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I. INTRODUCTION

The main quality of such intelligent systems as intelli-
gent computer systems of a new generation is the ability
to solve problems. Let us consider the indicators of quality
which are necessary to ensure, maintain, and develop this
quality. Intelligent computer systems of a new generation
are classified as cybernetic systems (adaptive systems
[1]). For such systems, some of the important quality
indicators are [2]:

• self-learning, implemented (or automated) through
self-improvement, provided by the universality of
the intelligent system operating on a variety of
knowledge types and (hybrid) problem-solving mod-
els, as well as their deep integration (degree of
interosculation);

• interoperability that requires mutual understanding
based on semantic compatibility;

• ability to coordinate their plans and intentions and
coordinate them in a decentralized manner that
requires the integration of plans or their parts;

• semantic compatibility (for types of knowledge and
problem-solving models) that is matching between
systems and concepts and requires formalization
of semantic representation of information through
unification, where the latter is the main indicator of

degree of convergence between intelligent computer
systems and their components.

Thus, the requirement of deep integration (knowledge
types and problem-solving models) is represented in the
intelligent computer systems of a new generation. At
the same time, intelligent computer systems of a new
generation are characterized by the degree of convergence,
unification, and standardization of intelligent computer
systems and their components and the corresponding
degree of integration (depth of integration) of intelligent
computer systems and their components. Currently, there
is a strong need for focusing on potentially universal (that
is, capable of quickly acquiring any knowledge and skills),
synergistic intelligent computer systems with “strong”
intelligence, since the maximum level of cybernetic
system processor quality in terms of the variety of
problem-solving models interpreted by the processor
of a cybernetic system is its universality, that is, its
“principal ability to interpret any model for solving
both intelligent and non-intelligent problems”. In order
to ensure quality, the importance of moving to hybrid
individual intelligent computer systems is highlited, where
convergence and integration of various problem-solving
models and various knowledge types is carried out. Due
to the fact that different intelligent computer systems may
require different combinations of problem-solving models
(models for representing and processing knowledge of
various types), which have been developed by a large
number at the present time, and in the development and
implementation of various intelligent computer systems,
the appropriate methods and tools must guarantee logical
semantic compatibility of the developed components and,
in particular, their ability to use common information
resources, then for this, the need to unify these models is
indicated. The creation of intelligent computer systems of
a new generation involves the creation of an appropriate
technology for integrated design and integrated support
for the stages of the life cycle of these systems. It is noted
that in order to create a technology for integrated design
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and comprehensive support for the subsequent stages of
the life cycle of intelligent computer systems of a new
generation, in particular, it is necessary:

to unify the formalization of various models for
representing various types of used information stored
in the memory of intelligent computer systems and
various models for solving intelligent problems to ensure
semantic compatibility and simple automated integrability
of various knowledge types and problem-solving models
in intelligent computer systems. To do this, it is proposed
to develop a basic universal abstract model for the rep-
resentation and processing of knowledge, which ensures
the implementation of various problem-solving models.

Let us consider the stages of solving these problems in
the aspect of integrating logical models of representation
and knowledge processing. The need for this consideration
is caused by the need of applying logical problem-
solving models in intelligent computer systems of a new
generation (including knowledge-driven systems), while
ensuring the quality of knowledge in accordance with the
problems of knowledge management.

II. KNOWLEDGE INTEGRATION AND SEMANTIC SPACE
MODELS

In order to solve the problem of unifying the for-
malization of various models for representing various
types of information used, a model of a unified semantic
representation of knowledge [3] has been developed,
as well as models for representing data in the form
of texts of generalized formal languages [4] and pro-
cessing generalized strings (and lists) for knowledge-
driven systems [5]. Based on and in accordance with the
model of unified knowledge representation, a family of
sc-languages [1], [3], [6] has been developed, to clarify
the semantics of which a model of event (distensible)
sets [4] has been developed and an ontological model of
spatio-temporal relations of events and phenomena for
knowledge processing operations has been proposed.

In order to ensure the integration of knowledge and
quality assurance in the process of knowledge integration,
models for the specification and integration of knowl-
edge are proposed. Solving the problem of knowledge
integration allows considering and studying by formal
means the semantic neighborhoods of sc-language text
elements, the key elements of sc-languages, and studying
the similarity of structures that are formed as a result of
integration. Based on the proposed models, a meta-model
of the semantic space was developed [4], within which
it is possible to study the semantic space [7]–[14] and
consider semantic subspaces of various types.

The system of transitions from texts of sc-languages to
topological space is studied. Below is a fragment of the
ontology that describes the types of topological spaces
and inclusion relations of topological spaces of various
types [?], [15].

generalized sc-tuple
:= [non-empty sc-set]

generalized sc-relation
:= [sc-set of non-empty sc-sets]
⇒ explanation*:

[A generalized sc-relation is a sc-set of generalized
sc-tuples.]

binary sc-relation
⇒ explanation*:

[A binary sc-relation is an sc-set of sc-pairs (or
generalized sc-tuples to which there are two
different memberships of sc-elements or the same
sc-element).]

nodal sc-pair
⇒ explanation*:

[A nodal sc-pair is an sc-pair that cannot be de-
noted by a membership sc-arc (positive, negative,
or fuzzy).]

slot sc-relation
⇒ explanation*:

[A slot sc-relation is a binary sc-relation (an sc-set
of (oriented) sc-pairs) whose elements are not
nodal sc-pairs.]

membership phenomenon
⇒ explanation*:

[A membership phenomenon is a set of phenom-
ena each of which is a slot sc-relation, while any
sc-arc of permanent non-membership does not
belong permanently to each of them.]

becoming*
⇒ explanation*:

[becoming* is a binary sc-relation between events
(states) or phenomena.]

immediately before ′

⇒ first domain*:
becoming*

⇒ second domain*:
established event or phenomenon

immediately after ′

⇒ first domain*:
becoming*

⇒ second domain*:
constitutive event or phenomenon

continuance*
⇒ explanation*:

[The continuance* is the transitive closure of the
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sc-relation of becoming.]

earlier ′

⇒ first domain*:
continuance*

⇒ second domain*:
early event or phenomenon

later ′

⇒ first domain*:
continuance*

⇒ second domain*:
later event or phenomenon

sc-structure*
⇒ explanation*:

[A sc-structure* is an sc-set that contains a non-
empty support sc-subset (the set of primary
elements of the sc-structure*).]

sc-structure ′

⇒ first domain*:
sc-structure*

⇒ second domain*:
non-empty sc-set

support of sc-structure ′

⇒ first domain*:
sc-structure*

⇒ second domain*:
non-empty sc-set

elementarily represented sc-set ′
:= [elementarily represented element ′]
⇒ explanation*:

[An elementarily represented element ′is an el-
ement of an sc-structure* and an sc-set all of
whose elements are elements of an sc-structure*.]

full-connectivily represented sc-set sc-set ′
:= [full-connectivily represented element ′]
⇒ explanation*:

[A full-connectivily represented sc-set element ′is
an element of an sc-structure* an sc-set all of
whose elements and all its memberships are
elements of an sc-structure* or an sc-arc that
is an elementarily-represented element ′of this
sc-structure*.]

fully represented sc-set ′
:= [fully represented element ′]
⇒ explanation*:

[A fully represented element ′is a full-connectively
represented element ′of an sc-structure* with
any its element that is not an sc-arc outgoing

from it connected by a membership sc-arc or
a non-membership sc-arc belonging to this sc-
structure*.]

sc-tuple ′

⇒ explanation*:
[A sc-tuple ′is a sc-tuple ′is a full-connectively
represented element ′of sc-structure* that is an
sc-tuple and belongs to the sc-relation ′of this
sc-structure*.]

sc-relation ′

⇒ explanation*:
[A sc-relation ′is a full-connectively represented el-
ement ′of sc-structure* being a sc-relation whose
elements are all sc-tuples ′of this sc-structure*.]

sc-class ′

⇒ explanation*:
[A sc-class ′is a full-connectively represented
element ′of sc-structure* all of whose elements
are members of an sc-structure* that is neither
an sc-relation ′nor an sc-tuple ′of that sc-struct*.]

entitive closure*
⇒ explanation*:

[An entitive closure* is the smallest superset*
(structure*) in which each element is elementarily
represented ′.]

entitive closure ′

⇒ first domain*:
entitive closure*

⇒ second domain*:
entitive closure

support of entitive closure ′

⇒ first domain*:
entitive closure*

⇒ second domain*:
non-empty sc-set

substantial closure*
⇒ explanation*:

[A substantial closure* is the smallest superset*
(structure*) in which each element is a full-
connectively represented element ′]

substantial closure ′

⇒ first domain*:
substantial closure*

⇒ second domain*:
substantial closure
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support of substantial closure ′

⇒ first domain*:
substantial closure*

⇒ second domain*:
non-empty sc-set

sc-relation of similarity by slot relations*
⇒ explanation*:

[A similarity sc-relation by slot sc-relations* is a
sc-relation that is reflexive by these slot relations,
i.e. for any element included in the tuple of this
sc-relation under one of the slot sc-relations, there
is a tuple of this sc-relation in which it enters
under each of these slot sc-relations.]

sc-relation of similarity by slot relations ′

⇒ first domain*:
sc-relation of similarity by slot relations*

⇒ second domain*:
sc-relation of similarity by slot relations

slot relations of similarity sc-relation ′

⇒ first domain*:
sc-relation of similarity by slot relations*

⇒ second domain*:
slot relations of similarity sc-relation

sc-relation of semantic similarity by slot relations*
⇒ explanation*:

[A semantic similarity sc-relation by slot relations*
is a similarity sc-relation by slot relations* si
and sj, in which each element under the slot
sc-relation si can be converted to an element
of the syntactic type of the element under the
slot sc-relation sj; two incident sc-elements under
the slot sc-relation si, within this sc-relation of
semantic similarity correspond to the incident
elements, respectively, under the slot sc-relation
sj.]

sc-relation of semantic similarity by slot relations ′

⇒ first domain*:
sc-relation of semantic similarity by slot
relations*

⇒ second domain*:
sc-relation of semantic similarity by slot relations

slot relations of semantic similarity sc-relation ′

⇒ first domain*:
sc-relation of semantic similarity by slot
relations*

⇒ second domain*:
slot relations of semantic similarity sc-relation

connected sc-structure*
⇒ explanation*:

[A connected sc-structure* is a sc-structure* that
is connected.]

connected sc-structure ′

⇒ first domain*:
connected sc-structure

⇒ second domain*:
connected non-empty sc-set

support of connected sc-structure ′

⇒ first domain*:
connected sc-structure*

⇒ second domain*:
non-empty sc-set

semantic similarity of sc-structures*
⇒ explanation*:

[A semantic similarity of sc-structures* connects
the sc-set of sc-structures* with the sc-structure*
sc-relation of semantic similarity by slot sc-
relations si, sj so that for each sc-structure* from
the sc-set there is its an element and a tuple
of this sc-relation of similarity, in which it is
included under the slot sc-relation si, and under
the slot sc-relation sj there is an element of the
sc-structure *, also for each element of the sc-
structure there is a tuple of this sc-relation of
similarity, in which it enters under the slot sc-
relation sj, and under the slot sc-relation si enters
an element of the sc-structure* from the sc-set.]

sc-relation of semantic similarity of sc-structures ′

⇒ first domain*:
semantic similarity of sc-structures*

⇒ second domain*:
sc-relation of semantic similarity by slot
relations*

semantic similarity of sc-structures ′

⇒ first domain*:
semantic similarity of sc-structures*

⇒ second domain*:
sc-structure of semantic similarity of
sc-structures*

sc-structure of semantic similarity of sc-structures ′

⇒ first domain*:
sc-structure of semantic similarity of
sc-structures*

⇒ second domain*:
sc-structure of semantic similarity of
sc-structures
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set of semantically similar sc-structures ′

⇒ first domain*:
sc-structure of semantic similarity of
sc-structures*

⇒ second domain*:
set of semantically similar sc-structures

semantic continuous similarity of sc-structures*
⇒ explanation*:

[A semantic continuous similarity of sc-structures*
connects an sc-set of sc-structures* with a
connected sc-structure* sc-relation of semantic
similarity by slot sc-relations si, sj so that for
each sc-structure* from sc-set find its element
and the tuple of this similarity sc-relation, in
which it enters under the slot sc-relation si, and
under the slot sc-relation sj there is an element of
the connected sc-structure*, also for each element
of the connected sc-structure there is a tuple of
this sc- a similarity relation in which it enters
under the slot sc-relation sj, and under the slot sc-
relation si the element of the sc-structure* from
the sc-set enters.]

