
Neural Network Software Technology
Trainable on the Random Search Principles

Victor Krasnoproshin and Vadim Matskevich
Belarusian State University

Belarus, Minsk, Nezavisimosti av. 4, 220030
Email: krasnoproshin@bsu.by, matskevich1997@gmail.com

Abstract—The paper deals with a state-of-art neural
technology programmed implementation problem in which
the training process is based on random search algorithms.

Training neural networks is a typical optimization
problem. At the initial stage of neural network technologies
development, various variants of gradient methods were
traditionally used to solve such problems. Such methods, as
a rule, met the requirements for the problem in terms of
quality and speed of training. However, with the appearing
of a new class of applied problems, the situation has changed.
The traditional approach to training using gradient methods
did not always meet the requirements of the applied problem
in terms of the resulting solution quality.

The paper proposes one of the options for the software
implementation of neural network technology (in the form
of a framework) according to the ostis 2021 standard, in
which random search algorithms are used to train neural
networks.

Keywords—framework, neural network, training, random
search algorithms, annealing method

I. INTRODUCTION

In modern society, digital data processing technologies
based on artificial intelligence methods are rapidly devel-
oping. In particular, neural network technologies based
on various artificial neural networks architectures have
become widespread.

Due to their high flexibility and the ability to tune to the
subject area, they are actively used to solve a wide class
of applied problems. However, neural network tuning for
the problem being solved (training) is a time-consuming
process.

Automation of the training process is effectively solved
within the existing frameworks [1]. They allow us to
simplify the neural networks training process by using
already implemented training algorithms. The use of
gradient optimizers inside such frameworks is quite
justified. Gradient methods have a high convergence rate
and in practice provide an acceptable solution quality
obtained. When developing the first automated neural
networks training systems, there wasn’t a wide variety
of computing devices, so they didn’t have cross-platform
property. However, with the computing technology devel-
opment, more and more calculations are transferred from
the central processor to connected computing devices.
This allows us to use simultaneously a large number

of devices and significantly increase the efficiency of
computing. Moreover, modern frameworks have become
cross-platform. However, as digital technologies develop,
the class of applied problems for which the solution
quality obtained is critical is constantly expanding.

It should be noted here that many modern frameworks
use gradient optimization methods, which do not always
guarantee the optimal solution achievement. Consequently,
when solving such applied problems, they are not effective
enough, which makes the problem of developing a
software package with alternative training methods up to
date.

The paper proposes a framework’s software implemen-
tation variant, in which random search algorithms are
used to train neural networks.

II. PROBLEM ANALYSIS

Currently, a wide range of applied problems is solved
using neural network technologies implemented in the
form of frameworks. This technology is a set of software
and algorithmic tools that implement the architectures
of various types of neural networks focused on solving
various classes of applied problems.

Today, there are a number of frameworks for solving
machine learning problems. Among the most popular, in
particular, the following can be distinguished.

MXNet is a high-performance and cross-platform
framework that is widely used in solving applied problems.
However, this framework has certain drawbacks. This is
not a very convenient user interface compared to simpler
frameworks and a rather meager range of optimization
algorithms. It only supports some modifications of gra-
dient descent. This framework completely lacks support
for random search methods.

Tensorflow 2. is cross-platform and has a simple user
interface. Currently, it is the most common framework
for applied problems solving. Supports learning with
various gradient methods and genetic algorithm. The
disadvantages include insufficiently high performance,
since it contains the costs of high-level programming lan-
guages and a poor variety of non-directional optimization
algorithms.

Caffe 2 is a high performance cross platform framework.
However, it lacks support for recurrent neural networks

133



and non-directional training algorithms. This framework
significantly limits the class of constructed neural net-
works and has all the disadvantages of gradient methods.

Thus, today the following disadvantages are typical for
modern frameworks.

Most of them either have a limited set of training
algorithms, or support a limited neural networks class, or
have low performance.

III. FRAMEWORK ARCHITECTURE AND STRUCTURE

Consider a variant of a software package implemented
in a form of framework in which random search algo-
rithms are used to train neural networks.

The software package was developed in C++ using
the OpenMP and OpenCL libraries. OpenMP libraries
provide efficient organization of parallel computing within
a single processor, while OpenCL provides compatibility
and parallel computing on a wide class of computing
devices.

