Versioning Model of Neural Network
Problem-Solving Methods in Intelligent Systems

Mikhail Kovalev
Belarusian State University of
Informatics and Radioelectronics
Minsk, Belarus
michail kovalev7 @ gmail.com

Abstract—In the article, the design process of neural
network problem-solving methods in the knowledge bases
of intelligent systems is considered. The versioning model
of neural network problem-solving methods, described in a
specialized language for representation of neural network
problem-solving methods, is proposed.

Keywords—problem-solving method, ontological approach,
neuro-symbolic Al, artificial neural network

I. INTRODUCTION

The modern development of all directions of Artificial
intelligence is aimed at building intelligent systems that
automate more and more complex human activities. The
current state in the field of developing intelligent systems
of a new generation[1] shows that such systems should
provide:

« unification of representation and coherence of differ-
ent knowledge types and problem-solving methods;
o integration and convergence of different problem-
solving methods in a single knowledge base to ensure
consistency in the semantics of that set of methods;
« representation and interpretation of as many classes
of problem-solving methods (programs) as possible.

Integration of different problem-solving methods in a
single knowledge base guarantees consistency of seman-
tics of this set of methods. When solving problems using
such methods, the system does not communicate with
the external environment by transferring input and output
data. Instead, a single knowledge base allows the system
to track changes in input knowledge in real time using
a wide range of methods, which provides the ability to
introspect and explain the decisions made by the system.
A single knowledge base for problem-solving methods
and knowledge used to solve them allows the system to
reflect on the process of problem solving, to explain the
reasons for its solutions, and to find mistakes there.

The actively developing class of problem-solving
methods is artificial neural networks (ANNs). This is
conditioned, on the one hand, by the rapid development
of the theoretical foundations of artificial neural networks
and on the other hand, by the increasing computing power
of the machines used to train them.

Impressive results have been obtained in problem
solving with artificial neural networks [2]. Among the
positive characteristics of ANNs are their ability to
effectively solve problems in the absence of known
regularities, as well as their ability to solve problems
without necessarily developing problem-oriented problem-
solving methods.

However, there are serious problems with neural
network problem-solving methods:

o Heuristic nature of the design process of neural
network problem-solving methods. The process of
selecting ANNs architectures and their training pa-
rameters places high demands on the knowledge
level of ANNs engineers.

Lack of explicit allocation of semantic connections
between knowledge in the process of problem
solving. They are highlighted implicitly, statistically,
based on the data that was used for training. Lack of
explicit allocation of meaning leads to the problem of
the “black box” [3]. An entire field of Explainable
Al has emerged, in which researchers attempt to
explain the ANNs solutions [4], [5].

Formalization of ANNs in the knowledge base of the
intelligent system together with other problem-solving
methods allows negating the listed ANNs problems, since
in such systems, the design problem of ANNs and the
explanation problem of solutions for these ANNs are
represented in one form for the whole knowledge base
and can be solved using any of the represented problem-
solving method from this knowledge base.

Frequently, the ANN is actively changed during the
design and interpretation process (configuration of con-
nections, number of layers, synapse weights, activation
functions, etc.). To solve the problem of ANNs design, the
system must be able to analyze the solutions of the same
problem on different versions of the same neural network
problem-solving method in order to evaluate the success of
certain solutions in the design of this method, for example,
the success of selection of activation functions, training
sample, training algorithm, configuration of connections
in layers, etc.

The purpose of this article is to develop an approach

121

to versioning of neural network problem-solving methods
in the knowledge base of the intelligent system.

II. PROPOSED APPROACH

In order to solve the above problems, the OSTIS
Technology is proposed. Intelligent systems developed
using the OSTIS Technology are called ostis-systems.
Any ostis-system consists of a knowledge base, a problem
solver, and a user interface.

The problem solver performes the processing of frag-
ments of the knowledge base. At the operational level,
processing means adding, searching, editing, and deleting
sc-nodes and sc-connectors of the knowledge base. On the
semantic level, such an operation is an action performed
in the memory of an action subject, where, in the general
case, the subject is an ostis-system and the knowledge
base is its memory. An action is defined as the influence
of one entity (or some set of entities) to another entity
(or some set of other entities) according to some purpose.