sc-relation of semantic continuous similarity of
sc-structures ′

⇒ first domain*:
semantic continuous similarity of sc-structures*

⇒ second domain*:
sc-relation of semantic continuous similarity by
slot relations*

semantic continuous similarity of sc-structures* ′

⇒ first domain*:
semantic continuous similarity of sc-structures*

⇒ second domain*:
sc-structure of semantic continuous similarity of
sc-structures*

sc-structure of semantic continuous similarity of
sc-structures ′

⇒ first domain*:
sc-structure of semantic continuous similarity of
sc-structures*

⇒ second domain*:
sc-structure of semantic continuous similarity of
sc-structures

set of semantically continuously similar sc-structures ′

⇒ first domain*:
sc-structure of semantic continuous similarity of
sc-structures*

⇒ second domain*:
set of semantically continuously similar
sc-structures

key query ′

⇒ first domain*:
key query*

⇒ second domain*:
key query

⇒ explanation*:
[A key query ′is a search-verify query (from one
known element) that is executed from at least
one element and is not executed from at least
one element.]

element of key query ′

⇒ first domain*:
key query*

⇒ second domain*:
element of key query

minimal key query ′

⊂ key query ′

⇒ explanation*:
[A minimal key query is a key query that finds
sc-subsets of the element sets found by all other
key queries that have the same domains of known
satisfiability and non-satisfiability elements.]

element of minimal key query ′

⇒ first domain*:
minimal key query*

⇒ second domain*:
element of minimal key query

full semantic neighborhood of an element*
⇒ explanation*:

[A full semantic neighborhood of an element*
is all elements found by minimal key queries
from this element (taking into account disjunctive
search and negation of search).]

full semantic neighborhood of an element ′
⇒ first domain*:

full semantic neighborhood of an element*
⇒ second domain*:

full semantic neighborhood of an element

element of full semantic neighborhood ′

⇒ first domain*:
full semantic neighborhood of an element*

⇒ second domain*:
element of full semantic neighborhood

introspective key element ′
⇒ explanation*:

[An introspective (basic) key element is an element
of a set (from the class of the smallest such
sets) of elements such that any full semantic
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neighborhood of any element is an sc-subset of
the union of their full semantic neighborhoods.]

topological space
⇒ explanation*:

[A topological space is a set with a set (family)
of (open) subsets defined over it, including the
set itself and the empty set. For any subset of
the family, the result of the union belongs to the
family, and for any finite subset of the family,
the result of the intersection also belongs to the
family. The complements of the sets of a family
to the largest of the sets are called closed sets.]

topological space of connector incidence closure
⇒ explanation*:

[A topological space of connector incidence clo-
sure on a set of sc-elements is a topological space,
all closed sets of which contain all sc-elements
of this set, to which there is a route along
oriented connectives of the incidence relation
of connectors.]

⇒ note*:
[In the general case, it does not satisfy the
Tikhonov separability axiom. The pragmatics of
considering such spaces is determined by the
operations of removing sc-elements and connec-
tors with which they are incident. Deleting an sc
element requires deleting all connectors whose
closure of any open neighborhood it belongs to.]

topological subspace of connector incidence closure ′

⇒ first domain*:
inclusion of topological spaces of connector
incidence closure*

⇒ second domain*:
topological space of connector incidence closure

topological superspace of connector incidence closure ′

⇒ first domain*:
inclusion of topological spaces of connector
incidence closure*

⇒ second domain*:
topological space of connector incidence closure

topological space of syntactic closure
⇒ explanation*:

[A topological space of syntactic closure on a set
of sc-elements is a topological space, all closed
sets of which contain all sc-elements of this set, to
which there is a route along oriented connectives
of the incidence relation.]

⇒ note*:
[In the general case, it does not satisfy the Kol-
mogorov separability axiom. Syntactic closure

can be singled out as the basis of closed sets
of a topological space, however, due to the
possibility of drawing arcs from any sc-node to
any, in the final case (as a result of the process
of eliminating non-factors), such a space is a
trivial (antidiscrete) space. The union relation
of topological spaces of syntactic closure is not
algebraically closed on the set of topological
spaces of syntactic closure. For the same reason,
for any incomplete topological space of syntactic
closure, one can consider a topological space of
syntactic closure whose support is a superset of
the support of the former and which does not
preserve closed sets. In this sense, the topology
based on syntactic closure is not stable with
respect to the processes of knowledge formation
and its consideration is not pragmatically justified.
The topology of the complete topological space
of syntactic closure is antidiscrete (trivial). Thus,
for a complete topological space of syntactic
closure, all topological subspaces of syntactic
closure have antidiscrete (trivial) topology.]

topological space of entitive closure
⇒ explanation*:

[The topological space of an entitive closure on
the set of sc-elements is a topological space all
of whose closed sets are entitive closures.]

⇒ note*:
[In the general case, it does not satisfy the
Tikhonov separability axiom. An entitive closure
can be considered as a support of a topological
(sub)space of entitive closure. The topological
space of entitive closure preserves the closed
sets of any topological spaces of entitive closure
whose support is a subset of its support and an
entitive closure. Such spaces form a structure of
topological subspaces – topological superspaces
of entitive closure. The topology of spaces in
this structure is diverse.]

topological subspace of entitive closure ′

⇒ first domain*:
inclusion of topological spaces of entitive
closure*

⇒ second domain*:
topological space of entitive closure

topological superspace of entitive closure ′

⇒ first domain*:
inclusion of topological spaces of entitive
closure*

⇒ second domain*:
topological space of entitive closure
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topological space of substantial closure
⇒ explanation*:

[The topological space of a substantial closure on
the set of sc-elements is a topological space all
of whose closed sets are substantial closures.]

