Implementation of Information Retrieval
Subsystem 1n the Software Platform of
ostis-systems

Nikita Zotov
Belarusian State University of
Informatics and Radioelectronics
Minsk, Belarus
Email: nikita.zotov.belarus @ gmail.com

Abstract—The article describes the purpose and imple-
mentation variants for information retrieval subsystems of
next-generation intelligent computer systems. This paper
is a formal specification of how the information retrieval
subsystem in the current Software implementation of
the ostis-platform, as well as its software interface, are
implemented, and is a continuation of a series of works
on the design and implementation of the basic Software
implementation of the ostis-platform [1], [2].

Keywords—information retrieval, information retrieval
problem, isomorphic search, graph template, graph infor-
mation retrieval system, ontological design, graph storage,
ostis-platform

I. INTRODUCTION

One of the most important tasks of intelligent computer
systems [3] is to satisfy the information needs of users.
Intelligent computer systems should not only find the
necessary (relevant) information for the user, but also
provide quality answers to the user’s questions. Thus, in-
telligent computer systems based on graph representation
of knowledge should include entire software complexes
for searching information relevant to the user — graph
information retrieval subsystems [4], [5], [6].

Existing graph information retrieval systems are based
on the use of graph algorithms for searching, storing
and presenting information [7], [8]. Graphs are used
to model relationships between objects, such as web
pages on the Internet, users on social networks, or others.
In such systems, users can use search queries to find
information in a graph. Queries may be similar to those
used in traditional information systems, but instead of
searching by keywords, the user searches for objects and
the relationships between them.

Information retrieval tasks are of great relevance,
since at present the amount of information available
on the Internet is too large for a person to handle
without using appropriate search engines [9]. Information
flows are growing every day, and therefore a more
efficient and accurate use of information is becoming
increasingly important for decision-making, planning,

77

scientific research and other activities. Moreover, the
ability to conduct high-quality and accurate information
searches is a key skill for people in the modern world.

II. EXISTING ANALOGS OF GRAPH INFORMATION
RETRIEVAL SYSTEMS

Modern graph information retrieval systems use the
PageRank [10] algorithm to determine the relevance of
search results. PageRank evaluates the importance of
each object in the graph based on the links it contains
from other objects, and those objects that are considered
more important are ranked higher. Graphs also allow
the use of analytical algorithms, such as community
detection algorithms, to identify subgraphs that group
objects according to certain criteria. This can help users
find information that might not be found in a traditional
keyword search.

Examples of graph information retrieval systems are
Google Knowledge Graph [11], Facebook Graph Search,
LinkedIn Skills Graph [12] and Neo4j [13].

The use of graph data models in solving information
retrieval tasks is explained as follows:

o Data processing performance is improved by one
or more orders of magnitude when representing
data as graphs, due to the properties of graphs
themselves. Unlike relational databases, where query
performance degrades as the dataset grows with
increasing query intensity, graph data model perfor-
mance remains constant even as the dataset grows.
This is due to the fact that data processing is localized
in some part of a graph. As a result, the execution
time of each request is proportional only to the size
of the graph part traversed to satisfy this request,
and not to the size of the entire graph [14].

o Graph data models have tremendous expressive
power. Graph databases offer an extremely flexible
data model and way of representing it. Graphs are
additive, which provides the flexibility to add new
data relationships, new nodes, and new subgraphs

to an existing graph structure without violating its
integrity and coherence.

In general, graph information retrieval systems allow
efficient organization and retrieval of information using
a graph’s structure. This allows you to quickly and
efficiently process large amounts of data and provide
the user with the most relevant information.

III. IMPLEMENTATION OF THE INFORMATION
RETRIEVAL SUBSYSTEM IN THE CURRENT SOFTWARE
IMPLEMENTATION OF THE OSTIS-PLATFORM

Based on the current Software implementation of the
ostis-platform [2] for next-generation intelligent computer
systems, implemented according to the principles of
OSTIS Technology [15], there is a need to create an
information retrieval subsystem that will allow:

¢ solve information retrieval tasks of any level of
complexity [16];

o implement information retrieval subsystems in
platform-dependent and platform-independent ostis-
systems for application purposes.

In addition, to provide interaction between information
retrieval subsystem of ostis-platform and information
retrieval subsystems of platform-dependent components
and ostis-systems required programming interface.

SCin-code described in [2] is enough to represent sc-
texts inside the sc-memory of the ostis-platform [17]. To
translate some sc-fext into sc-memory of the ostis-platform,
you must use the methods of the current Implementation of
sc-memory in the ostis-platform. The sc-memory methods
described below are the formal specification of the current
Software interface of Implementation of sc-memory in
the ostis-platform, with which you can perform actions
with sc-memory.

In the current Implementation of sc-memory in the
ostis-platform all program methods are implemented in
method presentation languages C and C++. The current
Software interface of the Implementation of sc-memory in
the ostis-platform contains the necessary functionality not
only to perform actions on the elements of sc-memory, but
also — on the elements of file memory [2]. This software
interface is one of the languages of the current Software
implementation of the ostis-platform for performing
actions on sc-memory and can be used to solve problems
of any information-based complexity. So, for example, this
software interface is used in the current Implementation of
the Server system based on Websocket and JSON provid-
ing network access to this sc-memory [2], Implementation
of the ostis-system reusable component manager and
Implementation of the interpreter for logical models of
problem solving [18], as well as when implementing any
platform-dependent ostis-systems for any purpose.

Software interface of Implementation of ostis-platform
sc-memory
= software interface™:

78

Implementation of ostis-platform sc-memory
€ software interface
€ reusable ostis-systems component stored as
source files
atomic reusable ostis-systems component
dependent reusable ostis-systems component
component dependencies*:
{eo GLib library of methods and data
structures
° C++ Standard Library of methods and
data structures
}

= method representation language used*:
° C
° C++
D Software interface for information-forming
methods of Implementation of ostis-platform
sc-memory
= [information-forming methods of Imple-
mentation of ostis-platform sc-memory]
= [subsystem that is part of the implementa-
tion of ostis-platform sc-memory, which
allows to create, modify, and delete con-
structions of sc-memory]
software interface*:
Implementation of the
information-generating subsystem of
Implementation of ostis-platform
sc-memory
C Implementation of ostis-platform
sc-memory
D Software interface for information retrieval
methods of Implementation of ostis-platform
sc-memory
= [information retrieval methods of Imple-
mentation of ostis-platform sc-memory]
= [subsystem that is part of Implementation
of ostis-platform sc-memory that allows
to find constructions in sc-memory]
= software interface™:
Implementation of the information
retrieval subsystem of Implementation of
ostis-platform sc-memory
C Implementation of ostis-platform
sc-memory

Umm

Logically, the current Software interface of the imple-
mentation of sc-memory in the ostis-platform is divided
into two software interfaces: Software interface of
information-forming methods of Implementation of sc-
memory in the ostis-platform and Software interface
of information retrieval methods Implementation of sc-
memory in ostis-platform. First of all, this division is
due to the fact that the implementation of information
retrieval methods in the current Implementation of sc-
memory in the ostis-platform is rather complicated and

requires much more clarification when describing this
implementation. Also, this separation of the software
interface allows the specification of the methods of the
Software interface of the Implementation of sc-memory
in the ostis-platform to be singled out and structured
in such a way that it remains uniform, compact and
simple for an external user. As such, there is no physical
separation in the Software interface of the Implementation
of sc-memory in the ostis-platform, all methods of the
Software interface of the Implementation of sc-memory in
the ostis-platform can be used in the same programmatic
way and are components Reusable component library
of the Software implementation of the ostis-platform,
that is, they can be used in the implementation of other
special-purpose components.