Actions are performed according to the set problems. A
problem is a formal specification of some action, sufficient
to perform this action by some subject. Depending on
a particular class of problems, it is possible to describe
both the internal state of the intelligent system itself and
the required state of the external environment [6].

For classes of problems, classes of methods for their
solution are formulated. A problem-solving method is de-
fined as a problem-solving program of the corresponding
class, which can be either procedural or declarative. In
turn, a class of problem-solving methods is defined as
a set of all possible problem-solving methods having a
common language for representing these methods. The
method representation language allows describing the
syntactic, denotational, and operational semantics of this
method.

Approaches to integration of ANNs with knowledge
bases in ostis-systems are considered in [7]. Input-output
integration approaches have been tested and described in
[8], [9]. Full integration of ANNs with knowledge bases,
i.e., using neural network problem-solving methods by
formalizing them in an ostis-system knowledge base, are
described in [10], which describes the Denotational and
Operational semantics of the Language for representation
of neural network problem-solving methods (Neuro-SCP).
The present work is a development of this language.

The Language for representation of neural network
problem-solving methods allows representing and in-
terpreting neural network methods in the ostis-system
memory. This language is a sublanguage of the SCP
Language [11]. Any method represented in the SCP
Language is a fragment of the knowledge base, so the
problem of versioning of neural network problem-solving
methods in the knowledge base of the intelligent system
is reduced to the problem of versioning any knowledge
base fragments.

During the existence of the intelligent system, the state
of fragments of its knowledge base (that is, the config-
uration of connections between signs in this knowledge
base), as well as the neural network problem-solving
method represented in the knowledge base, can change
over time [12]. The need to account for the dynamics
of knowledge changing over time in knowledge bases of
intelligent systems is conditioned by the qualities inherent
in intelligent systems, as well as the range of problems
they solve. Intelligent systems must:

« maintain the relevance, adequacy, and accuracy of
the knowledge stored in it at any point in time;

« remember the history of user and developer actions
performed on fragments of the knowledge base in
order to analyze them and support decision-making
in other problems;

« allow performing reverse actions in case of abnormal
situations;

« allow verifying the sources of unreliable knowledge
and warn about inconsistencies in knowledge bases;

« adapt to the characteristics of its users and other
intelligent systems;

o plan and initiate different kinds of problem solving.

Thus, to provide a higher level of intelligence of the
system and support its life cycle, it is necessary to specify
a set of methods and tools that allow solving these
problems quickly and efficiently. One of such means
for solving these problems is a Subsystem for versioning
of knowledge base fragments, embedded in any intelli-
gent system, developed on the principles of the OSTIS
Technology (i.e., in ostis-system), providing continuous
versioning for various knowledge base fragments and
analysis of their states.

A knowledge base fragment means a formal specifi-
cation of any entity or concept sign represented in the
knowledge base of a given system. That is, a knowledge
base fragment is nothing but some semantic neighborhood
or structure that includes knowledge about an object in
the subject domain of the knowledge base of this system.
The process of versioning of a knowledge base fragment
implies a complete representation and description of its
states, as well as providing capabilities and tools for
processing and analyzing the states of this knowledge
base fragment.

The state of the knowledge base fragment means
the integration of the results of actions performed on
this knowledge base fragment since its existence in the
knowledge base (that is, since the initial state of this
knowledge base fragment).

The versioning of the knowledge base fragment requires
strict identification of all states from the beginning of
the existence of this knowledge base fragment, that is, it
requires the construction of the bijective correspondence
between the state of the knowledge base fragment and
its unique identifier in the whole knowledge base of the

122

system [13]. In the process of versioning of the knowledge
base fragment, a tree-like linear structure of states of this
knowledge base fragment (tree of states of knowledge
base fragments) and a tree-like linear structure of state
identifiers of this knowledge base fragment (tree of state
identifiers of knowledge base fragments) are built. Both
structures are represented in the SC-code.

The Subsystem for versioning of knowledge base
fragments consists of the following components:

e specification for the versioning model of knowledge
base fragments (i.e., documentation (knowledge
bases) describing methods, tools, and algorithms
of versioning of knowledge base fragments);

o problem solver [14], including:

— an Abstract sc-agent for generating the initial state
of a knowledge base fragment in its state stack;

— an Abstract sc-agent for integrating changes with
the current state of a knowledge base fragment
and adding the resulting state of the knowledge
base fragment to its state stack;

— an Abstract sc-agent for identifying the state of
the knowledge base fragment in the stack of state
identifiers of a given knowledge base fragment,

— an Abstract sc-agent for getting the state of a
knowledge base fragment by its identifier;

— an Abstract sc-agent for getting the version of a
knowledge base fragment by its identifier.

o program interface and user interface to use the
versioning of knowledge base fragments.