⇒ note*:
[In the general case, it does not fit the axiom of
separability according to Tikhonov. An substan-
tial closure can be considered as a support of
a topological (sub)space of substantial closure.
The topological space of a substantial closure
preserves closed any topological spaces of a
substantial closure whose support is a subset
of its support and a substantial closure. Such
spatial formations of topological subspaces are
topological superspaces of substantial closure.
Topology of spaces in this vast area.]

topological subspace of substantial closure ′

⇒ first domain*:
inclusion of topological spaces of substantial
closure*

⇒ second domain*:
topological space of substantial closure

topological superspace of substantial closure ′

⇒ first domain*:
inclusion of topological spaces of substantial
closure*

⇒ second domain*:
topological space of substantial closure

There is a possible transition from sc-structures to man-
ifolds and topological spaces by reducing sc-structures
to graph structures. The issues of reducing sc-structures
to graph structures and further towards to manifolds and
topological spaces are considered in detail in [4] (see Fig.
1).

Figure 1. Transformations for sc-texts, graphs, manifolds and topologi-
cal spaces.

Types of metric and pseudometric semantic subspaces

and normalized semantic subspaces can also be repre-
sented. Further, we will consider such metric spaces as
finite subspaces with full-connectively represented sc-
elements, in particular.

metric
⇒ explanation*:

[A metric is a function of two arguments that
takes values on a (linearly) ordered support
of the group, is non-negative, is equal to the
neutral element (zero) only when the arguments
are equal, is symmetric, satisfies the triangle
inequality.]

metric space
⇒ explanation*:

[A metric space is a set with a function of two
arguments defined on it, which is a metric that
takes values on the ordered support of the group.]

metric finite syntactic space
⇒ explanation*:

[A metric finite syntactic space of the SC-code
is a metric space with a finite support, whose
elements are designations (sc-elements), and the
value of the metric can be determined through
the incidence relations of the elements without
taking into account their semantic type.]

metric finite syntactic subspace ′

⇒ first domain*:
inclusion of metric finite syntactic spaces*

⇒ second domain*:
metric finite syntactic space

metric finite syntactic superspace ′

⇒ first domain*:
inclusion of metric finite syntactic spaces*

⇒ second domain*:
metric finite syntactic space

metric finite semantic space
⇒ explanation*:

[A metric finite semantic space of the SC-code
is a metric space with a finite support, whose
elements are designations (sc-elements), and the
value of the metric cannot be determined through
the incidence relations of elements without taking
into account their semantic type.]

metric finite semantic subspace ′

⇒ first domain*:
inclusion of metric finite semantic spaces**
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⇒ second domain*:
metric finite semantic space

metric finite semantic superspace ′

⇒ first domain*:
inclusion of metric finite semantic spaces*

⇒ second domain*:
metric finite semantic space

A metric finite syntactic space can be constructed by
[4] according to the string processing model and metric
definitions given in [5].

pseudometric
⇒ explanation*:

[A pseudometric is a function of two arguments
that takes values on a (linearly) ordered group
support, is non-negative, symmetric, and satisfies
the triangle inequality.]

psudometric space
⇒ explanation*:

[A pseudometric space is a set with a function
of two arguments defined on it, which is a
pseudometric [16] taking values on the ordered
support of the group.]

pseudometric finite semantic space
⇒ explanation*:

[A pseudometric finite semantic space of the
SC-code is a pseudometric space with a finite
support whose elements are designations (sc-
elements), and the value of the pseudometric
cannot be determined through the incidence
relations of elements without taking into account
their semantic type.]

Some models of more complex structures that take
into account non-factors [17] associated with space-time
have been successfully proposed in [4]. The proposed
models rely on a representation capable of expressing the
semantics of variable notation and operational semantics
by extended means of the alphabet. To build such models,
in addition to the extended alphabet tools, it is proposed to
rely on models that describe the processes of integration
and formation of knowledge [18], on knowledge specifi-
cation tools [3], [4], focused on consideration of finite
structures, which allow proceeding with consideration of
complex metric relationships within the semantic space
meta-model (see Fig. 2).

The possibility of considering the metric in the semantic
space allows speaking about the semantic metric, which,
along with activity, scaling, interpretability, and the
presence of a complex structure and coherence, is a
hallmark of knowledge.

Figure 2. Models providing integration.

semantic metric
:= [semantic similarity]
⇒ explanation*:

[Semantic metric is a metric defined on signs and
quantitatively expressing the proximity of their
meanings.]

In addition to factual knowledge (facts), rules are used
in knowledge bases. Within logical models of knowledge
processing, rules are represented as logical formulas. Thus,
the transition to the integration of such types of knowledge
as (logical) rules allows talking about the integration of
knowledge processing models (problem-solving models).

III. INTEGRATION OF LOGICAL PROCESSING MODELS
AS PROBLEM SOLVING MODELS

In order to solve the problem of integrating problem-
solving models, the concept of a formal model for knowl-
edge processing is proposed, which is a development for
the concept of a formal model of information processing.
The approach is used in the works of V. Kuzmitsky
[19] and A. Kalinichenko [20]. A meta-model for the
integration of formal models of knowledge processing is
proposed.

The integration of knowledge processing models boils
down to the following steps:

• For each state of the integrating model, its one-to-
one (i) representation is constructed in the model of
the unified semantic representation of knowledge.

• Next, a mapping π of this representation to a set of
sc-texts immersed in a metric semantic subspace
is constructed, and a one-to-one mapping i of
operations i (ρ) of this model to operations ρ on
sc-texts from this set is constructed, so that:

i ◦ i−1 ⊆ I =
{
⟨x, x⟩ |∃y ⟨x, y⟩ ∈ i−1 ∪ i

}
i−1 ◦ i ⊆ I
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∀ρ
(
i−1 ◦ i ◦ ρ ◦ i ◦ i−1 = ρ

)
∀ρ∃i (ρ)

(
π−1 ◦ i−1 ◦ ρ ⊆ i ◦ π ◦ i (ρ)

)
∀ρ∃i (ρ) (i ◦ π ◦ i (ρ) ⊆ ρ ◦ i ◦ π)

∀ρ∃i (ρ)
(
ρ = i ◦ π ◦ i (ρ) ◦ π−1 ◦ i−1

)
∀ρ∃i (ρ)

(
i (ρ) = π−1 ◦ i−1 ◦ ρ ◦ i ◦ π

)
• Syntactic relations are distinguished on the elements

of sc-texts.
• Interpretation functions are built on the states of the

original model (in projective semantics) or on their
representation in sc-texts (in reflexive semantics).

• The metric is set in accordance with the metric of
the metric semantic subspace.

• In addition to the specified requirements, additional
requirements τ and σ can be specified in accordance
with a given scale on the set of states of the
integrating information processing model: bijection
(trivial order), out-degree, in-degree, etc.

