
Tools for Creating and Maintaining a
Knowledge Base by Integrating Wolfram
Mathematica System and Nevod Package

Valery B. Taranchuk
Department of Computer
Applications and Systems
Belarusian State University
Minsk, Republic of Belarus

taranchuk@bsu.by

Vladislav A. Savionok
Department of Software

for Information Technologies
Belarusian State University

of Informatics and Radioelectronics
Minsk, Republic of Belarus

v.savenok@bsuir.by

Abstract—One of the outcomes of the current review
of the state of knowledge base design and analysis tech-
nologies, software and hardware platforms for the imple-
mentation of semantically compatible intelligent computer
systems is the conclusion about the need to formulate the
principles of collective design, development, verification of
knowledge bases. Accordingly, it is important not only
to formulate and justify the theory, to formalize the
requirements, but also to develop tools to represent such
formal theory in the form (format) of the knowledge base
of the corresponding scientific knowledge portal. It is this
concept that is the goal of implementation and development
of the OSTIS Ecosystem, which, in particular, is intended
to solve problems of convergence and merging of functional
properties of systems of different classes; range expansion,
organizational and technical unification, realization of co-
ordination of software, computing and telecommunication
means; unification of intelligent computer systems. A spe-
cial place in such unification should be given to the solution
of problems of integration of OSTIS Ecosystem tools with
computer mathematics systems, especially with computer
algebra systems.

This paper presents an example of integration of the local
intelligent computer system based on Nevod library with the
knowledge base of Wolfram Mathematica computer algebra
system, which can be interpreted as an analogue of the
integration of knowledge bases of the corporate OSTIS-
system into the OSTIS Ecosystem. Examples of the use of
tools to analyze the local knowledge base, its transfer from
virtual to real status are presented and explained.

Keywords—Semantic analysis, OSTIS technology, Wol-
fram Mathematica, Wolfram Knowledgebase, Entity, tem-
poral markers, Nevod

I. INTRODUCTION

According to the assessment of the current state of
the field of artificial intelligence (AI), given in [1], there
is an active development of many different areas, such
as formal ontologies, artificial neural networks, machine
learning, multi-agent systems, etc. However, this activity
does not bring an aggregate increase in the level of in-
telligence of modern intelligent computer systems (ICS).
This is due to the current isolation between methods and

designing tools in each of the areas of AI. The solution
of this problem is seen in the construction of a general
formal theory of ICS, and designing a comprehensive
technology for their development and life cycle support
— the OSTIS technology [1]. This will allow to achieve
convergence of all areas of AI through their mutual
integration and joint development.

Modern design support frameworks in the field of AI
are mainly aimed at the development of highly special-
ized solutions, which can act as individual components of
the ICS. In order to obtain guaranteed compatibility of all
developed components, it is necessary to transform these
tools into a unified technology for comprehensive design
and support of the full life cycle of the ICS. Despite the
independent development of the ICS, special attention
should also be paid to their external interfaces, since the
intercommunication of ICS between each other will be
required as part of complex systems for the automation
of various human activities. In other words, there is a
need for unification and convergence of next-generation
ICS, along with their components. This will open the way
to the design of optimized complexes that include all the
necessary AI to solve the tasks at hand. It is important to
note that in order to meet the optimization requirements
when solving certain tasks and achieve maximum perfor-
mance, it is necessary to organize the effective interaction
of the ICS with the connected information resources.
The main actions for solving the key methodological
problems, which are the reason for the current state of
the field of AI, are also given in [1]. Note that similar
problems are solved in the field of computer algebra
systems: in their design, development, content update and
functionality expansion [2], [3].

Methodological and technical solutions for integra-
tion of various types of knowledge implemented in the
computer algebra system Wolfram Mathematica (WM),
Wolfram Language (WL) are described in this paper.

181

The software solutions implemented in the Wolfram
Knowledgebase are marked and illustrated with exam-
ples. From the standpoint of the need of unification
of next-generation ICS, integration with the Wolfram
Knowledgebase is performed on the general basis, mean-
ing that the same method can be applied to integrate the
WM with other knowledge systems, including the OSTIS
Metasystem. The examples in this paper demonstrate sev-
eral methods of integration of various tools implemented
in Wolfram Mathematica computer algebra system, and
by means of independent library Nevod [4].

II. CREATING A THEMATIC BLOCK FOR TEMPORAL
MARKERS ANALYSIS

A. Temporal markers analysis

One of the main directions in the field of text pro-
cessing is the extraction of their semantic component —
semantic analysis. In this direction a number of prob-
lems are solved, such as document search in local and
global networks, automatic annotation and abstracting,
classification and clustering of documents, synthesis of
texts and machine translation, text tone analysis, and fact
extraction (publications mentioned in [5]).

An integral part of the task of extraction of facts and
determination of relations between objects is localization
in time of the event corresponding to the fact. The
information, allowing to localize the event on a time axis,
is transferred by means of various in the form and content
textual expressions — temporal markers (pointers). The
final result of the extraction of temporal markers from
the text is their representation and interpretation within
the framework of the formal model set in the process of
semantic analysis [6].

To solve the problem of extracting temporal references
from text the toolkit of one of the leaders in the field
of entity recognition Microsoft.Recognizers.Text [7] is
widely used.

B. Preparation of data for the thematic block of temporal
markers analysis

The MS Recognizers Text (MRT) library provides the
ability to recognize entities in texts of various languages
and is widely used in Microsoft products, for example: in
pre-defined templates for LUIS (Language Understand-
ing Intelligent Service), in the platform for creating dia-
log bots Power Virtual Agents [8], in cognitive language
services in Azure cloud infrastructure — NER (Named
Entity Recognition). The library is distributed under an
open source and free software license from MIT; along
with the source code in the repository on GitHub [7] test
dataset for different languages are published.