According to the ostis 2021 standard, the framework
can be described as follows:

framework
⇒ decomposition*:

{{{• algorithms library
• train behaviour parameters
• architecture library
• database
• compress/decompress module
• predict module
• load/save module

}}}

algorithms library
∋ FAST_ANNEALING
∋ SLOW_ANNEALING
∋ GENETIC
∋ SGD
∋ MOMGRAD
∋ ADAM
∋ FTML

train behaviour parameters
∋ NO_TRAIN
∋ JUST_TRAIN
∋ NEW_TRAIN
∋ CONTINUE_TRAIN

architecture library
∋ RBM_BERNOULLI_BERNOULLI
∋ RBM_GAUSS_BERNOULLI
∋ AUTOENCODER
∋ PERCEPTRON_NN
∋ CONV_LAYER
∋ POOLING_LAYER

PERCEPTRON_NN
⇒ part*:

ActivationFunction

AUTOENCODER
⇒ part*:

ActivationFunction

ActivationFunction
∋ NONE
∋ BIPOLYARSIGM
∋ SIGM
∋ ReLU
∋ SOFTMAX

The developed software package consists of the fol-
lowing main modules: two libraries (algorithms and
architectures of neural networks), a database and a
database with configuration files (for setting up algorithms
from the library), modules (for execution on connected
computing devices and the neural networks functioning),
and finally, user interaction interface.

The database contains all the necessary data sets for
training neural networks. The data is loaded at the
user request. The framework has built-in methods for
generating various types of samples (from the requested
data) for training and testing neural networks.

The algorithm library contains a wide range of different
optimization algorithms: simple gradient, moment and
adaptive moment methods, following the moving leader
method, genetic algorithm and annealing method. Config-
uration files are loaded during the framework initialization
and contain sets with optimal parameter values, which, if
necessary, are recalculated taking into account the neural
network architecture. Execution Modules on connected
computing devices are loaded as they are found. The
framework also has a high degree of flexibility, it can
be executed on a limited number of processor threads
(the limit can be adjusted), on several connected com-
puting devices. In addition, a completely single-threaded
execution mode is possible.

The framework allows assembly without the use
of parallel computing on connected devices and the
processor. For this, the constants.h file contains the
DISABLE_OPEN_CL, DISABLE_OPENMP constants.
When set to non-zero values, the framework disables
the ability to use parallel computing. This allows the
framework to be independent of the settings and computer
configuration. The framework has additional constants EN-
ABLE_FAST_MATH and ENABLE_NORMAL_DISTR.
They allow us to activate the possibility of using acceler-
ated trigonometric functions, for example, to generate a
normal distribution. They also activate the tabled generator
of basic random variables. The size of the table in the
framework is more than a billion, so the random numbers
repetition is not critical. To speed up trigonometric

134



functions, the segment of valid argument values is divided
into a fixed number of parts (the accuracy is controlled by
parameters). For each part, the value of cosine and sine is
calculated and stored in a special table. The acceleration
of calculations is achieved in the many times repeated
use of tabular approximate values instead of the full
calculation of the function value.

To train all non-recurrent networks with gradient
methods, the back-propagation algorithm is used to
calculate the gradient. For restricted Boltzmann machines,
the gradient calculation uses the Constructive Divergence
(CD-1) algorithm. Then, the user-selected gradient modi-
fications are applied to the result.

The user interface contains a fairly wide range of
functionality, covering all the procedures necessary for
convenient framework use. This is loading (saving) a
neural network from a hard disk, constructing neural
networks based on the architecture base, forming a
training dataset based on selected objects classes and data.
Neural networks training process implementation, using
various types of algorithms. Solving applied problems,
color image compression and object recognition.

The neural networks training process can be described
as follows. First, the user loads the training data from the
database and calls the building training dataset methods
(if needed). It then declares the neural network skeleton
on which the neural network will be built. To do this,
the framework implements a special fakeDeepNN data
type. Using the prebuildDeepNN method, the user tells the
designed neural network the images resolution, the images
type (black and white, grayscale or color), indicates
whether the network will be convolutional and assigns
(if necessary) the future network a serial number.