IV. IMPLEMENTATION OF ITERATIVE SEARCH FOR
CONSTRUCTIONS IN THE SC-MEMORY OF THE
OSTIS-PLATFORM

In tasks solved in applied ostis-systems implemented on
the basis of the current Software implementation of ostis-
platform, it is necessary to use search mechanisms for
already existing elements or constructions in sc-memory.
Such mechanisms are part of the Implementation of the
information retrieval subsystem for the Implementation
of sc-memory in the ostis-platform, on the basis of which
information retrieval subsystems can be implemented
for platform-dependent and platform-independent ostis-
systems. Despite the complexity of information retrieval,
current Software implementation of the ostis-platform
makes it possible to effectively use the implemented
information retrieval methods in tasks solved by applied
ostis-systems. This subsystem cannot be implemented
independently of the implementation of the ostis-platform,
that is, it cannot be made platform-independent, so it
is necessary to separate Implementation of the informa-
tion retrieval subsystem for the Implementation of sc-
memory in the ostis-platform and Implementation of the
information retrieval subsystem of the OSTIS Metasystem
[19], which is implemented in the SCP Language [17],
independently of the current Software implementation of
the ostis-platform. The scp-interpreter itself must use
information retrieval methods of the Implementation of
sc-memory in the ostis-platform, and the SCP language
must provide the ability to navigate through the knowledge
base of any ostis-systems.

Software interface for information
retrieval methods of Implementation of
sc-memory in the ostis-platform

) Method for creating a three-element sc-memory
construction search iterator
) Method for creating a five-element sc-memory

construction search iterator

79

=) Method for finding sc-memory constructions
isomorphic to the specified graph template
) Method for creating sc-memory constructions

isomorphic to the specified graph template
) Method for creating an object of the graph
template

Method for creating a three-element sc-memory
construction search iterator

€ method
= input argument classes of a method*:
(o parameter of the Method for creating an
sc-memory construction search iterator
° parameter of the Method for creating an
sc-memory construction search iterator
) parameter of the Method for creating an

sc-memory construction search iterator

)

= method result class*:

) three-element sc-memory construction
search iterator
= class of exceptions*:
° element with the specified sc-address does

not exist in sc-memory

Method for creating a five-element sc-memory
construction search iterator

= method input argument classes*:

(o parameter of the Method for creating an
sc-memory construction search iterator

° parameter of the Method for creating an
sc-memory construction search iterator

° parameter of the Method for creating an
sc-memory construction search iterator

° parameter of the Method for creating an
sc-memory construction search iterator

° parameter of the Method for creating an

sc-memory construction search iterator

)

= method result class*:

° five-element sc-memory construction
search iterator
= class of exceptions*:
° element with the specified sc-address does

not exist in sc-memory

According to the rules of SC-code syntax, sc-
constructions, i.e. constructions consisting of sc-elements,
can consist of three sc-elements (Figure. 1), five sc-
elements (Figure. 2), seven sc-elements, and so on [20]. In
the sc-memory of the ostis-platform, the equivalent of an
sc-construction is a construction consisting of sc-memory
elements (sc-memory construction). Method for creating
a three-element sc-memory construction search iterator
and Method for creating a five-element sc-memory

construction search iterator allow you to create iterators
for searching for three- and five-element constructions
in sc-memory of the ostis-platform, respectively. Using
the parameters of these methods, you can create iterators
of any necessary configuration to search for three- and
five-element sc-constructions. So, for example, if it is
necessary to find all sc-memory elements corresponding
to sc-elements that belong to some sc-set to which a
given sc-memory element corresponds, then it is necessary
to use Method for creating a three-element sc-memory
construction search iterator to create a search iterator,
specifying as the first argument the sc-memory element
corresponding to the specified sc-set, and as the second
and third arguments — class of sc-memory elements
corresponding to base sc-arc™ and class of sc-memory el-
ements corresponding to sc-elements of unspecified class™,
respectively. To search sc-memory for more complex
structures consisting of seven or more elements, you
need to combine the search iterators for three- and five-
element constructions in sc-memory, or use the Method
for searching for sc-memory constructions isomorphic
to the specified graph template.

f

o

Figure 1. SC.g-text. Example of three-element sc-construction

Figure 2. SC.g-text. Example of five-element sc-construction

The software interface of these methods is constrained
by the method representation language C++. For example,
using these methods you cannot create iterators by
specifying only sc-memory element classes™ as arguments,
by which you need to find all corresponding constructions
in sc-memory , where classes of their sc-storage” are the
classes passed as arguments to the specified methods,
nor is it possible to specify as arguments anything other

than an sc-address or an sc-memory element class™. An
attempt to perform any of the above will result in an
error of "gluing" the interface of one of the specified
methods specified in the C++ header file with the
implementation with the specified parameters specified
in the C++ source file because the C++ compiler cannot
find an implementation for the specified software interface.
Thus, due to the aforementioned problem, the parameters
for Method for creating a three-element sc-memory
construction search iterator and Method for creating a
five-element sc-memory construction search iterator can
be sc-address and/or sc-memory element class™.

The iterators created using the specified methods also
have a software interface. The results of both methods
are different iterators, that share, however, the same
software interface. Such iterators allow you to work
with sc-memory constructions at the same moment they
are found. Using the Method of moving to the next sc-
memory construction "suitable" for the specified iterator,
the iterator updates its internal state each time a new
sc-memory construction is found. By next sc-memory
construction "suitable"” for the specified iterator we
mean an sc-memory construction whose elements match
the configuration of the created sc-memory construction
search iterator and which was not found earlier. The result
of the latter method is the boolean True value if the next
"suitable" construction for the specified iterator exists in
sc-memory. If there are no "suitable" constructions for this
iterator in sc-memory, then the Method of moving to the
next sc-memory construction "suitable" for the specified
iterator results in the boolean value False. To get the sc-
address of some of the elements of the found sc-memory
construction, you must use the Method of accessing the sc-
address of the specified sc-memory construction element
by the position number of this element in the specified
sc-memory construction, specifying as an argument an
integer value in the form of the position index of the
searched element in this construction. In this case, the
indexing of the positions of elements in the sc-memory
construction in the current Implementation of sc-memory
in the ostis-platform starts from zero, not from one, and
the indexing order is determined by the order of arguments
that have been used when creating the iterator. If you
try to specify for this method an index for which there is
no position in this construction, this method will result
in an invalid element position in the specified sc-memory
construction exception. Thus, the range of indices for
three-element constructions is limited from zero to two,
and for five-element constructions, from zero to four.

Software interface for information
retrieval methods of Implementation of
sc-memory in the ostis-platform

o=

D Extension of Software interface for information

80

retrieval methods of Implementation of
sc-memory in the ostis-platform

three- and five-element sc-memory construction search
iterator
C software object
= [Sclterator]
€ C++

Software interface for three- and
five-element sc-memory construction
search iterator

o=

{

= software interface*:
three- and five-element sc-memory construction

search iterator

Method of moving to the next sc-memory construction
"suitable'' for the specified iterator

method

method header in method representation
language™:

[bool Next() const]

S C++

method result class*:

boolean

S
=

Method of accessing the sc-address of an element of
the specified sc-memory construction by the position
index of this element in the specified construction

S method
= method header in method representation
language*:
[ScAddr Get(size_t idx) const]
€ C++
= method input argument classes*:
(o 32-bit integer
)
= method result class*:
) sc-address of sc-memory element
= class of exceptions*:

. invalid element position in the specified

sc-memory construction

v

For Method for creating a three-element sc-memory
construction search iterator, as well as for Method for
creating a five-element sc-memory construction search
iterator, various combinations of parameters can be used,
except for combinations where all parameters are classes
of sc-memory elements. For simplicity and compactness of
the terms used at the level of implementation of methods
for creating iterators for searching for structures in sc-
memory, additional notations are introduced: the symbol

81

"f" (from the English word “fixed”) denotes the fact
that the parameter of a given method for creating an sc-
memory construction search iterator is the sc-address of
some sc-memory element, and the symbol "a" (from the
English word “assign”) denotes sc-memory element class™.
For Method for creating a three-element sc-memory
construction search iterator, the correct designation of
the desired constructions will be a three character long
combination of characters "f" and "a", and for Method for
creating a five-element sc-memory construction search
iterator — a five-character combination of "f" and "a".
In the SCP Language, to indicate whether a variable has
the specified value, the corresponding role relations are
used: for variables of class "f" — scp-operand with the
specified value’, for variables of class "a" — scp-operand
with free value’ [17].