The state of knowledge base fragments is pairs of two
sets. The elements of the first set are the membership arcs
of the certain substructures for decomposing the more
general structure, which in the version of this state of the
knowledge base fragment have not been changed. The
elements of the second set are the membership arcs of the
certain substructures for decomposing the more general
structure, which have been changed in this version. Both
sets can be represented as a role relation (attribute set),
denoting which and in what way the certain structures of
the general structure of states are represented. These two
sets play an important role in the operational semantics
used when implementing agents to work with the history
of structure changes.

Reconstructing a version by the state of the knowledge
base fragment takes only one traversal of the subtree, i.e.,
a traversal of this state. Structures located in the hierarchy
lower than the structure, which includes a membership
arc of the composition of a more general structure, which
in turn is an element in the attribute set of membership
arcs of changed (unchanged) structures, are considered
to be changed (unchanged) until an arc from the second
attribute set is encountered, and those above the arc are
considered to be unchanged (changed) until an arc from
the first attribute set is encountered. This approach is
easy to implement and does not require a large number

of copies for bindings of decomposition and membership
arcs for changed structures, compared to the previous
cases.

Let us consider an example of versioning a particular
neural network method represented in Neuro-SCP and
described in [10]. This method solves the classical
“EXCLUSIVE OR” problem [15].

In Neuro-SCP, the implementation of this ANN is
reduced to a single layer interpretation operator, for
which the matrix of synapse weights, threshold, and
activation function are defined. In Figure 1, the neuro-
SCP interpretation operator of the layer of a single-layer
perseptron, solving the “EXCLUSIVE OR” problem, is
shown.

In Figure 2, the single-layer perseptron scheme, which
solves this problem and from which the Neuro-SCP
operator has been described, is demonstrated.

Any of these elements can be changed in the process
of training and reconfiguration of the ANN. Within the
proposed approach, such ANN will correspond to its own
tree of states. Let us suppose that a given ANN has been
trained and its synaptic weight matrix of a single layer
has changed.

In Figure 3, a tree of states that stores two versions of
the same ANN — before training and after training — is
shown. The root of this tree is an instance of the history
class. There are two states associated with the root, each
of which is an oriented pair of sets.

For each state, the time of the beginning of the state
existence is set. All elements describing the states are
temporal, since they exist temporarily and each state can
be replaced by another.

For the first state, the first set was empty, since it is the
first state in the tree and it cannot refer to previous states.
The second set considered above describes all elements
that were added in this version. Since it is the first state,
this set describes all membership arcs involved in the
description of the operator.

The first set of the second state — the set of elements
that have not changed from the previous state — is
described using the constructions involved in describing
the second set of the first state. The second set of the
second state, on the other hand, describes only the changes
or, to be more precise, only the membership arcs that
have been added in the new state. Thus, it is possible to
understand that the weight matrix has changed in the new
state. It can be assumed that the ANN has been retrained.

The use of ANNs as a problem-solving method implies
the use of an already designed and trained ANNs. How-
ever, the presence of a neural network method description
language in ostis-system memory opens the way for
automation of the processes of designing and training
ANN:Ss. Such automation is represented by separate classes
of problems and the corresponding skills for their solution.

123

I action_calculate_layer

Y &

I number_oriented_set I
_operatorl "f

Y Y '

I _input_vector |

@r‘rﬂ_l
ﬁm!rﬁx

rrel_fixed
rrel_scp_var
matrix_1

rrel_input_vector

FT—i—k’“

| rrel_2

|
| rrel_fixed
@ $Irﬂﬁ_ scp_const I I
rrel_synopsis_weight_matrix I

— — — —

Pt |

[

Figure 1.

Figure 2. Scheme of a single-layer perseptron solving the “EXCLUSIVE
OR” problem [15]

III. CONCLUSION

The described versioning model allows storing and
restoring any state not only of the neural network method
described with Neuro-SCP in the knowledge base but also
any knowledge base fragment in principle with minimal
effort.