Then, a neural network is constructed to the created
skeletone (by sequentially adding different types of layers).
The need for layer decomposition is indicated when
adding the first layer of the network. In other layers,
the decomposition size is calculated automatically based
on the layer sizes entered by the user.

At the end of the neural network design process,
the user declares an object of deepNN type and calls
the buildDeepNN method. Passes the previously created
network skeleton as a parameter. This function, in addition
to connecting individual fragments into a single network,
checks the correctness of the constructed network. For
example, the incompatibility network layers’ sizes, the
incompatibility of layers’ types (for example, one layer
generates continuous data, and the next layer receives
discrete data, or vice versa). If an error is found, the
program generates the appropriate error and exits.

In the next step, the user sets the neural network
training settings. The framework is highly flexible and
allows for many different training modes. To do this, it
declares an object of a special type TrainingSettings and,
by calling the object’s method for adding settings for a

separate layer, sequentially sets the training settings for
all layers of the network. In the training settings of a
separate layer, the following options are set: optimization
algorithm, training style, layer training time, number of
objects in the training and validation sets.

Setting the training style allows you not to train
individual neural networks’ layers, but to load network’s
trained fragments from the hard disk. The framework also
supports the partial training option. To do this, the training
style indicates: simple training or initial training is carried
out — after which additional training of the layer is
allowed, or continuation of training — the layer continues
training. This option is useful when training large neural
networks or when using low-power computing devices.

In the case of initial training, in addition to the trained
network, the training state of a separate layer is stored.
The description of the learning state depends on the
optimizer chosen. In the case of continuing training, in
addition to the initial training, the saved learning state of
the neural network layer and the partially trained layer
are loaded.

The training time is set separately for each layer. Inside
all optimizers, there is a built-in implementation of the
timer function that controls the time spent on training
the layer. As soon as the time allocated for training has
expired, the training process for this layer is completed.

The sizes of the training and validation sets allow us
to control the amount of data required for layer-by-layer
neural network training.

After creating a neural network and setting up the train-
ing of its individual layers, the user calls the constructed
network training function using the trainDeepNN function.
With this function, the user informs about the network
being trained, training settings, some information about
the input data and the need to use external devices for
training.

The trainDeepNN function is key to the framework. At
the beginning of the execution, if necessary, it scans
the connected computing devices and initializes the
executable modules on them. The function then checks
that the the network layers training settings are correct.
For example, it checks for the trained layers presence,
that do not require training or will be retrained, etc.
This function loads all settings of the entire algorithms
library and optimizer selected by the user. Inside this
function, a complex interaction with the input data for
their decomposition (if necessary), linking the layers of
the trained network, creating and deleting service buffers
for the optimizer calling the training of the corresponding
layer type by the corresponding optimizer, and other
technical details are implemented. This method, at the
end of training, saves the trained network to the hard
disk.

The user can also call the compressImages and predict
functions. Both functions take a trained neural network

135



and input data. The first of them performs data com-
pression and returns their compressed image, the second
returns a set of labels. The number of labels corresponds
to the number of sended images. The label specifies the
object class that the neural network has detected in the
image.

IV. ARCHITECTURES LIBRARY

The architectures library fully fits into the ostis system
described in [2] [3]. The software package supports the
following types of neural networks: restricted Boltzmann
machine of Gauss-Bernoulli and Bernoulli-Bernoulli
types, autoencoders, decomposition of network layers
from the above types, multilayer perceptrons, convolution
layers, pooling layers.

A small number of frameworks support restricted
Boltzmann machines, although they are used for key
frames detecting in video sequences [4] filtering data [5],
encoding key phrases in information retrieval [6] [infor-
mational retrieval]. Based on supported autoencoders and
restricted Boltzmann machines, the framework allows us
to design deep belief networks for data compression and
preprocessing for subsequent data classification.

Support for sampling and convolution layers, multilayer
perceptrons allows us to design deep convolutional neural
networks to build neural network classifiers that are used
for a wide class of applied problems.

Thanks to the support for the decomposition of indi-
vidual layers, the framework allows you to significantly
reduce the number of tunable network parameters, reduce
the required amount of data for training, and increase
the efficiency of parallelizing the neural network layers
training.