Software interface for information
retrieval methods in the
Implementation of sc-memory in the
ostis-platform

o=

{

Method for creating a three-element sc-memory
construction search iterator

D Method for creating an fff-construction search
iterator
€ method
= method input argument classes*:
(o sc-address of sc-memory element
° sc-address of sc-memory element
° sc-address of sc-memory element
D Method for creating an faa-construction search
iterator
€ method
= method input argument classes*:
(o sc-address of sc-memory element
) sc-memory element class™
) sc-memory element class™
)
D Method for creating an aaf-construction search
iterator
S method
= method input argument classes*:
(o sc-memory element class"
° sc-memory element class®
° sc-address of sc-memory element
)
D Method for creating an faf-construction search
iterator
€ method
= method input argument classes*:

(o

sc-address of sc-memory element

° sc-memory element class™

° sc-address of sc-memory element
)
D Method for creating an afa-construction search
iterator
= method
= method input argument classes*:
(o sc-memory element class™
° sc-address of sc-memory element
° sc-memory element class™

)

These variants of the implementation of the Method
for creating a three-element sc-memory construction
search iterator are sufficient for solving any search
and navigation tasks. Method for creating an (ffa-
construction search iterator and Method for creating
an aff-construction search iterator are possible, but in
practice there is no need to look for a third sc-memory
element by the known element corresponding to the sc-
connector and the element corresponding to the sc-element
from which this sc-connector exits or into which this sc-
connector enters. Such a problem can be solved using
Method for creating an afa-construction search iterator.
However, the implementation of Method for creating a
five-element sc-memory construction search iterator is not
at all necessary, since all tasks solved using this method
can also be solved using Method for creating a three-
element sc-memory construction search iterator , however,
the implementation of Method for creating a five-element
sc-memory construction search iterator allows you to
make the text of the method more compact compared
to the method that would use Method for creating a
three-element sc-memory construction search iterator.

The following can be specified as all three arguments
for the Method for creating a three-element sc-memory
construction search iterator:

o sc-addresses of sc-memory elements (for example,
when solving the problem of checking the incidence
of all three specified sc-memory elements),

e sc-storage element address, class of sc-storage
elements corresponding to sc-connectors™ that come
out of the sc-storage element passed as the first
argument, and sc-address of the sc-memory element
corresponding to some sc-element that contains the
required sc-connectors (for example, when solving
the problem of finding all sc-memory elements cor-
responding to sc-connectors between sc-elements for
which the specified sc-memory elements correspond),

o sc-storage element address, class of sc-storage ele-
ments corresponding to sc-connectors™ that come out
of the sc-storage element passed as the first argument,
and class of sc-memory elements corresponding to
some sc-elements™, which include the required sc-
connectors (for example, when solving the problem

of finding all sc-memory elements that correspond
to sc-connectors coming from the sc-element that
matches the sc-memory element passed as the first
argument),

o class of sc-memory sc-elements”, class of sc-memory
elements corresponding to sc-connectors™ that come
out of the sc-memory elements specified as the
first argument, and sc-address of the sc-memory
element corresponding to some sc-element, which
contains the required sc-connectors (for example,
when solving the problem of finding all sc-memory
elements corresponding to sc-connectors, contained
in the sc-element that matches the sc-memory ele-
ment specified as the third argument),

o sc-memory element class™, sc-address of the sc-
memory element corresponding to the sc-connector
that comes out of the sc-memory element passed as
the first argument, and class of sc-memory elements
corresponding to some sc-element”, which contains
the required sc-connector (for example, the task of
finding sc-memory elements corresponding to sc-
elements, one of which is the sc-element from which
the sc-connector emerges, for which the specified sc-
memory element matches, and the second of which
is the sc-element that includes this sc-connector for
which the specified sc-memory element matches)

e and so on.

As all five arguments for the Method for creating a five-
element sc-memory construction search iterator, other
combinations can be specified that are not specified in the
presented classification. However, this is not necessary,
since all tasks solved using such iterators can be solved
by already existing five-element sc-memory construction
search iterators.

V. IMPLEMENTATION OF ISOMORPHIC SEARCH FOR
SC-MEMORY CONSTRUCTIONS OF THE
OSTIS-PLATFORM ACCORDING TO THE SPECIFIED
GRAPH TEMPLATE

Method for creating a three-element sc-memory con-
struction search iterator and Method for creating a five-
element sc-memory construction search iterator, as well as
Software interface for three- and five-element sc-memory
construction search iterator are quite powerful tools
for solving any information retrieval problems in applied
ostis-systems. For example, in inference [18] problems, it
is considered convenient to solve problems when search
for structures of any necessary configuration in sc-memory
reduces to isomorphic search of these constructions
according to the specified graph template (Figure. 3).
Such graph templates can be any atomic logical formulas
included in any other non-atomic formula [18].

Isomorphic search is one way to solve the problem of
finding a subgraph in a graph (see [21]). The problem
consists of finding all occurrences of the specified graph

82

kdr.'\'fl'r_'. Addr
I

nrel_installed _apps

nrel_ids f%

I

=]

I

)i l}’ nrel_image
\

Yy L

-
— —

_idtf _image

Figure 3. SC.g-text. Graph template example

template in the source graph. The isomorphic search
process can be implemented using various algorithms.
One of them is Ullman’s Algorithm [22], which is based
on using an adjacency matrix to determine the corre-
spondence between graph vertices. Another algorithm is
the VF2 Algorithm, which uses a comparison function
to check if the corresponding nodes and edges in two
graphs match (see [23]). In modern computer science,
there are algorithms that allow solving the problem of
isomorphic search in subexponential time (see [24]).

The fundamental principle of the OSTIS Technology
that is currently under development is the principle of
adopting the best existing technologies for the devel-
opment of ostis-systems [25]. However, due to various
circumstances, for example, connected with the specific
features of the Implementation of sc-memory in the ostis-
platform, as well as the requirements imposed on sc-
agents involved in logical inference, it is necessary to
apply and test new solutions. Within the framework of the
current/mplementation of sc-memory in the ostis-platform,
a concept of isomorphic search has been developed, which
allows to find graphs isomorphic to fragments of a given
graph template in optimal time.

In general there is no need to implement isomorphic
search in a generic way. This is explained by the
following:

e isomorphic search is an NP-complete problem,

83

which means that the cost of solving it grows expo-
nentially with the size of the input data, and there
is no efficient algorithm for solving the isomorphic
search problem yet;

o as a result of determining the isomorphism of two
given graphs, several nodes can be found that corre-
spond to each other, but are not actually isomorphic;

o due to the exponential growth in the number of possi-
ble isomorphism variants with increasing graph size,
even small errors in the calculation of isomorphism
can lead to severe distortion of the results;

o for large graphs, the time spent on enumeration of
all possible isomorphisms can be very high. This
can reduce search efficiency and limit the use of
isomorphic search in real-world problems (see [26]);

« search complexity increases with the number of loops
in the original graph, as it results in more iterations;

« existing algorithms are either slow or waste memory,
resulting in isomorphic search being slow.

