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Abstract—In the article, an approach to reducing the
tuning parameters of deep neural network models, which
is based on the use of the pre-training method, is proposed.
Examples of using this approach for model reduction are
given for MNIST, CIFAR10, CIFAR100 datasets. Recom-
mendations are given on the use of the proposed method in
the context of integrating massive neural network models
into the intelligent computer systems of a new generation
based on the use of the OSTIS Technology.
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I. INTRODUCTION

The development of hybrid intelligent systems that
combine the use of various models and approaches is
associated with integration difficulties. This problem can
be successfully solved by using the OSTIS Technology
[1], which makes it possible to develop such systems
taking into account their semantic compatibility. An
equally important factor is the quality of the particular
components of the system.

Deep neural network models have recently become
one of the most actively used components of hybrid
systems. These models show impressive results in solving
a wide variety of problems — recognition, detection, and
segmentation of objects in photo and video images (for
example, [2], [3]), generating annotations for photos, and
generating images from a text description [4], generating
texts of varying complexity ( [5], [6]). Neural networks
used to solve such problems contain millions and billions
of adjustable parameters, as well as tens and hundreds
of layers of neural network elements (Fig. 1).

Although artificial neural networks have recently been
constantly expanding the boundaries of their application
in various fields, it is the fact of the complexity of these
models that gives rise to some conceptual problems and
issues that hinder the process of widespread use of truly
useful and effective neural networks.

Training remains the only possible way to specialize
the model, since no pre-trained neural network can be
used to effectively solve a specific problem. The only

Figure 1. Evolution of parameters amount in deep neural networks [7]

possibility in this case is additional training of this model
on specific data.

However, training such “heavy” models is not a
trivial problem. It is often associated with the risk of
overfitting, which results in excellent fit of the model
to the training dataset but poor generalization ability.
Most often, overfitting occurs when using a small training
dataset. Another problem is the size of the models used,
which makes the learning process slow and resource
intensive even with the use of modern technical means.

Thus, the most lightweight modification of the widely
known and used Llama model requires 4–8 video ac-
celerators like NVIDIA A100 with 80 GB of video
memory for additional training on user data ( [8], [9]).
And this, unfortunately, is far from the limit for such
models. Thus, the OPT model with 175 billion adjustable
parameters already requires 992 video accelerators of
the same type for training [10]. Thus, the problem of
additional training becomes unattainable for ordinary
users and researchers, becoming the prerogative of large
laboratories and companies.

Thus, it becomes critical to reduce the number of
parameters used without losing the quality of the neural
network model. Ideally, it is required to achieve the ability
to run models on portable devices with limited computing
capabilities.

As possible solutions to both the problems of overfitting
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and unlimited growth in the number of parameters, the
authors see the use of the pre-training procedure.

The following sections are organized as follows: in
Section II, the problem of reducing deep neural networks
in the context of intelligent computer systems of a new
generation is described; in Section III, the proposed
approach to reduce the number of parameters of neural
network models is considered; in Section IV, the main
practical results obtained are shown; finally, in Section
V, the main conclusions on the proposed approach are
represented and possible options for its development,
including in the context of intelligent computer systems
of a new generation, are described.

II. PROBLEM FORMULATION

It is known that neural networks have a certain degree
of redundancy. Most often, this is conditioned by the use
of an inconsistent number of model parameters and the
size of the training dataset. If the number of adjustable
parameters is greater than the volume of the training
dataset, then the problems with the efficiency of training
the model, or rather, with its generalizing ability, occur.

In addition, fully connected layers, in comparison with
convolutional ones, contain a larger number of adjustable
parameters, however, in computer vision problems, convo-
lutional neural networks show significantly better results
in terms of generalizing ability than fully connected ones.
Thus, it is obvious that in fully connected networks with a
larger number of adjustable parameters, they are used less
optimally. It can be assumed that the specified “redundant”
parameters can be discarded without a significant loss in
the efficiency of the network.

Thus, the problem of reducing the neural network
model is in identifying parameters that have small
effect on the final result of the model and removing
them. Moreover, such removal can be performed both
logically (zeroing the corresponding weight coefficients
and thresholds [11]) and architecturally (complete removal
of a neural element if its weight coefficients and a
threshold are equal to zero).

Therefore, performing the reduction of the neural
network model leads to its architectural change,
reducing the number of neurons used on each layer.

An important question that arises when performing
the reduction concerns the very algorithm for discarding
uninformative parameters. For current moment, several
works have been proposed in which the authors reduce the
dimension of neural network architectures (for example,
[12], [13]).