The supported wide library of architectures allows us to
design neural networks of almost any architecture, which
makes the framework a universal tool for neural network
data processing.

V. TRAINING ALGORITHM BASED ON THE ANNEALING
METHOD

To solve the problem of efficiency of neural networks
training algorithms, there are algorithms based on random
search. The annealing method is the most promising
random search algorithm for training neural networks.
The paper proposes the following training algorithm based
on the annealing method.

Let an objective function F be defined on a finite set
of admissible solutions Ω and for each element x ⊂ Ω
of which the set of neighboring elements is N(x) ⊂ Ω
given. The conditional optimization problem in this case
can be specified as a triple (Ω, F, N). Let us consider the
possibilities of its solution using the annealing method.
The algorithm includes the following main steps.

Preliminary stage. Initialization of the neural network
initial state Net0 = Net(x10, x20, . . . , xm0) and temper-
ature sequences T0, T1, . . . , Tk, related by the ratio:

Tk =
T0

ln(k + 2)
, k > 0,

where T0 - present value.
General k-th iteration.
Step 1. Random value generation. Generated m uni-

formly distributed on the segment from zero to the number
of parameters in the set of discrete random variables
a1, a2, . . . , am. Generated m random permutations of
length equal to the number in the set of parameters. The
first a1, a2, . . . , am elements of each permutation define
the indexes of the parameters to be changed in each set
of parameters, respectively.

Step 2. New solution generation. For each changing
parameter, a uniformly distributed on the segment [-
l/2;l/2] random value b is generated. Value l depends
on what set is changing parameter belongs to and equal
to l1, l2, . . . , lm respectively. Values l for each set are
given as algorithm parameters.

Let xi is changing parameter and x
′

i is its new value,
then:

x
′

i = xi + b

Step 3. Transition principle. Let x be a current solution
and y was generated on step 2 as new solution. Then
solution x

′
on the next iteration is determined in a

following way:

P (x
′
= y|x) = min{1, exp(F (x)− F (y)

Tk
)}

Step 4. Stop criteria. If the time for training the neural
network has expired, then the algorithm ends. Otherwise,
the transition to the next iteration is performed.

Previously, it was proved that the proposed algorithm
converges in probability to the optimal solution, and from
any initial solution [7].

VI. GENETIC ALGORITHM FOR NEURAL NETWORKS
TRAINING

Additionally, a special genetic algorithm modification
for neural networks training was developed for the
framework.

Preliminary stage. Generation of several random so-
lutions. Each individual solution is a complete neural
network, the architecture of which is set before training
algorithm running and doesn’t change. The number
of solutions N is a parameter of the algorithm. For
each solution, the value of the quality functional to be
optimized is calculated.

General k-th iteration.
Step 1. The worst one is chosen from the current set

of solutions.
Step 2. For the chosen solution, a "mutation" is

performed – generation of a new solution from the current

136



one according to the same scheme as for the developed
annealing algorithm. The only difference is that the values
of the annealing parameters may differ from the genetic
algorithm.

Step 3. For the obtained solution, the quality functional
value is calculated.

Step 4. If the value of the obtained functional for the
new solution is better than for the current one, then the
current solution is replaced with a new one, otherwise
the new solution is discarded.

Step 5. The solution b is randomly selected from the set
of current solutions. The best solution a is also selected
from the set.

Step 6. "Crossbreeding". For all values of the solution
parameters a, b, the following calculations are made.

di = bi − ai

ci = ai + di ∗ α
α ∈ [0;ϕ], 0 < ϕ ≤ 1

where α is uniformly distributed random variable on the
segment, ϕ is an algorithm parameter.

Step 7. For the obtained solution, the quality functional
value is calculated.

Step 8. In the set of solutions, the worst one is chosen.
If it is worse than the new solution, then it is replaced by
a new solution, otherwise the new solution is discarded.

Step 9. Stop criteria check. If the time for training
the neural network has expired, then the algorithm ends.
Otherwise, the transition to the next iteration is performed.