∀ρ∃i (ρ)
(
ρ ◦ τ = i ◦ π ◦ i (ρ) ◦ π−1 ◦ i−1

)
∀ρ∃i (ρ)

(
i (ρ) ◦ σ = π−1 ◦ i−1 ◦ ρ ◦ i ◦ π

)
It should be noted that in the previous article [21], the
mapping requirements were considered to be quite strong
(τ = I and σ = I ):

∀ρ∃i (ρ)
(
ρ ⊆ i ◦ π ◦ i (ρ) ◦ π−1 ◦ i−1

)
∀ρ∃i (ρ)

(
i (ρ) ⊆ π−1 ◦ i−1 ◦ ρ ◦ i ◦ π

)
The current text contains proposal for weakening these

requirements. Other additional requirements (including
the quantitative properties of the information) may also
be taken into account.

Let us consider some examples (Fig. 3–25).
From the point of view of topological properties, for

each state of the model, there is its topological closure
with respect to the set of operations. Moreover, these
topological properties are preserved during integration.
Thus, integration is a continuous mapping. However, for
classical logical models of information processing, it is
known that the closure with respect to deducibility is not
topological closure (not additive):

[S] ∪ [T ] ̸= [S ∪ T ] .

The seeming contradiction can be resolved if we notice
that in the first case, the elements of the closure are

Figure 3. The reconvergent integration of non-deterministic knowledge
processing operation as non-deterministic one ((green) vertical lines)
with the divergent integration of deterministic knowledge processing
operation as non-deterministic operation one ((red) horizontal lines).
Rhombuses are subtext (substates). Triangles and the bottom blue disk
and square are states of integrating models. Others disks and squares
are the states (text) of the integrated model.

Figure 4. The convergent integration of deterministic knowledge
processing operation as deterministic one ((green) vertical lines) with the
divergent integration of deterministic knowledge processing operation
as non-deterministic operation one ((red) horizontal lines). Rhombuses
are subtext (substates). Triangles and the bottom blue disk and square
are states of integrating models. Others disks and squares are the states
(text) of the integrated model.

Figure 5. The reconvergent integration of non-deterministic knowledge
processing operation as deterministic one ((green) vertical lines) with the
divergent integration of deterministic knowledge processing operation
as deterministic operation one ((red) horizontal lines). Rhombuses are
subtext (substates). Triangles and the bottom blue disk and square are
states of integrating models. Others disks and squares are the states
(text) of the integrated model.
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Figure 6. The convergent integration of non-deterministic knowledge
processing operation as deterministic one ((green) vertical lines) with the
divergent integration of deterministic knowledge processing operation
as deterministic operation one ((red) horizontal lines). Rhombuses are
subtext (substates). Triangles and the bottom blue disk and square are
states of integrating models. Others disks and squares are the states
(text) of the integrated model.

Figure 7. The convergent integration of ndeterministic knowledge
processing operation as deterministic one ((green) vertical lines) with the
divergent integration of deterministic knowledge processing operation
as deterministic operation one ((red) horizontal lines). Rhombuses are
subtext (substates). Triangles and the bottom blue disk and square are
states of integrating models. Others disks and squares are the states
(text) of the integrated model.

Figure 8. The reconvergent integration of non-deterministic knowledge
processing operation as deterministic one ((green) vertical lines) with the
divergent integration of deterministic knowledge processing operation
as deterministic operation one ((red) horizontal lines). Rhombuses are
subtext (substates). Triangles and the bottom blue disk and square are
states of integrating models. Others disks and squares are the states
(text) of the integrated model.

Figure 9. The asymmetrical reconvergent integration of non-
deterministic knowledge processing operation as deterministic one
(green lines) with the divergent integration of deterministic knowledge
processing operation as deterministic operation one (red lines).

Figure 10. The reconvergent integration of deterministic knowledge
processing operation as deterministic one (green lines) with the
divergent integration of deterministic knowledge processing operation
as deterministic operation one (red lines).

Figure 11. The reconvergent integration of deterministic knowledge
processing operation as deterministic one (green lines) with the asym-
metrical divergent integration of deterministic knowledge processing
operation as non-deterministic operation one (red lines).
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Figure 12. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the divergent integration of deterministic knowledge processing
operation as deterministic operation one (red lines).

Figure 13. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (yellow
(diagonal) and green lines) with the asymmetrical divergent integration
of deterministic knowledge processing operation as non-deterministic
operation one (yellow (diagonal) and red lines).

Figure 14. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (yellow and
green lines) with the asymmetrical divergent integration of deterministic
knowledge processing operation as non-deterministic operation one
(yellow and red lines).

Figure 15. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (yellow and
green lines) with the (symmetrical) divergent integration of deterministic
knowledge processing operation as non-deterministic operation one
(yellow and red lines).

Figure 16. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the asymmetrical divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

Figure 17. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the (symmetrical) divergent integration of deterministic knowledge
processing operation as deterministic operation one (red lines).
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Figure 18. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the asymmetrical divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

Figure 19. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the (symmetrical) divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

Figure 20. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as deterministic one (green lines) with
the (symmetrical) divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

Figure 21. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the asymmetrical divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

Figure 22. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the asymmetrical divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

Figure 23. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as deterministic one (green lines)
with the asymmetrical divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).
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Figure 24. The asymmetrical reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the (symmetrical) divergent integration of deterministic knowledge
processing operation as deterministic operation one (red lines).

Figure 25. The (symmetrical) reconvergent integration of deterministic
knowledge processing operation as non-deterministic one (green lines)
with the asymmetrical divergent integration of deterministic knowledge
processing operation as non-deterministic operation one (red lines).

states (sets of formulas), and in the second case, they are
formulas.

{(A → B) , (B → C)} ⊢ {(A → B) , (B → C) , (A → C)}
{(D → B) , (B → E)} ⊢ {(D → B) , (B → E) , (D → E)}

{(A → B) , (B → C)} ∪ {(D → B) , (B → E)} ⊢
{(A → B) , (B → C) , (A → C) , (D → C) ,
(D → B) , (B → E) , (D → E) , (A → E)}

For classical logics and logical models of knowledge
processing, it is possible to naturally introduce a metric
on sets of literal conjuncts (of a given length), if we take
a finite subject domain and accept the assumption (hy-
pothesis) of a closed world, then the metric is introduced
as the sum of exclusive-OR from each pairs of matching
literals.