Let us list the main advantages that the reduction of
neural network models brings as separate components
integrated into intelligent computer ostis-systems of a
new generation.

Firstly, it becomes possible to automate the selection
of the optimal architecture of the neural network, which
prevents the core of the ostis-system from the formation

of redundant and confusing rules, most of which are
formulated not on the basis of theoretical studies but
purely empirically. In the case of reduction, it is sufficient
to determine the maximum upper value for the number
of neurons of each layer, without the need to select these
parameters during a series of experiments.

Secondly, the work of neural network models as com-
ponents of the ostis-system is accelerated by reducing the
number of parameters used. Frequently, deep models can
be slow and resource-intensive, which affects the overall
system uptime, resulting in serious delays, especially in
the absence of powerful computing tools.

Thirdly, the process of additional training of neural
network models on user datasets is automated, which
could be insufficient in size when training a neural
network from scratch, which would lead to the effect
of overfitting.

Thus, model reduction expands the possibilities of
integrating neural network models as components of ostis-
systems, making the models themselves more adaptive,
faster, and more efficient, and solving this problem is an
urgent problem.

III. PROPOSED APPROACH

Currently, there are two main approaches to pre-training
deep neural networks: I type is based on unsupervised
training of individual layers of the network, represented,
for example, by restricted Boltzmann machines (RBM)
[14], II type — on the use of special types of activation
functions (ReLU), a large available training set, some
special regularization techniques (for example, dropout),
and special initialization of model parameters.

The selection of one or another approach to pre-train
deep neural networks depends on the size of the training
dataset. So, if the dataset is large, type II of pre-training
is applied. Otherwise, type I of pre-training is used [15].

After performing the pre-training, an acceptable initial
initialization of the parameters of the neural network
model is achieved, which allows speeding up the addi-
tional training process, starting it with a smaller total
error. In some cases, the nature of the data for additional
training may change, differing from that used for pre-
training (transfer learning). The goal of both the first and
second types of pre-training is to achieve the ability to
additionally train the model on small datasets without the
appearance of the overfitting effect [16].

Thus, the process of training a deep neural network
model with type I of pre-training consists of the following
steps:

1) pre-training of the neural network by greedy layer-
wise training, starting from the first layer (Fig. 2).
Such training is carried out uncontrollably;

2) fine-tuning the parameters of the entire network using
the backpropagation algorithm or the “wake-sleep”
algorithm [17].
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Figure 2. Greedy layer-wise algorithm

The proposed parameter reduction approach is based
on the use of type I of pre-training proposed by G. Hinton
(hereinafter referred to as the classical method) [18].

Let us give a brief description of this method. To do
this, we consider the model of a restricted Boltzmann
machine.

This model consists of two layers of stochastic binary
neurons, which are interconnected by bidirectional sym-
metrical connections (Fig. 3). The input layer of neurons
is called visible (layer X), and the output layer is called
hidden (layer Y ). The restricted Boltzmann machine can
generate any discrete distribution if enough hidden layer
neurons are used [19]. Let the visible layer contain n and
the hidden layer contain m neurons.

X1 X2 Xn

Y1 Y2 Ym

Figure 3. Restricted Boltzmann machine

The rules for online training of a restricted Boltzmann
machine proposed in the classical method are as follows:

wij(t+ 1) = wij(t) + α(xi(0)yj(0)− xi(k)yj(k))

Ti(t+ 1) = Ti(t) + α(xi(0)− xi(k))

Tj(t+ 1) = Tj(t) + α(yj(0)− yj(k))

where xi(0), xi(k) — the original input data of the
visible layer that are restored by the neural network,
yi(0), yi(k) — the original output data of the hidden layer
that are restored by the neural network. Data recovery
is performed using the Contrastive Divergence (CD-k)
algorithm.

In practice, this algorithm is most often used for k=1.
The above rules are relevant for the case of a deep

fully connected neural network, however, they can be
easily reformulated for the case of a deep convolutional
network. In this case, the individual layers of the deep
model are treated as convolutional restricted Boltzmann
machines (CRBMs) [20].

In this case, the rules will look as follows:

wij(t+1) = wij(t) +α(xi(0)⊛ yj(0)− xi(k)⊛ yj(k))

Ti(t+ 1) = Ti(t) + α(xi(0)− xi(k))

Tj(t+ 1) = Tj(t) + α(yj(0)− yj(k))

where ⊛ denotes the convolution operation.
Thus, for a deep convolutional neural network, it is

possible to combine several training options — with
a representation in the form of CRBM (for the first
convolutional layers) and in the form of RBM (for
finalizing fully connected ones).