VII. SOFTWARE PACKAGE IMPLEMENTATION
FEATURES

The base of algorithms is developed taking into account
the cross-platform framework property. When developing
optimizers, the computing devices architectural features
were taken into account. For example, video cards are
characterized by a large number of low-power computing
cores, which requires good scalability from the paral-
lelization algorithm. In addition, the performance of the
video card mainly depends on the efficiency of working
with video memory, since it is very slow. This imposes
requirements on the locality of the data used for the most
efficient video card’s cache use. It was also necessary
to implement the interaction of the video card with the
processor for the results collection and other data transfer.

The above requirements have resulted in each optimizer
being implemented twice using different algorithms. One
set of algorithms is used to train neural networks on a
processor, the other set is used on video cards.

The most time-consuming part of training a neural
network is moving data through the training layer. The
input data is presented in matrix form, as are the parame-
ters of the neural network. In a simplified form, moving
data through a network layer is a matrix multiplication
of data by network parameters. Thus, to ensure efficient

training, it is necessary to implement efficient matrix
multiplication.

To ensure the best data caching, a block data mul-
tiplication algorithm was used. It is worth noting that
improving caching increases the training efficiency both
on the video card and on the processor. The block size for
the matrices was selected empirically. For the processor,
the optimal block size was 25, for the video card — 16.
It should be noted that the data size, the amount of data,
and the network size are often not a multiple of these
values, so incomplete blocks were filled with zeros at the
end of the real data. This approach makes it possible to
increase the training efficiency by more than 70% on the
processor and more than twice on the video card. This
fact makes it possible to compensate for the significantly
complicated implementation of optimizers and the entire
complex as a whole due to the formation and disbanding
of data blocks and work inside data matrix blocks.

It is known that random search methods have slow
convergence and require a large amount of computation
at a single iteration. Therefore, in order to increase the
efficiency of annealing training, a calculation hiding
approach (when using connected devices for training)
was used.

Each iteration of the annealing method, as mentioned
above, consists of 4 stages. All stages, except for calculat-
ing the functional value for a new solution, are performed
by the processor. The most time-consuming stage is the
calculation of the functional value and, with a small
network architecture, the new solution generation. The
computational power of a video card is on average 20
times higher than that of a processor. This leads to the fact
that when training small neural networks, a significant
part of the time is spent on generating new solutions.
All stages in a separate iteration are performed strictly
sequentially.

The generation of a new solution consists of two stages:
determination of the number and selection of changeable
network parameters; changing the values of the selected
network parameters.

To reduce the execution time of a single iteration, you
can use the fact that the definition and choice of network
parameters to be changed don’t depend on the stage of
making a new decision. This can be explained by the fact
that the generated increment to the values of the changing
parameters will not change in this case. Changing the
solution changes only the initial values of the parameters
being changed. In this case, you can use the well-known
calculations hiding trick.

To achieve the most efficient use of computing devices,
3 special procedures were designed.

Procedure A1. You can determine the number and
select the parameters to be changed and their increments
in parallel on the processor, when the video card calculates
the value of the quality functional. Under such conditions,

137



already calculated parameter increments are used to
generate a new solution already at the next iteration,
which reduces the number of sequentially performed
calculations.

Procedure A2. For the subsequent optimization of the
training algorithm, let us consider in more detail the stage
of calculating the functional value.

Let current solution be equal to x, and new solution
equal to y. During the calculation of the functional
value on the video card for the solution y, the processor
simultaneously generates two new solutions x1 ∈ N(x)
and y1 ∈ N(y) where N — set of possible generated
solutions from the current. After calculating the value
of the functional, the necessity of transition to a new
solution is checked. If a new decision is accepted, the
next solution to be tested would be y1 otherwise x1. This
procedure allows you to mask the stage of generating a
new solution. Thus, when moving to the next iteration, the
functional value for the new solution will be immediately
calculated without its explicit generation. However, with
this approach, the amount of computation on the processor
almost doubles, which can be critical for a small network.

In some cases, procedure 1 will be optimal in other
cases, procedure 2, which was discussed in detail in [8].

Procedure A3. Its main idea is to most accurately
estimate the speed of the procedures A1 and A2 when
solving a specific applied problem. Since the execution of
one iteration of the algorithm requires, as a rule, less than
one thousandth of a second of time, and the processor
cache appears after some time and the timer has a non-
zero error, a large number of iterations should be used
for an accurate estimate.

