in transmission spectra are determined to determine the values of the refractive in-
dex of the obtained films. The values of the transmittance coefficient on the envelope curves
are obtained by parabolic extrapolation of experimentally determined points corresponding
to the position of interference maxima and minima on the transmittance spectrum. Next,
the refractive index of the film n is calculated according to the equation [45]:

n = [N + (N2 − s2)1/2]1/2, (1)

where
N = [2s (Tmax (λ) − Tmin (λ))/Tmax (λ) Tmin (λ)] + (s2 + 1)/2, (2)

where s is the refractive index of the substrate (in this case, the refractive index is 1.51 for
the used glass slides).

Based on the calculated refractive indices, it is possible to calculate the thickness of
the studied coatings using the equation [45]:

d = A λ1 λ2/2 [n(λ1) λ2 − n(λ2) λ1], (3)

where λ1 and λ2 are the wavelengths corresponding to adjacent extremes on the trans-
mittance spectrum, the coefficient A = 1 for two adjacent extremes of the same type
(min − min, max − max) and A = 0.5 for two adjacent extremes of the opposite
type (min − max, max − min).

The results of the calculation for the studied films are represented in Table 1. As
reference values, the thickness values obtained are used in SEM. The average discrepancy
of the measurement results was about 10% for samples 1–4. Therefore, this method can
be used for express primary thickness analyses, including combined coatings, based on
transmission spectroscopy results. For the non-ordered aluminum oxide film with the
smallest pore diameter, the discrepancy between the thickness calculation results was
more than one and a half times, but the refractive index value is comparable to the value
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for amorphous PAAO [46]. This result could be associated with the peculiarities of the
propagation of radiation in the quasi-periodic oxide structure, especially by two- and
manyfold reflections combined with scattering on alumina defects.

The dispersion of the refractive index was estimated in the wavelength region of
350–1200 nm (Figure 7).
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For all quasi-ordered samples, the average refractive index is about 1.52 ± 0.01 and
remains stable over the analyzed wavelength range under consideration. These values are
lower than usual for PAAO, which suggests that porous anodic films with small thicknesses
due to the well-ordered structure of anodic oxides will have a refractive index lower than
a transparent substrate, but unlike thicker anodized aluminum coatings, will have good
adhesion due to the presence of a sublayer [47–50].

The transmission degree of the synthesized films was estimated through the integral
transmission in the visible (VIS), near-infrared (NIR), and near-ultraviolet (NUV) regions
and normalized to the degree of glass transmission using the equation:

TN = (T/T0) × 100%, (4)

where TN is the sample transmission and T0 is the glass transmission.
The results of the transmission analysis are represented in Figure 8.
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On average, the transmission attenuation for quasi-ordered samples 1–4 in the ranges
studied is about 40–60%. The best transmittance is recorded in the NIR range for anodic
aluminum films containing a sublayer of tantalum. Such optical properties and the possibil-
ity of incorporating PAAO-based structures with the luminescent ions by sol–gel synthesis
and dipping make Al/Ta oxide structures promising for use as IR transparent window
materials, emitting devices, transparent radiation converters, and for IR-spectroscopy of
catalytic reactions without submersible manipulators. UV attenuation can be useful for
operation with film organic–inorganic solar cells to slow down their degradation [50–53].
The integration of magnetic nanoparticles into pores of semi-transparent oxide has potential
for applications such as electromagnetic interference shielding and magneto-optical storage
with cheaper technology, excluding the existing deficiencies of using polymer matrices [54].
The slight improvement of transmission in all wavelength ranges after additional heat
treatment at 450 ◦C for aluminum oxide films on a sublayer of tantalum oxide may be due
to the final removal of water and organic compounds from the oxides. The non-ordered
PAAO film obtained by anodizing in a mixture of sulfuric and oxalic acids at 20 V shows the
worst transmission, associated with the low ordering of the resulting oxide at the smallest
pore sizes (≥20 nm according to SEM data), which contributes to increased scattering and
repeated reflection and absorption of optical radiation in the thickness of the oxide through-
out the wavelength range. PAAO with a sublayer of vanadium oxide is characterized by
the uniform transmission of radiation over the entire wavelength range.

4. Conclusions

Novel semi-transparent multilayered valve metals oxide coatings on glass substrates,
obtained by electrochemical oxidation in potentiostatic mode in the oxalic electrolyte at 60 V
from the sputtered Al, V, and Ta thin films were proposed. PAAO was formed by one-step
anodizing on Ta or V oxide sublayers in quasi-ordered and non-ordered (in the sulfuric–
oxalic electrolyte at 20 V) forms, which was confirmed by SEM analysis. Transmission
spectroscopy confirmed the main role of the PAAO ordering process in the transparent
properties of the obtained layered structures.

All samples, excluding non-ordered PAAO obtained in the sulfuric–oxalic electrolyte
at 20 V, demonstrate semi-transparentness in the range of 300–2800 nm. The refractive
index, obtained by the envelope method from transmission spectra, for the sample with
non-ordered PAAO demonstrates about 1.70 ± 0.01 in the range of 500–1200 nm and
exponential damping in the range of 300–500 nm, while samples with quasi-ordered PAAO
have refractive indices of 1.52 ± 0.01 in the full range of 300–1200 nm.

Non-ordered PAAO is almost non-transparent in the range of 340–1200 nm—the inte-
gral transmission is less than 8%. Quasi-ordering PAAO increases the integral transmission
6–7 times in the NUV and 6–10 times in the visible areas, and also up to 7.5 times in the NIR
area. Adding sublayers of vanadium or tantalum oxides for quasi-ordered PAAO decreases
the integral transmission in the range of 340–1200 nm with a maximal effect of 35% for the
NUV area and up to 6 times in the NIR area, according to the differences in the structure of
the intermediate sublayer between PAAO and glass.

Thus, thin layers of Al2O3 on glass can be used for different applications depending
on their characteristics. Adding sublayers of vanadium or tantalum oxides allows changes
in transparency, especially in the NUV area for the Al/Ta films, and monoxide aluminum
layers can be useful for developing semi-transparent coatings with an attenuation intensity
of NUV radiation. Moreover, these coatings are promising for the subsequent forming of
photocatalytic and luminescent/up-conversion thin films, which can be activated from
both sides.
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