Previously, the authors proposed an approach that
generalizes the classical approach and demonstrated its
effectiveness for some problems (for example, [21]).

In the context of this approach, the learning rules are
given, for the derivation of which the authors were guided
by the idea of minimizing the total squared error of the
network (the case of using CD-k):

Es(k) =
1

2L

(
L∑

l=1

m∑
j=1

(∆ylj(k))
2 +

L∑
l=1

n∑
i=1

(∆xl
i(k))

2

)
where ∆ylj(k) = ylj(k)−ylj(0), ∆xl

i(k) = xl
i(k)−xl

i(0),
L — a dimension of the training dataset.

The RBM online training rules in accordance with the
proposed approach for CD-k are as follows:

wij(t+1) = wij(t)−α((yj(k)−yj(0))F
′(Sj(k))xi(k)+

(xi(k)− xi(0))F
′(Si(k))yj(0)),

Ti(t+ 1) = Ti(t)− α(xi(k)− xi(0))F
′(Si(k)),

Tj(t+ 1) = Tj(t)− α(yj(k)− yj(0))F
′(Sj(k)).
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For the CRBM case, the rules will take the form:

wij(t+1) = wij(t)−α((yj(k)−yj(0))F
′(Sj(k))⊛xi(k)+

(xi(k)− xi(0))F
′(Si(k))⊛ yj(0)),

Ti(t+ 1) = Ti(t)− α(xi(k)− xi(0))F
′(Si(k)),

Tj(t+ 1) = Tj(t)− α(yj(k)− yj(0))F
′(Sj(k)).

It is possible to prove the identity of these learning
rules to the classical ones by using neurons with a linear
activation function.

Let us consider an approach for reducing the parameters
of a fully connected neural network based on the use of
pre-training procedure. The first and fourth stages of this
procedure are equal to the stages of performing the first
type of pre-training. During the execution of additional
stages 2–3, sparse connections are formed between the
input and output neurons of the layer and its dimension
is reduced by zeroing some of the parameters that are
not used in fine-tuning and further using of the neural
network model (Fig. 4):

1) Pre-training of a neural network represented as a se-
quence of restricted Boltzmann machines according
to greedy layer-wise algorithm.

2) Zeroing parameters of the neural network that do
not exceed some specified threshold t > 0. In other
words, the parameters falling within the interval
[−t, t] are excluded and are not used in further
training.

3) Architectural reconfiguration of the neural network,
during which the neurons that are not involved in
the formation of the output activity of the network
(neurons with completely zero weight coefficients)
are removed.

4) Fine-tuning of the resulting simplified architecture,
for example, by backpropagation algorithm.

At stage 3, zero columns and rows of the layer weight
matrix are removed. At the same time, the corresponding
elements of the layer threshold vector are deleted and
consistent deletion of rows and columns of the next or
previous layers is ensured (this is done to avoid violation
of consistency between the dimensions of the matrices
and vectors of neighboring layers).

IV. RESULTS

Let us demonstrate the effectiveness of the proposed
approach using the example of reducing various architec-
tures of fully connected neural networks used to classify
images from MNIST [22], CIFAR10 and CIFAR100
[23] datasets. These datasets are classic for testing the
performance of machine learning models.

We conducted a series of experiments, including various
datasets, architectures, and pre-training options used.
Within the same dataset and NN architecture, the current
initialization of the parameters was saved to be able to

Figure 4. Method of reducing parameters on the example of fully
connected layers

compare the effectiveness of different variants of the
pre-training procedure.

Below, for the considered datasets, the main parameters
are given, including the learning rate, mini-batch size,
momentum parameter, and the number of epochs for
pre-training and fine-tuning of models (Table I).

Table I
MAIN TRAINING PARAMETERS

Stage Parameter Value
Training Learning Rate 0.05-0.1

Mini-batch size 100
Momentum parameter 0.9
Number of training
epochs

50-100

Pre-training Learning Rate 0.05-0.2
Mini-batch size 32-100
Momentum parameter [0.5, 0.9]
Number of training
epochs

10

As a result of the computational experiment, results
were obtained for various datasets, NN architectures, and
values of reduction parameter t (Table II-VI).