Step 1. Running the procedure A1 on ten thousand
iterations with the measurement of the running time.

Step 2. Running the procedure A2 on ten thousand
iterations with the measurement of the running time.

Step 3. Based on the results of the execution time, a
training procedure is selected for the remaining iterations
with a shorter running time.

When training neural networks using the annealing
method using connected devices, the framework automat-
ically evaluates the power of computing devices using the
A3 procedure and selects the most efficient parallelization
option.

Matrix multiplication on the video card is implemented
using two-level parallelization. The first level cyclically
distributes the calculations of individual blocks of the
resulting matrix between the working groups of the
video card. The second level cyclically distributes the
calculations of individual elements of the block of the
resulting matrix between the cores of a separate group.
Since the resulting matrix contains a large number of
blocks, there is no problem of irregular loading of
workgroups. The number of elements in the block is
a multiple of the number of cores in the group, so there

is no irregular cores loading.
Computing the value of the objective function requires

assembling the result on the processor. The calculation of
the objective function value is carried out in several stages.
At the first stage, shared video memory is created for
individual workgroups. At the second stage, each core of
the video card calculates a fragment of the objective
function value. At the third stage, one core in each
working group summarizes the results of the calculations
of the cores of the group into memory shared between the
groups. Exactly one shared memory cell is allocated for
each group. At the fourth stage, the video card transfers
the contents of the shared memory to the processor upon
completion of work. At the fifth stage, the processor
summarizes the results of the groups, because on a video
card, synchronization of calculations is possible only
within the same working group. The number of working
groups is chosen in such a way that there is not too
much data transfer and long assembly, and at the same
time there is no too long calculation of objective function
fragments on the video card.

VIII. EXPERIMENTS

Let’s check the developed software package efficiency
using the example of solving the color image compression
problem.

For the experiments, the STL-10 dataset from Stanford
University was used [9].

The dataset contains 100,000 color images with a
resolution of 96x96 pixels. The images can show an
arbitrary object [10], which makes compressing image
data quite a challenge.

For experiments, 8-fold, 16-fold and 32-fold com-
pressions were chosen. Lower compression ratios are
more efficiently produced using classical compression
algorithms, and higher ones are meaningless due to too
large losses.

For all degrees of compression, the images were
divided into fragments of 4 by 4 pixels. Splitting into
smaller fragments leads to a decrease in the compression
quality, an increase, in turn, leads to an oversized
neural network architecture and requires too much data
and computing resources for training. Each individual
fragment is compressed by a separate restricted Gauss-
Bernoulli Boltzmann machine. For 8-fold compression,
the number of neurons in the hidden layer of each machine
was 48, for 16-fold - 24, for 32-fold - 24, but to achieve
the required degree of compression, another layer of
restricted Bernoulli-Bernoulli type Boltzmann machines
was added with 48 neurons in the input layer and 24 in
the hidden layer.

To train restricted Boltzmann machines with the gra-
dient method, the CD-1 algorithm will be used. The
PCD algorithm is more efficient on a small number of
iterations [11], however, it is based on the assumption

138



captionCompression results 3 bit per pixel
Training algorithm ADAM FTML genetic annealing

MSE 272 254 322 262

PSNR 23.9 24.2 23.1 24.0

PSNR_HVS 24.1 24.4 23.3 24.1

SSIM 0.746 0.756 0.698 0.733

Training time, h 10 10 30 30

that at a separate iteration the parameters of the network
being trained don’t change significantly, which doesn’t
correspond to the problem being solved. The CD-k
algorithm requires k times more calculations per iteration
than CD-1 and at the same time achieves better quality
[12], however, in the problem being solved, the values
of the gradients are very large and the use of the CD-k
algorithm is not advisable.

To compare the effectiveness of the developed learning
algorithms in the framework with existing analogues,
the strongest optimization algorithms implemented in
analogues were taken: the adaptive moment method [13]
(ADAM) due to its stability used for training neural
networks of complex architecture [14] and following the
moving leader method [15] (FTML), and from the current
framework — the original annealing method and genetic
algorithm.

For training, the first 8000 images were used as a
training set, the next 7000 images for the validation set,
the remaining 85000 images formed a test set.