µ (⟨x, y⟩) =
n∑

i=1

xi∨yi

Moreover, if the conjuncts define a set-ring algebra, then
we can speak of a normed space and a norm (valuation)
over a vector space, where the field is GF(2). Any
(meaningful) proposition over this domain, except for
the identically false one, can be represented as (PDNF).
Then for PDNF we get a metric vector. The proposition

is true if and only if the metric vector contains 0. For
PCNF, there is no 0.

µ (⟨x, y⟩) = minj

n∑
i=1

xij∨yij

In addition to (null-local predicates) of literals (con-
stants), unary (semantic) predicates for the type of an
element of an sc-text and unary and binary (syntactic)
predicates for element incidence tuples (variables) can
be considered (by analogy of relation algebra [22], [23]).
In the case of search by pattern (homomorphism), the
metric is calculated on multisets. Possible task is to
minimize (maximize) the metric from the pragmatic
view of logics. Associated with the search for a relevant
structure, this task is of practical importance in reference
and testing (checking) (dialog) systems [21], [24]. Also,
metrics with other quantor elimination approaches ( [23],
[25]) can be used for logical inference and theorem
proving purposes. The system of natural inference and
sequent calculus consider finite sets of formulas. One
of the algorithms for solving inference problems is
a conflict-driven (contradiction-driven) clause learning
(CDCL) [26]. These techniques seemed to be promising.
To express complex patterns and regularities, it is possible
to construct a metatheory using metastructures. For this,
meta-relations and modal operators are introduced. Such
a formalism allows describing the complex introspective
reasoning characteristic of modal logics (see Fig. 26–28
for the sages hat puzzle solution [27]).

Applied logics [27]–[32] consider applications of
classical logic to abstract and subject domains describing
reality: logical theories about equality and order relations
[28], [29], logical theories of arithmetic [28], logical
theories of time [27], [31], logical proof theories [28],
[30], graph and geometric theories [32], theories of natural
and social systems [29].

Classification of logical theories corresponds to the
classification of subject domains. Let us consider some
concepts and examples that are considered within applied
logics.

slot binary relation
⇒ note*:

[slot binary relation is a slot sc-relation that is a
set. ]

non-slot binary relation
⇒ note*:

[non-slot binary relation is a binary sc-relation
that is a set but is not a slot sc-relation.]

irreflexive slot binary relation
⊂ irreflexive binary relation
⇒ note*:
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Figure 26. Example of solving the puzzle with sages hats for one of two sages.

[An irreflexive slot binary relation is a slot (binary)
relation. Any tuple of which is not denoted by
a loop arc (an arc with the same beginning and
end).]

irreflexive non-slot binary relation
⊂ irreflexive binary relation
⇒ note*:

[An irreflexive non-slot binary relation is a non-
slot binary sc-relation. Different memberships
of any tuple of which are the memberships of
different elements.]

reflexive slot binary relation
⊂ reflexive binary relation
⇒ note*:

[A reflexive slot binary relation is a slot binary
sc-relation. For any tuple’s element of which,
there is a its tuple denoted by a loop arc (an arc
with the same beginning and end).]

reflexive non-slot binary relation
⊂ reflexive binary relation
⇒ note*:

[A reflexive non-slot binary relation is a non-
slot binary sc-relation. For any tuple’s element
of which, there is a tuple with two different
memberships of this element.]

transitive slot binary relation
⊂ transitive binary relation
⇒ note*:

[A transitive slot binary relation is a slot binary
relation. For any two tuples of which, the end
of one of them is the beginning of the second,
there is a link whose beginning is the beginning
of the first link, and the end is the end of the
second link.]

transitive non-slot binary relation
⊂ transitive binary relation
⇒ note*:

[A transitive non-slot binary relation is a non-
slot binary relation. For which, there is a role
relation, the first domain of which is this binary
relation such that for any two tuples of this binary
relation, if any element’s membership to one of
them does not belong to this role relation and the
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Figure 27. Example of solving the puzzle with sages hats for both of two sages.

Figure 28. Rule for solving the sages hat puzzle.

membership of the same element to the second
tuple belongs to this role relation then there is
a tuple with element’s membership belonging
to the role relation, whose membership to the
first tuple belongs to the role relation, and with
element’s membership that does not belong to the
role relation, whose membership to the second
tuple does not belong to this role relation.]

symmetric slot binary relation
⊂ symmetric binary relation
⇒ note*:

[A symmetric slot binary relation is a slot binary
relation. For any tuple of which, there is a tuple
the end of the last is the beginning of the first
tuple and the beginning of the last is end of the
first (i.e. these tuples are denoted by opposite
arcs).]

symmetric non-slot binary relation
⊂ symmetric binary relation
⇒ note*:

[A symmetric non-slot binary relation is a non-
slot binary relation. For which, there is a role
relation the first domain of which is this binary
relation. Also, for any tuple of which, there is
a tuple with an element whose membership in
the first tuple belongs to the role relation while
the membership of that element in the last tuple
does not belong to this role relation and with an
element whose first tuple membership does not
belong to the role relation while its membership
in the last tuple belongs to this role relation.]
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antisymmetric slot binary relation
⊂ antisymmetric binary relation
⇒ note*:

[An antisymmetric slot binary relation is a slot
binary relation. For any tuple of which having
a different beginning and end, there is no tuple
the end of which is the beginning of the first
tuple and the beginning of the last is the end
of the first one (i.e. these tuples are denoted by
opposite arcs) .]

antisymmetric non-slot binary relation
⊂ antisymmetric binary relation
⇒ note*:

[An antisymmetric non-slot binary relation is a
non-slot binary relation. For which, there is a
role relation the first domain of which is this
binary relation. For any tuple of which, there is
no tuple with an element whose membership in
the first link belongs to the role relation while its
membership to the second link does not belong
to this role relation and with an another element
whose first tuple membership does not belong
to the role relation but its membership to the
second tuple belongs to this role relation.]

monotonic slot binary relation*
⊂ monotonic binary relation*
⇒ note*:

[Monotone slot binary relation * is slot binary
relation with respect to an order relation. Thus,
if there is a tuple of this binary relation then for
any of its two tuples, the beginning of the second
is connected by the tuple of this order relation
with the beginning of the first one, there is a
third tuple of the binary relation the beginning of
which coincides with the beginning of the second
tuple and the end coincides with the end of the
first.]

monotonic relation order relation ′

⇒ first domain*:
monotonic binary relation*

⇒ second domain*:
order relation

monotonic binary relation ′

⇒ first domain*:
monotonic binary relation*

⇒ second domain*:
monotonic binary relation

monotonic non-slot binary relation*
⊂ monotonic binary relation*
⇒ note*:

[Monotonic non-slot binary relation* is non-slot
binary relation with respect to an order relation.
For which, there is a role relation, the first domain
of which is this binary relation, such that if there
is a tuple of this binary relation, then for any
of its two tuple, if the element belongs to the
last of them under this role relation unlike the
other one and also it is connected by the tuple
of this order relation with the element belonging
to the first tuple under the same role relation in
contrast to another element of the first tuple then
there is a third tuple of this binary relation such
that the element belonging to it under the role
relation belongs to the second tuple under the
same role relation and the element belonging not
under this role relation to the third tuple belongs
without this role relationship to the first tuple.]

slot equivalence relation
⊂ equivalence sc-relation
⇒ note*:

[A slot equivalence relation is a slot transitive
binary relation which is a slot reflexive and
symmetric relation.]

non-slot equivalence relation
⊂ equivalence sc-relation
⇒ note*:

[A non-slot equivalence relation is a non-slot
transitive binary relation that is a non-slot reflex-
ive and symmetric relation (over the respective
domains).]

slot non-strict order relation
⊂ sc-relation of non-strict order
⇒ note*:

[A slot relation of nonstrict order is a transitive
binary relation that is reflexive and antisymmet-
ric.]

non-slot non-strict order relation
⊂ sc-relation of non-strict order
⇒ note*:

[A non-slot non-strict order relation is a transitive
binary relation that is reflexive and antisymmetric
(with respect to the respective domains).]

Inference relation
⊃ Inference relation on finite sets

⊃ Inference relation on finite sets of
full-connectively represented sets

∈ reflexive binary relation
∈ transitive binary relation
∈ monotonic binary relation
⇒ note*:
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[The inference relation is a reflexive, transitive,
monotone binary relation on sets of premises
(judgments (propositions), logical formulas). The
properties of the inference relation are the rules
of inference by Gentzen.]

sequent
⇒ note*:

[A sequent is a tuple (of an implicative form)
between a conjunctive set of logical formulas
(conjunction) and a disjunctive set of logical
formulas (disjunction). An example of a sequent
is an expression (judgement) like: A1∧A2∧ ...∧
An ⇒ C1 ∨ C2 ∨ ... ∨ Cm.]

antecedent ′
⇒ first domain*:

sequent
⇒ second domain*:

conjunction

consequent ′
⇒ first domain*:

sequent
⇒ second domain*:

disjunction

Inference relation on sequents
⇒ note*:

[The inference relation on sequents satisfies the
rules of inference of the sequent calculus.]

metastructure
⇒ note*:

[A metastructure is a structure whose full-
connectively represented element is another struc-
ture.]

modal operator
⇒ note*:

[A modal operator is a logical connectives that
links a logical formula to a structure (and some-
times other elements) in a metastructure. An
example of a modal operator is the knowledge
operator: ∆.]

modal inference rule
⇒ note*:

[A modal inference rule the modal operator bind-
ing of a formula is true (has a true interpretation)
in a structure if and only if the formula is true
(has a true interpretation) in the structure that
precedes it. An example of an inference rule is
the knowledge operator: Γ ∪ {α} ⊢ Γ ∪ {∆α}.]

relation of becoming of structures
⇒ note*:

[The relation of becoming of structures is a binary
relation on the set of structures having a non-
empty common support. The roles in the tuples
of the relation of becoming are the role relations
of the previous structure (preceding structure)
and the subsequent structure.]

thinking sequence
:= [fate of thinking]
:= [thought]
⇒ note*:

[A sequence of thinking is a sequence of sc-sets
of propositions (logical formulas).]

⇒ subdividing*:
{{{• irrational thinking sequence
• rational thinking sequence

}}}

sequence of rational thinking of classical logic
:= [fate of rational thinking of classical logic]
⊂ rational thinking sequence
⇒ note*:

[A sequence of rational thinking is a sequence
(given by the relation of becoming of structures)
of (classically) satisfible sc-sets (sc-subsets or
sc-supersets) of propositions.]

sequence of classical rational deductive thinking
⊂ sequence of rational thinking of classical logic
⊃ sequence of rational deductive thinking of

classical logic on finite sc-sets
⇒ note*:

[A sequence of classical rational deductive think-
ing is a sequence of rational thinking, the
sequence (of becoming) of satisfiable sc-sets
of propositions deductively logically following
(according to classical rules) one after another.]

sequence of classical rational deductive cognition
:= [will]
⇒ note*:

[A sequence of classical rational deductive cog-
nition is a sequence (given by the relation of
becoming of structures) of non-contradictory sc-
supersets of propositions logically following from
one to another.]

Non-classical logics [27], [29]–[31], [33], [34] consider
(1) non-classical inference whose inference relation hav-
ing unusual properties [27], [29]–[31], following which,
it is possible or impossible to deduce results which is
deduced in classical logic, as well as (2) other scales of
truth constants for logical formulas, their interpretations,
and [33], [34] values that are different from false and

111



(ground) truth.
The event-like nature of event (distensible) sets [3],

[4], used by the languages of the unified knowledge
representation model, allows naturally not only represent-
ing transitions between deducible sets of facts under the
conditions of the open world assumption (hypothesis) but
also the non-monotonic modifiable reasoning correspond-
ing to them under the conditions of the closed world
assumption (hypothesis). To implement non-monotone
inference, special relations of non-monotone inference
are introduced. Modifiable reasoning considers four kinds
of predicates:

P1i = P1j
P2i ⊆ P2j
P3i ⊇ P3j
P4i?P4j

An efficient solution of the problem is possible by adding
additional restrictions on the class of considered formulas
and functions (Horn clauses, monotone predicates). The
transition to fuzzy logic allows reducing a discrete prob-
lem to a continuous problem (embed it in a continuous
model which is close to quantor elimination methods). The
used formalism of event (distensible) sets [3], [4] allows
representing fuzzy logic expressions in a natural way. Let
us consider some definitions of fuzzy connectives that link
and express causality and exclusivity in Lukasiewicz’s
fuzzy logic [34].