Some isomorphic search algorithms even have O(n/)
complexity and cannot be used for large graphs (see
[21]). Despite all the problems associated with isomorphic
search, for the convenience of solving logical problems,
the current Software implementation of the ostis-platform
implements the "most appropriate”" isomorphic search
algorithm. The current version of isomorphic search
is implemented in the Method for finding sc-memory
constructions isomorphic to the specified graph template.
This method allows you to find sc-memory constructions
that are isomorphic not just to some graph template
that is represented in sc-memory, but to the program
object of this graph template, i.e. graph template, which
is presented in a program format convenient for quick
processing.

) Method for finding sc-memory constructions
isomorphic to the specified graph template

€ method

= method header in method representation
language™:

[ScTemplate::Result

plate(ScTemplate const

& templ, ScTemplateSearchResult & result)]

S C++

= input argument classes of a method*:

(o graph template program object

° tuple of program objects of sc-memory
constructions isomorphic to the specified
graph template

HelperSearchTem-

)

= method result class*:

° error code of the result of creating a
program object by the specified element
corresponding to the graph template

= class of exceptions*:

. syntactically incorrect graph template

program object
° semantically incorrect graph template
program object

) Method for creating a construction in sc-memory
that is isomorphic to the specified graph template

c method

= method header in method representation
language*:

[ScTemplate::Result
plate(ScTemplate const &
templ, ScTemplateGenResult & result)]
S C++

HelperGenTem-

= input argument classes of a method*:

(o graph template program object
program object of the sc-memory
construction isomorphic to the specified
graph template

)

= method result class*:

° error code of the result of creating a
program object by the specified element
corresponding to the graph template

= class of exceptions*:

° syntactically incorrect graph template
program object

° semantically incorrect graph template

program object

Method for creating a graph template program object
S method
= method header in method representation
language*:
[ScTemplate::Result
plate(ScTemplate &
& templAddr)]
€ C++
input argument classes of a method*:
(o graph template program object

° sc-address of sc-memory element

HelperBuildTem-

templ, ScAddr const

method result class*:

° error code of the result of creating a
program object by the specified element
corresponding to the graph template

class of exceptions®:

° syntactically incorrect graph template
program object

° semantically incorrect graph template
program object

Graph template program object can be generated using
the Method for creating graph template program object
by passing as arguments graph template program object
as an output parameter and sc-address of the sc-memory
element corresponding to the sc-structure of an atomic

logical formula (sc-template). Like three- and five-element
sc-memory construction search iterator, graph template
program object has a specialized software interface.
Initially, graph template program object is set to empty.
Using Method of adding a three-element construction for
the specified graph template and Method of adding a five-
element construction for the specified graph template,
you can extend the specified graph template program
object. The graph template program object is expanded
with the addition of three-element constructions to the
tuple of program objects of three-element constructions
in the specified graph template, while the order of the
program objects of constructions in this set is specified
by the execution sequence Method for adding a three-
element construction for the specified graph template and
Method for adding a five-element construction for the
specified graph template.

Software interface for information
retrieval methods of Implementation of
sc-memory in the ostis-platform

=

{

graph template program object
[atomic logical formula program object]
[sc-template program object]

AN

program object

concept specifying the specified entity*:

{eo tuple of program objects of three-element
constructions in the specified graph
template

° local identifier of the sc-memory element

and position indices of this element in the
specified graph template*

° set of sets of indices of program objects
of three-element construction in the
specified graph template, ordered by the
search priority

° local identifier of the sc-memory element
and sc-address of this element in the
specified graph template*

° local identifier of the sc-memory element
and the class of this element in the
specified graph template*

}

program object of a three-element construction of the
specified graph template

= [ScTemplateTriple]
€ C++
€ program object
= concept specifying the specified entity*:

{e index of the program object of the
three-element structure in the specified
graph template

&4

= [size_t m_index]

° tuple of three elements of a program
object of a three-element construction
= [std::array<ScTemplateltem, 3>

m_values]

}

element of program object of three-element
construction
= [ScTemplateltem]
€ C++
(S program object
= concept specifying the specified entity*:
{eo sc-address of the program object element
of the three-element structure
= [ScAddr m_addrValue]
C sc-address of sc-memory element
° element class of a program object of a
three-element construction
= [ScType m_typeValue]
- sc-memory element class™
) local identifier of the program object of
the three-element construction
= [std::string m_name]

}

Software interface of graph template
program object
o=
{
= software interface*:
graph template program object

Method for adding three-element construction to the
specified graph template

S method
= method header in method representation
language*:

[ScTemplate & Triple(ScTemplateltemValue const
& paraml, ScTemplateltemValue const & param2,
ScTemplateltemValue const & param3)]
€ C++

= input argument classes of a method*:

(o parameter of the Method for adding
construction to the specified graph
template

° parameter of the Method for adding
construction to the specified graph
template

° parameter of the Method for adding
construction to the specified graph
template

)

= method result class*:
° graph template program object

85

= class of exceptions*:
° incorrect parameter of the Method for
adding construction to the specified graph
template
D local identifier is not previously
bound to the sc-address of the
program object element of the
three-element construction in the
specified graph template program
object

D local identifier has already been
used for another sc-address of the
three-element construction
program object element in the
specified graph template program
object

D the same local identifier is
simultaneously specified for the
second and first (third) element of
the specified program object of the
three-element construction

D element class of the created
program object of the
three-element construction in the
specified program object of the
graph template is the class of
elements in the sc-memory
corresponding to the sc-constants

D element with the sc-address of the
element of the created program
object of the three-element
construction in the specified
program object of the graph
template does not exist in
sc-memory

Method for adding five-element construction to the
specified graph template

€ method
= method header in method representation
language*:

[ScTemplate & Fiver(ScTemplateltemValue
const & paraml, ScTemplateltemValue const &
param2, ScTemplateltemValue const & param3,
ScTemplateltemValue const & param4, ScTem-
plateltemValue const & param5)]

€ C++

= input argument classes of a method*:

(o parameter of the Method for adding
construction to the specified graph
template

° parameter of the Method for adding
construction to the specified graph
template

° parameter of the Method for adding

construction to the specified graph
template

° parameter of the Method for adding
construction to the specified graph
template

° parameter of the Method for adding
construction to the specified graph
template

)

= method result class*:

° graph template program object

= class of exceptions™:

. incorrect parameter of the Method for
adding construction to the specified graph
template
D local identifier is not previously

bound to the sc-address of the
program object element of the
three-element construct in the
specified graph template program
object

D local identifier has already been
used for another sc-address of the
three-element construction
program object element in the
specified graph template program
object

D the same local identifier is
simultaneously specified for the
second and first (third) elements
of the specified program object of
the three-element construction

D element class of the created
program object of the
three-element construction in the
specified program object of the
graph template is the class of
elements in the sc-memory
corresponding to the sc-constants

D element with the sc-address of the
element of the created program
object of the three-element
construction in the specified
program object of the graph
template does not exist in
sc-memory

v et

To form the necessary graph template program object,
do the following:
o If graph template program object has not been
created before, then it must be created.
« For the created graph template program object apply
several times Method of adding a three-element
structure for the specified graph template (Method

of adding a five-element structure for the specified
graph template), specifying as three (five) input
parameters the parameters of the Method for adding
a construction for the specified graph template,
depending on the desired configuration of the three-
element (five-element) construction program object
to be added.