To evaluate the compression efficiency, the most
common quality functionals were chosen: MSE (mean
squared error), PSNR (peak signal to noise ratio), PSNR-
HVS (PSNR human visual system), SSIM (structure
similarity image measurement).

The experiments were held on the operating system
Lubuntu 20.04 with 4-core CPU intel i7-4770k, 16 GB
1600 MHz RAM and GPU nvidia rtx 3070 with 5888
cores. Compiler version gcc 9.4.0, GPU driver version
470.161.03. The framework has been configured to use
the GPU for training.

Compilation options "gcc -xc++ -Wl,-z,stack-
size=10000000000 superOpenCLFramework.cpp
constants.cpp trainPause.cpp deviceConvLayer.cpp
devicePoolingLayer.cpp deviceDeepNN.cpp
trainDCNN.cpp poolingLayer.cpp convLayer.cpp mlp.cpp
autoencoder.cpp testCompression.cpp deviceMLP.cpp
RBMGaussBernoulli.cpp deviceRBMGaussBernoulli.cpp
deepNN.cpp trainDeepNN.cpp deepNNFunc-
tioning.cpp dataProcessing.cpp deviceData.cpp
superFrameworkInit.cpp finalTrainStats.cpp
finetuning.cpp trainMLP.cpp trainRBM.cpp fastMath.cpp
trainSettings.cpp -lstdc++ -D_FORCE_INLINES -O3 -l
OpenCL -lgomp -lm -fopenmp"

The experiments results are displayed by data compres-
sion ratio (see Table 1, 2, 3 ).

From the experimental results, it can be noted that

captionCompression results 1.5 bit per pixel
Training algorithm ADAM FTML genetic annealing

MSE 433 397 452 390

PSNR 21.9 22.3 21.7 22.3

PSNR_HVS 22.1 22.5 21.9 22.5

SSIM 0.663 0.673 0.638 0.669

Training time, h 4 4 18 22

captionCompression results 0.75 bit per pixel
Training algorithm ADAM FTML genetic annealing

MSE 836 756 697 640

PSNR 19.0 19.4 19.8 20.2

PSNR_HVS 19.2 19.5 20.0 20.3

SSIM 0.502 0.509 0.525 0.551

Training time, h 6 6 21 25

at low degrees of compression, the annealing method is
approximately equal to the gradient methods in terms of
the quality of training, but it lags behind them in terms of
speed by about 4 times. However, as the compression task
becomes more complex, the annealing method begins to
surpass them in quality. With 32-fold compression, both
random search algorithms significantly outperformed the
gradient methods in quality, and the annealing method
significantly outperformed the genetic algorithm in the
resulting solution quality.

The higher the complexity of the problem being solved,
the worse the solution is obtained by gradients compared
to random search algorithms. Modern training neural
networks frameworks either do not support this type of
training algorithms in principle, or their functionality
in this part is extremely poor, which makes them not
the most effective means of solving complex applied
problems.

IX. CONCLUSION

The paper presents a software package for training
neural networks using random search algorithms.

High performance and cross-platform is achieved
through the use of OpenMP, OpenCL libraries. A wide
supported architectures library in the framework allows us
to construct deep neural networks of various architectures,
which makes it flexible in applied problems solving. The
framework supports a wide variety of computing devices
and is able to adapt to low-power computing devices,
which makes it possible to use it on a wide variety of
devices.

Thanks to the random search algorithms support, the
framework is able to solve complex applied problems
more efficiently than those existing on gradient methods.
Using the example of solving the color image compression
problem, it was shown that the proposed framework
solves neural networks complex training problem more
efficiently than existing analogues. From this we can
conclude that the developed software package can be

139



used instead of analogues and has a great development
prospect in the future.

REFERENCES

[1] A. Prieto, B. Prieto, E. M. Ortigosa, E. Ros, F. Pelayo, J. Ortega,
and I. Rojas, “Neural networks: an overview of early research,
current frameworks and new challenges,” Neurocomputing, pp.
242–268, 2016.