As can be seen from the above results, the considered
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Table II
RESULTS OF TRAINING – MNIST, 784-800-800-10

Type Efficiency,
%, Classic /
REBA

Tunable param-
eters, Classic /
REBA

Reduced
parameters,
%, Classic /
REBA

wr 98.63 / 98.33 1276810 /
1276810

0/0

t=0.2 98.61 / 98.27 233760 / 279635 81.69 / 78.1
t=0.5 98.03 / 98.05 32524 / 32817 97.45 / 97.43
t=0.8 97.1 / 96.48 17061 / 12217 98.66 / 99.04

Table III
RESULTS OF TRAINING – MNIST, 784-1600-1600-800-800-10

Type Efficiency,
%, Classic /
REBA

Tunable param-
eters, Classic /
REBA

Reduced
parameters,
%, Classic /
REBA

wr 98.76 / 98.37 5747210 /
5747210

0/0

t=0.2 98.51 / 98.55 710734 / 781103 87.63 / 86.41
t=0.5 98.01 / 98.03 54709 / 43867 99.05 / 99.24
t=0.8 96.9 / 93.08 25385 / 14914 99.56 / 99.74

Table IV
RESULTS OF TRAINING – CIFAR10,

3072-1024-512-256-128-64-10

Type Efficiency,
%, Classic /
REBA

Tunable param-
eters, Classic /
REBA

Reduced
parameters,
%, Classic /
REBA

wr 58.56 / 55.85 3844682 /
3844682

0/0

t=0.2 58.69 / 54.37 409211 / 227072 89.36 / 94.09
t=0.5 42.08 / 41.2 29033 / 11320 99.24 / 99.71
t=0.8 23.02 / 10.0 10058 / 4886 99.74 / 99.87

Table V
RESULTS OF TRAINING – CIFAR10, 3072-512-256-128-64-10

Type Efficiency,
%, Classic /
REBA

Tunable param-
eters, Classic /
REBA

Reduced
parameters,
%, Classic /
REBA

wr 57.28 / 53.69 1746506 /
1746506

0/0

t=0.2 56.83 / 41.72 220037 / 126846 87.40 / 92.73
t=0.5 45.29 / 44.93 20431 / 11383 98.83 / 99.35
t=0.8 10.0 / 10.0 8599 / 3797 99.51 / 99.78

architectures generally retain their generalizing properties,
being reduced by more than 80 percent, and even with
a greater degree of reduction, they demonstrate good
generalizing ability.

It is also possible to notice that the more adjustable
parameters in the model, the more efficient the reduction
is. However, with an increase in the reduction parameter,
the efficiency of the original network gradually decreases,
since the reduction begins to concern the parameters that

Table VI
RESULTS OF TRAINING – CIFAR100,

3072-3072-1024-512-256-128-64-100

Type Efficiency,
%, Classic /
REBA

Tunable param-
eters, Classic /
REBA

Reduced
parameters,
%, Classic /
REBA

wr 20.84 / 21.63 13290788 /
13290788

0/0

t=0.2 20.77 / 21.01 1304525 / 703319 90.18 / 94.71
t=0.5 13.4 / 1.0 49847 / 24636 99.62 / 99.81
t=0.8 2.67 / 1.0 21329 / 16977 99.84 / 99.87

affect the final result.
The obtained results substantiate the possibility of pre-

training a deep neural network using an uncontrolled
procedure without obtaining the effect of overfitting and
reducing the efficiency of the model, since in the process
of pre-training, the influence of certain model parameters
on the final output activity of the network is actually
reduced. Such parameters are “parasitic” in nature and
are actually a factor of the model overfitting. At the model
additional training stage, they are not modified and can
be removed after the pre-training stage.

V. CONCLUSION

In the article, the problem field generated by the use
of modern deep neural networks is defined. The main
advantages for integrated computer ostis-systems that
appear when using reduction as a way to reduce the
dimensionality of neural networks are determined.

An approach to the implementation of the method of
reducing the parameters of deep neural networks based
on the use of pre-training is proposed. A review of the
rules for performing unsupervised learning of restricted
Boltzmann machines and convolutional restricted Boltz-
mann machines is given. The obtained theoretical results
are used for pre-training of deep neural networks.

Experimental studies of the proposed reduction method
were carried out, which confirmed its effectiveness.

The authors see the further development of the pro-
posed approach in obtaining practical results for known
deep architectures of models used to solve problems of
computer vision and natural language processing.
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Редуцирование нейросетевых моделей в
интеллектуальных компьютерных

системах нового поколения
Крощенко А. А.

Статья посвящена разработке метода редуцирования
глубоких нейронных сетей в контексте интеграции
подобных моделей в ostis-системы. Предлагается аль-
тернативный подход к обучению глубоких нейронных
сетей, базирующийся на использовании RBM и CRBM.
Предлагается метод для снижения размерности “тяже-
лых” моделей. Полученные теоретические результаты
подтверждаются вычислительными экспериментами,
демонстрирующими эффективность предложенного
подхода к редуцированию.
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