At the same time, parameter of the Method for
adding a construction for the specified graph template
differs significantly from the parameter of the Method
for creating sc-memory construction search interator.
In addition to sc-addresses and classes of sc-memory
elements, local identifiers of these addresses or classes can
be specified in the created graph template. This greatly
simplifies the process of creating the graph template
program object, when it is necessary to specify sc-address
or sc-memory element class™ in the added construction,
which was already specified earlier in another construction
the specified graph template. Thus, using such a local
identifier, it is possible to refer to the parameter of an
already previously added construction in the specified
graph template. In addition, this method allows you to get
elements from the structures found by the specified graph
template in the sc-memory using such local identifiers.

Regardless of what methods were applied to the created
graph template program object, in the structure of the
graph template program object itself, for the convenience
of representing and processing data, only software objects
of three-element constructions are created. Each element
in program object of a three-element construction, except
for the sc-address, class and local identifier, has its own
position index within this construction, set in the range
from zero to two, as well as the position index within
the entire graph template, calculated as the sum of the
product of the number of the three-element construction
in the specified graph template and number three and
position index of this element within the graph template.
Adding program object of a three-element construction
in the specified graph template program object to graph
template program object is done as follows:

« If the argument specified as the second parameter
has a local identifier in the specified graph template,
and this local identifier is also specified for the first
or second argument, then terminate the Method for
adding a three-element construct for the specified
graph template with the following exception: the
same local identifier is simultaneously specified for
the second and first (third) elements of the specified
program object of the three-element construction in
the specified program object of the graph template.

« If any of the parameters is specified as the class of the
sc-memory element corresponding to the sc-constant,
then terminate the Method of adding a three-element
construction for the specified graph template with the
following exception: the element class of the three-

86

element construct program object being created in
the specified graph template program object is the
class of the elements in the sc-memory corresponding
to the sc-constants.
If any of the parameters is given as the sc-address of
a non-existent element in sc-memory, then terminate
the Method of adding a three-element construction
for the specified graph template with the following
exception: the element with the sc-address of the
element of the created program object of the three-
element construction in the specified program object
of the graph template does not exist in the sc-
memory.
For all parameters that have local identifiers in
the specified graph template and sc-addresses of
elements in sc-memory, add all pairs with these
local identifiers and the corresponding sc-addresses
of elements in sc-memory to the relation local
identifier of the sc-storage element and the sc-address
of this element in the specified graph template*,
otherwise, if the sc-addresses of the elements in the
sc-storage for these local identifiers are known in
relation to local identifier of the sc-storage element
and sc- the address of this element in the specified
graph template®, specify the known sc-addresses
of the elements in the sc-memory for the specified
parameters.
For all parameters that have local identifiers in the
specified graph template and element classes in sc-
memory, add all pairs with these local identifiers and
the corresponding element classes in sc-memory to
the relation local element identifier sc-memory and
the class of this element in the specified reference
graph*.
For all parameters for which only local identifiers are
specified in the specified reference graph, as well as
for the local identifier of the sc-memory element and
the position numbers of this element in the specified
reference graph*, if position indices are unknown by
these local identifiers of the corresponding elements
in the specified graph template, then add to this
relation all pairs with local identifiers and position
indices of the corresponding elements in the specified
template graph.
For the obtained program object of a three-element
construct in the specified graph template program
object, calculate the priority number required when
executing the Method for finding sc-memory con-
structions isomorphic to the specified graph tem-
plate:

— If program object of a three-element construction
contains sc-addresses of sc-memory elements for
all elements, then the priority number of the
specified construct is considered equal to zero
(that is, it is considered the highest priority).

87

— If the software object of a three-element construc-
tion contains sc-address of the sc-memory element
corresponding to the sc-connector for the second
element, then the priority number of the specified
construct is considered equal to one (i.e. it is the
second by priority).

— If in the program object of a three-element
construction for the first and third elements sc-
addresses of the sc-memory element are specified,
then the priority number of the specified con-
struction is considered equal to two (that is, it is
considered the third in priority).

— If the program object of a three-element construc-
tion contains sc-address of the sc-memory element
only for the third element, then the priority number
of the specified construct is considered equal to
three.

— If in the program object of a three-element
construction the first element is sc-address of the
sc-memory element, and the third element is the
class of the sc-memory element corresponding to
sc-node”, then the priority number of the specified
structure is considered equal to four.

— If in the program object of a three-element
construction the first element is sc-address of the
sc-memory element, and the third element is the
class of the sc-memory element corresponding to
sc-connector”, then the priority number of the
specified structure is considered equal to five.

— If there are no elements in the software object
of a three-element construction for which sc-
addresses of sc-memory elements are specified,
then the priority number of the specified construct
is considered equal to six (that is, it is considered
to be of the lowest priority).

After determining the priority number of the speci-
fied program object of the three-element construct
in the specified graph template program object, add
this object to the set with the position equal to the
calculated priority number of the set of sets of indices
of program objects of three-element construction in
the specified graph template, ordered by the search
priority.

o The obtained program object of a three-element
construction of the specified graph template is
added to tuple of program objects of three-element
constructions in the specified graph template.

Adding a five-element construction program object to
graph template program object amounts to adding two
three-element construction program object to this graph
template program object. At the same time, in the second
three-element construction program object only the local
identifier of the second element of the first added three-
element construct program object in the specified graph
template program object is specified for the specified

graph template program object.

To find all sc-memory constructions isomorphic to a
given graph template program object, do the following:

« For the generated graph template program object ap-
ply the Method for finding sc-memory constructions
isomorphic to the specified graph template.

The result of this method will be a fuple of program
objects of all constructions in sc-memory isomorphic
to the specified graph template, which, like the search
iterator for three- and five-element constructions in
sc-memory, has its own program interface.

Software interface for information
retrieval methods of Implementation of
sc-memory in the ostis-platform

o=

{

tuple of program objects of sc-memory constructions
isomorphic to the specified graph template
[ScTemplateSearchResult]

€ C++

program object

C

Software interface of the tuple of
program objects of sc-memory
constructions isomorphic to the
specified graph template

=

{

<= software interface*:
tuple of program objects of sc-memory
constructions isomorphic to the specified graph

template

Method of obtaining a program object of an
sc-memory construction isomorphic to the specified
graph template by its index in a tuple

S method

= method header in method representation

language™:

[ScTemplateSearchResultltem operator[](size_t in-

dex) const noexcept(false)]

€ C++

input argument classes of a method*:

(o 32-bit integer

)

method result class*:

) program object of an sc-memory
construction isomorphic to the specified
graph template

class of exceptions*:

° the element with the specified index does
not exist in the tuple

Method of obtaining a program object of an
sc-memory construction isomorphic to the specified
graph template by its index in a tuple with a
preliminary check for the specified index

€ method
€ method without exceptions
= method header in method representation

language*:

[bool Get(size_t index,
ScTemplateSearchResultltem & outltem)
const noexcept]

€ C++

input argument classes of a method*:

(o 32-bit integer
° program object of an sc-memory

construction isomorphic to the specified

graph template

method result class*:
€ boolean

=

}

program object of an sc-memory construction
isomorphic to the specified graph template
[ScTemplateSearchResultltem]

€ C++

program object

-

Software interface of the program
object of an sc-memory construction
isomorphic to the specified graph

template
o=
< programming interface*:

program object of an sc-memory construction
isomorphic to the specified graph template