[2] M. Kovalev, A. Kroshchanka, and V. Golovko, “Convergence
and integration of artificial neural networks with knowledge
bases in next-generation intelligent computer systems,” Otkrytye
semanticheskie tehnologii proektirovanija intellektual’nyh sistem
[Open semantic technologies for intelligent systems], pp. 173–186,
2022.

[3] A. Kroshchanka, “Deep neural networks application in next-
generation intelligent computer systems,” Otkrytye semanticheskie
tehnologii proektirovanija intellektual’nyh sistem [Open semantic
technologies for intelligent systems], pp. 187–194, 2022.

[4] M. Knop, T. Kapuscinski, W. K. Mleczko, and R. Angruk,
“Neural video compression based on rbm scene change detection
algorithm,” International Conference on Artificial Intelligence and
Soft Computing, pp. 660–669, 2016.

[5] M. T. Khanna, C. Ralekar, A. Goel, S. Chaudhury, and B. Lall,
“Memorability-based image compression,” IET Image Process, pp.
1490–1501, 2019.

[6] B. Sharma, M. Tomer, and K. Kriti, “Extractive text summarization
using f-rbm,” Journal of statistics and management systems, p.
1093–1104, 2020.

[7] V. Krasnoproshin and V. Matskevich, “Random search in neural
networks training,” in Proceedings of the 13-th International Con-
ference “Computer Data Analysis and Modeling” – CDAM’2022.
Minsk : BSU, 2022, pp. 96–99.

[8] V. Matskevich, “Obuchenie neironnykh setei na osnove metoda
otzhiga [neural networks training based on annealing method],”
Vestnik Polotskogo gosudarstvennogo universiteta [Bulletin of
Polotsk state university], p. 21–29, 2022.

[9] Stl-10 dataset. Mode of access: academictorrents.com/details/
a799a2845ac29a66c07cf74e2a2838b6c5698a6a. — Date of access:
25.02.2023.

[10] Stl-10 dataset description. Mode of access: stanford.edu/~acoates/
/stl10. — Date of access: 24.02.2023.

[11] K. Oswin, A. Fischer, and C. Igel, “Population-contrastive-
divergence: Does consistency help with rbm training?” Pattern
Recognition Letters, pp. 1–7, 2018.

[12] K. Brugge, A. Fischer, and C. Igel, “The flip-the-state transition
operator for restricted boltzmann machines,” Machine Learning,
p. 53–69, 2013.

[13] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in Proc. of the 3rd Intern. Conf. on Learning
Representations (ICLR 2015), 2015, p. 1–15.

[14] S. Hamis, T. Zaharia, and O. Rousseau, “Image compression at
very low bitrate based on deep learned super-resolution,” IEEE
23rd Intern. Symposium on Consumer Technologies (ISCT), p.
128–133, 2019.

[15] S. Zheng and J. T. Kwok, “Follow the moving leader in deep
learning,” in Proc. of the 34-th International Conference on
Machine Learning, 2017, p. 4110–4119.

Нейросетевая программная технология,
обучаемая на принципах случайного

поиска
Краснопрошин В. В., Мацкевич В. В.

В работе рассматривается актуальная прикладная
проблема, связанная с программной реализацией ней-
росетевой технологии, в рамках которой процесс
обучения основан на алгоритмах случайного поиска.

Обучение нейронных сетей является типичной зада-
чей оптимизации. На начальном этапе развития нейро-
сетевых технологий для решения таких задач традици-
онно использовались различные варианты градиентных
методов. Такие методы, как правило, удовлетворяли
требования к задаче по качеству и скорости обуче-
ния. Однако с появлением нового класса прикладных
задач ситуация изменилась. Традиционный подход к
обучению с использованием градиентных методов не
всегда соответствовал требованиям прикладной задачи
по качеству получаемого решения.

В работе предлагается один из вариантов программ-
ной реализации нейросетевой технологии (в виде
фреймворка) по стандарту ostis 2021, в которой для
обучения нейронных сетей используются алгоритмы
случайного поиска.

Received 18.03.2023

140

academictorrents.com/details/a799a2845ac29a66c07cf74e2a2838b6c5698a6a 
academictorrents.com/details/a799a2845ac29a66c07cf74e2a2838b6c5698a6a 
stanford.edu/~acoates//stl10
stanford.edu/~acoates//stl10