The model can be used to describe not only what
has been changed but also at what time and under what
influences. If necessary, each state can be described from
various angles — efficiency, validity, operational history,
etc.

In the case of convergence and integration of ANNs
with knowledge bases of intelligent systems, such
a model will allow considering ANNs not only as a

I

| ©
@

IlTrﬁ.

|I@

(" ythreshold vector 1
A2 =0

| I
| &

rrel 3
number_oriented_set

ﬁ’l’gnal_m'i‘.imu'nn_f{mr!inn
signal_fun_1
l é érrel‘ 4

I @ rrel_fixed
rrel_scp_const
rrel_octivation_function

:,.., D output_vector

I'* j,'
dof N
I éda rrel_assign

rrel_scp var

rrel_fixed
rrel_scp_const

rrel_threshold _set

numher oriented_set

= rrel_result

Operator for interpreting the ANN layer on Neuro-SCP

problem-solving method but also as a design object. The
automation of such design will become a task that can
be posed by the same intelligent system, in which the
neural network is described and interpreted.

The availability of unification of the knowledge repre-
sentation describing the problem and the methods of
solving these problems allows the whole arsenal of
problem-solving methods of the intelligent system to be
used for design. Such methods can achieve good results in
design automation by accessing the knowledge describing
the problem to be solved by the designed ANNs, the
context of the problem to be solved, the history of the
intelligent system solving similar problems, etc.

A further development of this work is the design
and implementation of intelligent design framework of
ANNSs, which will automate various activities for ANNSs
designers.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments,
in particular, Vladimir Golenkov, Vladimir Golovko,
Aliaksandr Kroshchanka, and Nikita Zotov.

124

@

..............

Y
>if

exact_value

15.01.2023 12:31:54,

: history

@E‘ﬂﬂlpk‘iiﬂl‘l @exan_m!ue

begin : " e A - .,
E .+,l|-' I.'I.' ..ll y .". P
: o ' ot e, %#15.01.2&23 14:51:4
g . 2 : nrel_tempitral_decomposition
'::_-l::::::::-:E'—:::}{_.?""""".J:"L""H @ ..."n 4 é
state_1_set 1 j‘ state_1 7":5'"—2 Y i .""-+._+ .f state_2_set 2
] j @,f 'i‘ S‘:1'-'":!3'_2'_51?7-_-I::''.::::::;k.'.'.::i::::::-.-:.. :: :_'
nrel_model_ versiorié "'Ef__‘_[:f_?-ffflgfs{_-histur_}' TR, gty *
: ':'"';;:: He
23 w # 4 et
Y N it
' action_calculate_layer i ' 'a:*'
.‘.+'- E
Y i,
number_ofiented_set .
_operator] f.g .. : nrel_model_version
: z .
r j, T - D_inpu[_vermr H :
T S St |
I PR A S A Y.
- {té ..
l @ rrel_1 miririx matrix
$ rref ;EE;_ 'J};'fd """ — N o
i o] ST matrix_2
—rrel_frput vrotor— i r * EO

amas

o >
'y RL_LK

X

]
rrel_fixed

N

©®
.
| L. s

..."l
I @ a‘rﬂ_ﬁxed

rrel_scp_const
rrel_threshold_set

@

rrel_fixed
@ rrel_scp_const
rrel_activation_fu

rrel 2
nu
rrel_scp_const Jfegieeeess
rrel_synopsis_weil 1airix
threshold |

rrel_synopsis_weight_matrix
rrel_synopsis_weight_matrix
rrel_synopsis_weight_matrix

..............................

rrel_synopsis_weight_matrix

............................

n
output_\

....................

T

.................................

rrel_assign
rrel_scpr var

rrel_result

J

Figure 3. Example of an ANN tree of states

125

(1]

(2]

(3]
(4]

[5]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

V. V. Golenkov and N. A. Gulyakina, “Next-generation intelligent
computer systems and technology of complex support of their
life cycle,” Open semantic technologies for intelligent systems, pp.
27-40, 2022.

L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Q. Al-Duyjaili, Y. Duan,
O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and
L. Farhan, “Review of deep learning: concepts, cnn architectures,
challenges, applications, future directions,” Journal of Big Data,
vol. 8, 2021.