Method of obtaining the sc-address of an element of a
program object of an sc-memory construction
isomorphic to the specified graph template by its index
in this program object

€ method
= method header in method representation
language*:
[ScAddr const & operator[](size_t index) const
noexcept(false)]
€ C++
= input argument classes of a method*:
(o 32-bit integer
)
= method result class*:
° sc-address of sc-memory element
= class of exceptions*:

. there is no element at the specified index

88

in the program object of the sc-memory
construction isomorphic to the specified
graph template

Method of obtaining the sc-address of an element of a
program object of an sc-memory construction
isomorphic to the specified graph template by its index
in this program object with a preliminary check of the
specified index
S method
€ method without exceptions
= method header in method representation
language™:
[bool Get(size_t index, ScAddr & outAddr) const
noexcept]
€ C++
= input argument classes of a method*:
(o 32-bit integer
° sc-address of sc-memory element
)
= method result class*:
o boolean

Method of obtaining the sc-address of an element of a
program object of an sc-memory construction
isomorphic to the specified graph template by the local
element identifier of the corresponding program object
of the three-element construction in the specified
program object of the graph template

€ method
= method header in method representation
language*:

[ScAddr const & operator[](std::string const &
name) const noexcept(false)]

€ C++
= input argument classes of a method*:
(o local identifier of an element of a

three-element construction in the specified
graph template

)

= method result class*:

° sc-address of sc-memory element
= class of exceptions*:
° an element with the specified local

identifier does not exist in the program
object of an sc-memory construction
isomorphic to the specified graph
template

Method of obtaining the sc-address of an element of a
program object of an sc-memory construction
isomorphic to the specified graph template by the local
identifier of the element of the corresponding program
object of a three-element construction of the specified
graph template with a preliminary check of the

specified local identifier

€ method

S method without exceptions

= method header in method representation
language*:

[bool Get(std::string const & name, ScAddr &
outAddr) const noexcept]

€ C++
= input argument classes of a method*:
(o local identifier of an element of a

three-element construction in the specified
graph template
° sc-address of sc-memory element
= method result class*:
° boolean

—

The current Method for finding sc-memory con-
structions isomorphic to the specified graph template
consists of two stages: (1) Stage of preprocessing of the
graph template, (2) Stage of searching for sc-memory
constructions isomorphic to the specified graph template.
At the same time, inside the Method for finding sc-memory
constructions isomorphic to the specified graph template,
a software iterator for finding sc-memory constructions
isomorphic to the specified graph template is created,
which performs the entire isomorphic search algorithm.

Software interface for information
retrieval methods of Implementation of
sc-memory inthe ostis-platform

D=

{

Software interface of graph template
program object
o=

{

iterator for finding sc-memory constructions
isomorphic to the specified graph template
= [ScTemplateSearch]

S C++

C program object
= concept specifying the specified entity*:

{e local identifier of some element in some
program object of a three-element
construction of the specified graph
template and the set of all indices of
program objects of three-element
constructions in the specified graph
template with this element*

° tuple of sets of indices of program objects

&9

e

of three-element constructions of
connectivity components in the specified
graph template

° set of indices of the highest-priority
three-element constructions for the search
for program objects of connectivity
components in the specified graph
template

° tuple of sets of sc-addresses of sc-memory
elements corresponding to sc-connectors,
such three-element constructions that are
not isomorphic to the corresponding
three-element constructions of the
specified graph template, whose indices
are equal to the position indices of sets in
this oriented set

° tuple of sets of sc-addresses of sc-memory
elements corresponding to sc-connectors
of such three-element constructions that
are isomorphic to the corresponding
three-element constructions of the
specified graph template, whose indices
are equal to the position indices of the
sets in this oriented set

° tuple of sets of sc-addresses of sc-memory
elements corresponding to sc-connectors
that are the second elements of the
corresponding three-element constructions
of found sc-memory constructions
isomorphic to the specified graph
template, whose indices are equal to the
position indices of sets in this oriented set

. tuple of sets of indices of program objects
of three-element constructions of the
specified graph template for constructions
isomorphic to it found from in sc-memory,
whose indices are equal to the position
indices of sets in this oriented set

° index of the last found sc-memory
construction according to the specified
graph template

° set of indices of all found and isomorphic
constructions in sc-memory according to
the specified graph template

The graph template preprocessing step consists of
the following intermediate processing steps:
o Addition to the relation local identifier of some

element in some program object of a three-element
construction of the specified graph template and
the set of all indices of program objects of three-
element constructions in the specified graph template
with this element* of all pairs with local element

90

identifiers in some program object of a three-element
construction of the specified graph template and
sets of indices of corresponding program objects of
three-element constructions in the specified graph
template. The sets of such program objects do
not include those program objects of three-element
constructions in the specified graph template, whose
indices are included in the local identifier of the
element itself. This element’s local identifier is not
the element’s local identifier within the entire graph
template. Such a local identifier is formed by the
system itself, and not by the user of the Method of
adding a three-element construction for the specified
graph template (Method of adding a five-element
construction for the specified reference graph) and
consists of a local element identifier within the entire
graph template and the number of the corresponding
program object of the three-element structure in
the specified graph template. Knowing such a local
identifier of an element of some program object of a
three-element construction of the graph template, one
can quickly access other program objects of three-
element constructions that contain this element.

Removal from the sets of indices of program objects
of three-element constructions, which are the second
components of pairs of the relation local identifier
of some element in some program object of a three-
element construction of the specified graph template
and the set of all indices of program objects of
three-element constructions in the specified graph
template with this element* and in which there are
elements that are the first components of these pairs,
all such indices of program objects of three-element
constructions, passing through which in the process
of searching for constructions isomorphic according
to the specified graph template can lead to a looping
of the search algorithm. This pre-processing stage
of the formed graph template program object makes
it possible to eliminate transitions along such pro-
gram objects of three-element constructions of the
specified graph template as much as possible, which
significantly complicating the process of isomorphic
search for constructions according to the specified
graph template. Since SC-code itself allows one to
represent constructions of any possible configuration,
it is impossible to say exactly which configurations
of constructions can lead to cyclic situations when
the isomorphic search algorithm for these structures
is executed according to the specified graph template.
A more universal algorithm for eliminating loops in
the graph template can lead to significant additional
time costs, since it may require a deeper syntactic
analysis in the original graph template, so it is
recommended to implement the conditions by which
you can determine the program objects of three-

element constructions, the transition to which can
lead to cyclic situations in the processing of the
graph template. The elimination of loops in the graph
template allows the algorithm of isomorphic search
for structures on the specified graph template to more
efficiently perform all the required operations on
graphs, therefore it is a key step in preprocessing the
original graph template program object. Also, this
step cannot be performed together with the previous
step, since in order to eliminate all loops in the
graph template, it is necessary to know completely
all possible transitions along this graph template.
Search for all connectivity components in the speci-
fied graph template, that is, unrelated subgraphs in
this graph, and add all program objects of three-
element constructions corresponding to these con-
nected components to the tuples of sets of numbers
of program objects of three-element constructions
connectivity components in the specified graph
template. Thus, this makes it possible to find even
such connected components that could be obtained
after performing the second step of the algorithm
for preprocessing the specified graph template, that
is, eliminating cycles in the specified graph tem-
plate. Dividing a graph template into connectivity
components could be one of the solutions to the
problem of eliminating a cycle in the specified graph
template, however, the algorithm for isomorphic
search for structures on the specified graph template
is more advanced and allows one to find all three-
element constructions for topics of three-element
graph template constructions that have the same first
or third element, so splitting the graph template into
connected components is not used in the previous
step.