φ→̃ψ

1̃
def
= 0̃→̃0̃

∼ φ
def
= φ→̃0̃

φ∧̃ψ def
= (φ→̃ψ) →̃ψ

φ∨̃ψ def
=∼ (∼ φ∧̃ ∼ ψ)

φ⊕̃ψ def
= (∼ φ) →̃ψ

φ⊗̃ψ def
=∼

(
∼ φ⊕̃ ∼ ψ

)
φ⊖̃ψ def

=∼ (φ→̃ψ)

φ↔̃ψ
def
= (φ→̃ψ) ∨ (ψ→̃φ)

To implement the inference in other non-classical
logics, including those dealing with subject domains in
which non-deterministic sets and structures are considered,
additional concepts are also considered.

nonmonotonic inference on finite sc-set of premises
⇒ note*:

[Nonmonotonic inference on a finite sc-set of
premises is a relation between (finite) sc-sets
of true logical statements (premises). If there
is no embedding of the structure of an atomic
logical formula in the relational structure (sc-
subset of the subject area) of the sc-set of true
(consistent) premises and the negation of this
atomic formula is true with respect to them,

then there is an sc-set with a relational structure
belonging to it, including all elements of the
previously mentioned relational structure and
the constants of this atomic formula, to which
all premises of the previously mentioned sc-set
of true (consistent) premises and the mentioned
atomic logical formula belong.]

inferencing set
⇒ note*:

[An inferencing set is an event sc-set, the (tem-
porary) belonging of logical formulas to which
is established in the order of formation of the
process of deriving these logical formulas.]

fuzzy truth*
⇒ note*:

[Fuzzy truth connects a finite sc-set with temporal
belongings on a finite set of finite phenomena
of belonging to a statement. On the membership
phenomena, a finite sc-subset of the sc-relation
of becoming (immediately before, immediately
after) is given, which defines the structure of
the corresponding sc-subsets. This structure is
a directed tree. Fuzzy truth is a binary relation
between the (fuzzy) membership of a link of a
formal theory statement and a finite sc-set and
a real number from 0.0 to 1.0. The fuzzy truth
of the negation of the statement is equal to the
difference 1.0 and the fuzzy truth of the statement
belonging to the negation. The fuzzy truth of
the conjunction of propositions does not exceed
the minimum of the fuzzy truth of the elements
of this conjunction and is not lower than the
(boundary or drastic) product of the fuzzy truth
of the same elements of the conjunction. The
fuzzy truth of a disjunction does not exceed the
(boundary or drastically) sum of the fuzzy truth of
the elements of this conjunction and not less than
the maximum fuzzy truth of the same elements
of the conjunction. The fuzzy truth of atomic
propositions is equal to the arithmetic mean of
the isomorphic embedding of the proposition
structure in each of the sc-subsets of the finite
sc-set that are included in the structure given by
the becoming sc-relation.]

constructively true proposition*
⇒ note*:

[A constructively true proposition* is a subset of a
true proposition*. True atomic logical formulas or
their true interpretations are constructively true if
and only if they have an isomorphic embedding in
the domain where all elements of the embedding
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are full-connectively represented. A conjunction
of constructively true logical formulas (or having
corresponding constructively true interpretations)
is constructively true (or has a constructively true
corresponding interpretation). The disjunction of
at least one constructively true logical formula (or
having a corresponding complete constructively
true interpretation) is constructively true (or has a
constructively true corresponding interpretation).
The negation of a false logical formula (or
having a false corresponding interpretation) is
constructively true (or has a constructively true
interpretation). If all the logical formulas in
the disjunction are false (have corresponding
false interpretations), then the disjunction is
also false (has a corresponding false interpre-
tation). The negation of a false logical formula
(or having a false corresponding interpretation)
is constructively true (or has a constructively
true interpretation). An implication with a false
premise (or having a corresponding false in-
terpretation) is constructively true (or has a
constructively true interpretation). An implication
with a constructively true consequence (or having
a corresponding constructively true interpretation)
is constructively true (or has a constructively true
interpretation). A constructively true implication
(or having a constructively true interpretation)
with a constructively true premise (or having a
corresponding constructively true interpretation)
has a constructively true consequence (or having
a corresponding constructively true interpreta-
tion). A constructively true implication (or having
a constructively true interpretation) with a false
consequence (or having a corresponding false
interpretation) has a false premise (or having
a corresponding false interpretation). The exis-
tence of variable values for a logical formula
is constructively true (or has a corresponding
constructive true interpretation) if the universal-
ity of variable values for that logical formula
is constructively true (or has a corresponding
constructive true interpretation). If a logical
formula has only constructively true correspond-
ing interpretations, then the universality of the
values of the variable for this logical formula
is constructively true (or has a corresponding
constructively true interpretation). ]

right proposition*
⇒ note*:

[A right proposition is a proposition that is true
or uncourrupted.]

uncorrupted proposition*
⇒ note*:

[An uncorrupted proposition is a proposition
whose truth or falsity (untruth) does not lead
to a contradiction.]

The approach based on the semantic space [4], [8], in
addition to considering useful metric properties, allows
imposing additional requirements on the topological prop-
erties of the corresponding logics, when all substructures
of the relational structure of the subject domain, on which
the logical formulas are interpreted, are meaningfully
closed.

IV. CONCLUSION

In reference and testing (checking) systems, there is a
problem of analyzing complex answers characteristic of
modified reasoning. The representation of such answers
as logical constructions in the semantic space makes it
possible to quantify the correctness of such answers, as
well as the quality of the knowledge that the system is
able to acquire in the process of dialog within the OSTIS
Ecosystem.
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Интеграция логических моделей
представления и обработки знаний в

смысловом пространстве
Ивашенко В. П.

В данной статье рассматривается подход к пред-
ставлению логических структур и схем, как моделей
логической обработки знаний, в семантическом про-
странстве в виде семантических сетей. Исследуются
некоторые свойства семантического пространства и
логических моделей, такие как топологические, мет-
рические и валюационные (нормовые) свойства. Пред-
ложены понятия для онтологического представления
классических и неклассических логических формул,
классов и отношений.
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