D. Castelvecchi, “Can we open the black box of AI?” Nature
News, vol. 538, no. 7623, Oct 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I
Trust You?: Explaining the Predictions of Any Classifier,” 2016.
[Online]. Available: https://arxiv.org/abs/1602.04938

S. M. Lundberg and S.-I. Lee, “A Unified Ap-
proach to Interpreting Model Predictions,” Advances
in Neural Information Processing Systems, vol. 30, 2017.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/
file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

D. Shunkevich, “Ontology-based design of hybrid problem solvers,”
Open Semantic Technologies for Intelligent Systems, pp. 101-131,
2022.

V. A. Golovko, V. V. Golenkov, V. P. Ivashenko, V. V. Taberko,
D. S. Ivaniuk, A. A. Kroshchanka, and M. V. Kovalev, “Integration
of artificial neural networks and knowledge bases,” Open semantic
technologies for intelligent systems, pp. 133—145, 2018.

V. Golovko, A. Kroshchanka, M. Kovalev, V. Taberko, and
D. Ivaniuk, “Neuro-symbolic artificial intelligence: Application
for control the quality of product labeling,” Open Semantic
Technologies for Intelligent System, pp. 81-101, 10 2020.

A. Kroshchanka, V. Golovko, E. Mikhno, M. Kovalev, V. Zahariev,
and A. Zagorskij, “A Neural-Symbolic Approach to Computer
Vision,” Open Semantic Technologies for Intelligent Systems, pp.
282-309, 2022.

M. Kovalev, “Convergence and integration of artificial neural
networks with knowledge bases in next-generation intelligent
computer systems,” Open semantic technologies for intelligent
systems, pp. 173-186, 2022.

V. Golenkov, N. Gulyakina, and D. Shunkevich, Otkrytaya
tekhnologiya ontologicheskogo proektirovaniya, proizvodstva
i ekspluatatsii ~ semanticheski sovmestimykh gibridnykh
intellektual’nykh komp’yuternykh sistem [Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems], V. Golenkov,
Ed. Minsk: Bestprint, 2021.

V. Ivashenko, “Semanticheskoe protokolirovanie processov
obrabotki znanij [Semantic logging of knowledge processing
processes],” in Information Technologies and Systems 2017
(ITS 2017) : Republic of Belarus, Minsk, 25 october 2017 year),
L. Y. Shilin, Ed. Minsk: BSUIR, 2017. [Online]. Available:
https://libeldoc.bsuir.by/handle/123456789/27633

——, “Identifikaciya binarno porozhdaemyh sobytij processov
obrabotki znanij dlya semanticheskogo protokolirovaniya
[Identification of binary generated events of knowledge processing
processes for semantic logging],” in Information Technologies and
Systems 2018 (ITS 2018) : Republic of Belarus, Minsk, 25 october
2018 year), L. Y. Shilin, Ed. Minsk: BSUIR, 2017. [Online].
Available: https://libeldoc.bsuir.by/handle/123456789/33352

D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’'nykh system [Open semantic technologies for
intelligent systems], pp. 119-132, 2018.

V. A. Golovko and V. V. Krasnoproshin, Nejrosetevye tekhnologii
obrabotki dannyh [Neural network data processing technologies].
Minsk : Publishing House of the BSU, 2017, (In Russ.).

Mopesb BepCHOHHPOBAHUS HEMPOCETEBBIX
METO/10B pellleHNsl 3a/a4 B
HHTEJUIEKTYAJbHBIX CHCTEMaX

Kosanés M. B.

B cTatbe paccMaTpuBaeTCs IpOIeCC MPOSKTUPOBAHUS
HelipoceTeBhIX METOIOB PEIIeHUs 3a/1a4 B 0a3ax 3HAHUIA
MHTEJUIEKTYalbHBIX cucTeM. [IpemiokeHa Mofieb BepCHo-
HUPOBAHM HEHPOCETEBBIX METOIOB PeIIeHH 3a/1a4, OITH-
CaHHBIX Ha CHEIUAIM3UPOBAHHOM SI3bIKE MPEICTABICHUS
HENpOCeTeBbIX METO/IOB pellleHus 3a/1ay.

Received 29.03.2023

126

https://arxiv.org/abs/1602.04938
https://proceedings.neurips.cc/paper/2017/file/ 8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/ 8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://libeldoc.bsuir.by/handle/123456789/27633
https://libeldoc.bsuir.by/handle/123456789/33352