The last step of the graph template preprocess-
ing stage is to select the connectivity components
found at the previous Pre-processing stage of graph
template of the highest-priority program objects of
three-element constructions in the specified graph
template. The highest priority program object of the
three-element design is the object with a priority
number equal to zero, the most non-priority object
is the object with a priority number equal to six.
In this case, if there are several program objects
of three-element constructions that have the same
priority number, then the object with the first (third)
element, which is the sc-address of the sc-memory
element, is considered to have the highest priority.
has the least number of elements corresponding to
outgoing (incoming) sc-connectors. As a result, a
set of numbers of the highest-priority three-element
constructions for the search for program objects of
the connectivity components in the specified graph
template is formed.

91

Thus, graph template preprocessing stage makes it
possible to significantly simplify the processing of a
graph template at the stage of searching for constructions
isomorphic to it. The next stage of searching for sc-
memory constructions isomorphic to the specified graph
template includes the following steps:

o If the specified fuple of program objects of sc-
memory constructions isomorphic to the specified
graph template is not empty, then delete all program
objects of constructions in sc-memory from it.

o If the set of numbers of the highest-priority three-
element constructions for searching program objects
of connectivity components in the specified graph
template is empty, then this means that the specified
graph template is empty. In this case, the result of
the search is an empty tfuple of program objects of
sc-memory constructions isomorphic to the specified
graph template and The stage of searching for sc-
memory constructions isomorphic to the specified
graph template ends with a successful result.

o Initialize number of the last found sc-memory con-
struction according to the specified graph template
with a value equal to zero. Set Number of the
current found sc-memory construction according to
the specified graph template equal to number of
the last found sc-memory construction according
to the specified graph template. Set set of numbers
"equivalent" program objects of constructions to
be equal to set of numbers of the highest priority
for searching program objects of three-element
constructions of connectivity components in the
specified graph template. Set set of numbers of
current program objects of constructions equal to
set of numbers of "equivalent” program objects of
constructions.

o Select the next number from set of numbers "equiva-
lent" program objects of constructions. According to
the received number from tuple of program objects
of three-element constructions in the specified graph
template take the corresponding program object of
three-element construction of the specified graph
template in this graph template.

o For the selected program object of a three-element
construction in the specified graph template, find all
such program objects of three-element constructions,
(1) whose elements have the specified classes and
sc-addresses the same as the classes and sc-addresses
of the elements of the selected program object of
the three-element construction, respectively, while
either the first or third of their elements have the
same local identifiers in the specified graph template
or do not have them at all, (2) for which the
corresponding replacements were not found, that
is, the set located in the tuple of sets of numbers
of program objects of three-element constructions

of the specified graph template for isomorphic
constructions found using it in sc-memory, whose
numbers are equal to the position numbers of sets in
this oriented set by the number of the current found
sc-memory construction according to the specified
graph template, the numbers of the found program
objects of three-element constructions do not belong,
and also the numbers of which do not belong to the
set of numbers of the current program objects of the
constructions.

If the received set of numbers of "equivalent”
program objects of constructions is empty, then
terminate this iteration of the algorithm.

If the received set of numbers "equivalent" program
objects of constructions is not empty, then choose a
random number from the set of numbers "equivalent"
program objects of constructions. According to the
received number from tuple of program objects of
three-element constructions in the specified graph
template take the corresponding program object of
three-element construction of the specified graph
template in this graph template.

Based on the obtained program object of a three-
element construction, create a an iterator for search-
ing for three-element sc-memory construction. Cre-
ation of iterator for searching three-element sc-
memory construction is done using the Method
of creating iterator for searching three-element
sc-memory construction. The parameters of the
method are assigned to the elements of the specified
program object of the three-element construction,
while instead of classes of sc-memory elements
corresponding to sc-variables (classes of sc-memory
elements corresponding to sc-metavariables), the
corresponding them classes of sc-memory elements
corresponding to sc-constants (classes of sc-memory
elements corresponding to sc-variables). That is,
for example, if some program object of a three-
element construction element has a class of sc-
memory elements corresponding to variable sc-nodes,
then instead of it for the Method of creating a three-
element sc-memory construction search iterator,
the corresponding class of sc-memory elements
corresponding to constant sc-nodes is used. Thus,
when passing from program object of a three-
element construction to program three-element sc-
memory construction search iterator, the degree of
variability of the elements of program object of a
three-element construction decreases: classes of sc-
memory elements corresponding to sc-metavariables
are converted to classes of sc-memory elements
corresponding to sc-variables, and classes of sc-
memory elements corresponding to sc-variables —
to classes of sc-memory elements corresponding to
sc-constants. If class of element of program object of

92

three-element construction is not a non-strict subset
of class of sc-memory elements corresponding to
sc-metavariables or class of sc-memory elements
corresponding to sc-variables, then the degree of
variability is not reduced .

o Using the Method of moving to the next sc-memory
construction "suitable" for the specified iterator go
to the sc-memory construction isomorphic to the
specified construction in the graph template.

Despite the wide range of tasks that can be performed

using the current implementation of isomorphic search,
there are a number of reasons why this and other
implementations of isomorphic search should not be used:

o isomorphic search allows you to solve a wide range
of problems if all knowledge isomorphic to the
specified graph template is in the knowledge base or
is missing. That is, the quality level of isomorphic
search directly depends on the state of knowledge
base. The more diverse knowledge base fragments
are, the worse the performance of isomorphic search
is;

o The cost of searching for large graph templates may
be at odds with the desires of the developer or user.
The larger the graph template, the more situations in
which the isomorphic search algorithm can behave
abnormally.

o Most of the problems solved with isomorphic search
can and should be solved with three- and five-element
search iterators. The simpler the method of solving
problems, the fewer errors and emergency situations
you can get.

VI. ADVANTAGES AND DISADVANTAGES OF THE

IMPLEMENTATION OF THE INFORMATION RETRIEVAL

SUBSYSTEM IN THE OSTIS-PLATFORM

The current Software interface of Implementation of

sc-memory in the ostis-platform allows:

o Implementing platform-specific subsystems of the
current software implementation of the ostis-platform
to the extent necessary and sufficient, practically
independently of the Implementation of sc-memory
in the ostis-platform. That is, the current Software
interface of Implementation of sc-memory in the ostis-
platform is a way to unify access to the software
Implementation of sc-memory in the ostis-platform
and allows easily to replace various implementations
of sc-memory with method representation language
C++, while the Software interface of Implementation
of sc-memory in the ostis-platform itself practically
does not change or does not change at all.

« Implementing basic tools for designing platform-
independent ostis systems, e.g. Implementation of
scp-interpreter.

o Generating and expanding the Library of reusable
components of Software implementation of the ostis-

platform with components that use the methods
of Implementation of the sc-memory in the ostis-
platform and are part of various plug-ins of the
current Software interface of Implementation of sc-
memory in the ostis-platform.

Providing different levels of access to Implementa-
tion of sc-memory in the ostis-platform, including the
levels of access for different users of the Software
implementation of the ostis-platform.

It is worth noting that Software interface of Implementa-
tion of sc-memory in ostis-platform cannot exist separately
from the current Implementation of sc-memory in the ostis-
platform. In addition, it is part of the Implementation of
sc-memory in the ostis-platform, that is, it is designed
and developed in accordance with the implementation of
the sc-memory itself. However, if necessary, it can be
used for various modifications or versions of the current
Implementation of sc-memory in the ostis-platform.

Despite the wide range of functionality of the current
Software interface of Implementation of sc-memory in the
ostis-platform, its disadvantages include the following:

o At the level of the Software interface of Implemen-
tation of sc-memory in the ostis-platform, there is
no limit to the range of classes of sc-elements in sc-
memory that can be set as arguments, for example,
to the Method of creating an sc-memory element
of a given class, corresponding to an sc-node and
Method of creating an sc-memory element of a given
class, corresponding to some sc-connector.

« Due to shortcomings in the current implementation of
the agent architecture in the software implementation
of the ostis-platform it is impossible for the Software
interface of Implementation of sc-memory in the
ostis-platform to use Implementation of sc-memory
in ostis-platform stored as a compiled file. First of all,
this is due to the fact that platform-specific agents
are implemented by means that utilize creation of
source files when building the entire platform. Thus
compiled files remain dependent on the device where
they were built.

In general, isomorphic search can be a useful tool in
theoretical studies and some specialized applications, but
in most cases there are better ways to work with graphs.

VII. CONSLUSION

Let us list the main ideas of this work:

« to solve information retrieval tasks in ostis-systems,
the Implementation of the information retrieval
subsystem of the current Software implementation of
the ostis-platform is used;

o Implementation of the information retrieval subsys-
tem in the Software implementation of the ostis-
platform has a software interface that can be used
in any platform-dependent component (subsystem);

93

o Implementation of the information retrieval subsys-
tem in the Software implementation of the ostis-
platform includes iterative methods for searching for
sc-memory constructions and methods for search-
ing for sc-memory constructions according to the
specified graph template;

e to solve most information retrieval problems, it is
sufficient to use iterative methods for searching for
sc-memory constructions;

« the current implementation of isomorphic search is
not universal and is limited to a certain set of graph
templates, and also strongly depends on the state of
the knowledge base.

When designing graph templates in one of the lan-
guages of the external representation of SC-code [20],
one should:

« Minimize the number of cycles by splitting, for
example, key constant sets into subsets that are not
interconnected in this graph template. If the cycle in
the graph cannot be eliminated, then leave it as it is,
or reconsider the original problem for the possibility
of simplifying its solution.

o Select among all those sc-constructions that can
be selected by the search procedure as the first sc-
construction, only the one that simplifies the work
of the search procedure as much as possible for the
specified one in the subject domain.

e Minimize the number of sc-constructions, the re-
moval of which does not change the meaning of the
found constructions and/or can be specified/checked
later (for example, when the entity is already found
and the class membership can be checked later)
and/or the removal of which simplifies the choice of
path search in a graph isomorphic to the specified
graph template.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] D. Shunkevich, D. Koronchik, “Ontological approach to the
development of a software model of a semantic computer based
on the traditional computer architecture,” Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open seman-
tic technologies for intelligent systems], pp. 75-92, 2021.

[2] N. Zotov, “Software platform for next-generation intelligent
computer systems,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 297—-326, 2022.

[3] A. Zagorskiy, “Factors that determine the level of intelligence of
cybernetic systems,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], p. 13-26, 2022.

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

R. Reinanda, E. Meij, M. de Rijke et al., “Knowledge graphs: An
information retrieval perspective,” Foundations and Trends® in
Information Retrieval, vol. 14, no. 4, pp. 289—444, 2020.

Y. WHAN KIM and J. H. Kim, “A model of knowledge based
information retrieval with hierarchical concept graph,” Journal of
Documentation, vol. 46, no. 2, pp. 113-136, 1990.

A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis,
and J. Widom, “Human-assisted graph search: it’s okay to ask
questions,” arXiv preprint arXiv:1103.3102, 2011.

S. Ma, J. Li, C. Hu, X. Lin, and J. Huai, “Big graph search:
challenges and techniques,” Frontiers of Computer Science, vol. 10,
pp. 387-398, 2016.

J.-A. Fernandez-Madrigal and J. Gonzalez, ‘“Multihierarchical
graph search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 1, pp. 103—113, 2002.

G. J. Kowalski, Information retrieval systems: theory and imple-
mentation. springer, 2007, vol. 1.

W.-C. Yeh, W. Zhu, C.-L. Huang, T.-Y. Hsu, Z. Liu, and S.-Y. Tan,
“A new bat and pagerank algorithm for propagation probability
in social networks,” Applied Sciences, vol. 12, no. 14, p. 6858,
2022.

H. Paulheim, “Knowledge graph refinement: A survey of ap-
proaches and evaluation methods,” Semantic web, vol. 8, no. 3,
pp. 489-508, 2017.

I. Kivimiki, A. Panchenko, A. Dessy, D. Verdegem, P. Francq,
H. Bersini, and M. Saerens, “A graph-based approach to skill
extraction from text,” in Proceedings of TextGraphs-8 graph-based
methods for natural language processing, 2013, pp. 79-87.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a
data provenance perspective,” in Proceedings of the 48th annual
Southeast regional conference, 2010, pp. 1-6.

Tan Robinson, Jim Webber and Emil Eifrem, Graph databases.
O’Reilly Media, Inc., 2015.

V. Golenkov, N. Guliakina, V. Golovko, V. Krasnoproshin,
“Methodological problems of the current state of works in the
field of artificial intelligence,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], pp. 17-24, 2021.

N. Zotov, “Semantic theory of programs in next-generation
intelligent computer systems,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], pp. 297—-326, 2022.

D. Shunkevich, “Ontology-based design of hybrid problem
solvers,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 101-131, 2022.

M. K. Orlov and A. P. Vasilevskaya, “Non-procedural problem-
solving models in next-generation intelligent computer systems,”
Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], pp. 161-172, 2022.

K. Bantsevich, “Metasystem of the ostis technology and the stan-
dard of the ostis technology,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], pp. 357-368, 2022.

V. Ivashenko, “General-purpose semantic representation language
and semantic space,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 41-64, 2022.

S. Fortin, “The graph isomorphism problem,” 1996.

J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal
of the ACM (JACM), vol. 23, no. 1, pp. 31-42, 1976.

P. Foggia, C. Sansone, and M. Vento, “A performance comparison
of five algorithms for graph isomorphism,” in Proceedings of the
3rd IAPR TC-15 Workshop on Graph-based Representations in
Pattern Recognition. Citeseer, 2001, pp. 188-199.

B. D. McKay, “Nauty user’s guide (version 2.4),” Computer
Science Dept., Australian National University, pp. 225-239, 2007.
M. Orlov, “Comprehensive library of reusable semantically
compatible components of next-generation intelligent computer
systems,” Otkrytye semanticheskie tekhnologii proektirovaniya in-

94

tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 261-272, 2022.

[26] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 26,
no. 10, pp. 1367-1372, 2004.

Peammzanust tHopManmoHHO-NIOUCKOBOI
nojacucrembl B [Iporpamvuoi miardgopme
ostis-cucrem

3otoB H. B.

OnuchBaOTCS Ha3HAUCHVWE W BapUAHTHI peai3aliin
MH(OPMAIMOHHO-TIONCKOBHIX MTOJCUCTEM UHTEJUICKTYaITb-
HBIX KOMITBIOTEPHBIX CUCTEM HOBOTO TOKOJIeHH. [laHHas
pabota sBasieTcst hopMaibHO#M cnienmdukanueit Peamsa-
11U MHGOPMAIIMOHHO-TTOUCKOBO# OJICHCTEMBI B TEKYIIIEM
IIporpaMmMHOM BapHaHTe peau3aluu ostis-ratdopmbl, a
TaKXke e€ IporpaMMHOr0 HHTepdetica, U ABIAETCS MPOTOI-
KEHUEeM cepuu padoT MO MPOSKTUPOBAHUIO U pean3aliin
6azoBoro IIporpaMMHOro BapHaHTa peanu3alyu ostis-
margopmst [1], [2]

Received 13.03.2023