The Microsoft.Recognizers.Text.DateTime module,
and in particular its BaseDateExtractor component, is
used in MRT to search for temporal markers in the text.
This component corresponds to a test dataset represented

in JSON format – the DateExtractor.json file [9]. The
dataset contains 143 elements that include absolute and
relative dates in different forms, as well as metainfor-
mation, which is used to check the correctness of the
extraction results. A search context, a reference date
that indicates the point in time used to translate relative
temporal markers into absolute ones, can be attached to
the dataset element. An example of a test dataset element
with comments is shown in Fig. 1.

Figure 1. Example of a test dataset element.

In [5] the results of comparing the capabilities in
temporal pointers extraction of MRT and Nevod li-
brary [4], which implements the search method in the
text [10], are described. For this purpose two software
modules were developed: mMRT and mNevod, which
provide search and extraction of temporal markers from
text. Comparative testing of the software modules was
performed on the described test dataset using the means
of the computer algebra system Wolfram Mathematica to
analyze the results.

Input data for mNevod and mMRT modules is Input
string. The results of temporal pointer extraction modules
are compared with the Results dictionary, which contains
the expected position in the text, length and contents of
the extracted temporal pointer. The DateExtractor test
dataset is used to confirm the functional completeness of
the libraries that extract temporary pointers from text.

When checking and tuning fact extraction tools, in
particular temporal pointers, an important position to
evaluate is the focus on recognition rather than unam-
biguous identification of entities in the text. The original
DateExtractor test dataset of the MRT library does not
allow to fully analyze the functionality of corresponding
tools of this type — it covers most variants of dates
writing in English, includes common abbreviations, but
does not take into account the possibility of distortion
of the input text. It seems advisable to compile a new
test dataset that takes this aspect into account when
evaluating fact extraction tools. The methodology for
forming a representative test dataset is outlined in [5].

C. Using Wolfram Mathematica to form a test dataset

Focusing on the tools for extracting temporal markers
in the text, using fragments from DateExtractor, a new
test dataset was prepared. In the resulting dataset of 141
items, distortions (errors) most typical for manual typing

182

are introduced, so that they affect the text fragments that
represent the target for extraction.

The following types of situations have been selected
as typical manual input errors that do not affect the word
length:

1) replacing a single letter;
2) transposing a pair of neighboring letters in a word.
It should be noted that when modeling distortions of

type 1, there is a natural heuristic to limit the set of letters
that can be used incorrectly instead of a given correct
letter. This is based on the assumption that the standard
means of entering text data for computers, the keyboard,
is used. In this case the most common substitutions will
be the neighboring letters by the location of the keys on
the keyboard. For example, for the word "Monday" one
of the most frequent variants of such an error for the
QWERTY layout is the replacement of the letter "d" by
the letter "s" — "Monsay".

When modeling errors of type 2, a similar natural
heuristic can be applied. Taking into account the blind
printing method, it is logical to assume that most often
a transposition error will occur for characters, which are
typed by fingers of different hands [5]. For example, for
the word "Sunday" a variant of such distortion in the
QWERTY layout is the transposition of the letters "a"
and "y" — "Sundya".

The listed types of input text distortions can be multi-
plied and combined: one word can contain several errors
of the same type, or errors of several types simulta-
neously. In [5] the process of modeling each type of
errors separately is described, without taking into account
their combinations. According to each type of errors, the
following distortions are included in the resulting set of
141 items:

• the letter "d" was replaced with the letter "s" in the
word "monday" (corresponding to 2.8% of the set,
the total word is contained in 3.5% of the set);

• the letters "a" and "y" in the word "sunday" have
been rearranged (corresponding to 5.7% of the set,
the total word is contained in 7% of the set).

When evaluating the correctness of the processing of
the obtained dataset by mNevod and mMRT software
modules, identical results were obtained: 91.4%. Due
to the extensibility of templates in the Nevod package,
rules were added to level out the corresponding erroneous
situations. For letter substitution recognition, different
variants of distortion of the word "monday" at the
position corresponding to the letter "d" were introduced.
A rule covering possible permutations of neighboring
letters of the word "sunday" has been added. Taking into
account the previously described heuristics, these are the
variants "sundya" and "usnday". The software module us-
ing the Nevod library with the updated rule set correctly
processed 100% of the test dataset. Thus, the use of the
Nevod library tools allows to adapt the software module

for different variants of input data distortions by making
local changes in the existing pattern sets. The application
of the proposed heuristics when composing new rule sets
will allow to implement the initial processing of typical
input errors.

Wolfram Mathematica tools usage. To compare the
functionality of the mNevod and mMRT modules when
solving the problem of extracting temporal pointers in
text not only from the DateExtractor test dataset, but
also by forming other representative datasets, Wolfram
Mathematica has developed the mDataWM service ap-
plication. It contains software tools that enable you to
separate the dataset to be processed from the meta-
information, evaluate and compare the quality of the
results of processing a modified dataset with mMRT
and mNevod modules, distort any dataset, and test the
performance of the libraries. The mDataWM applica-
tion provides for creating test datasets in any language
and analyzing the results of their processing. The tools
of the mDataWM application implement the following
functions:

• distort initial dataset and form a modified one;
• import/export to interface Mathematica with the

mMRT and mNevod modules (handling files and
separating data from meta-information);

• evaluate the quality of the results of dataset process-
ing.

The following Mathematica kernel functions are used
in mDataWM:

• Import[source] — imports data from source, re-
turning a Wolfram Language representation of it.

• Export[dest, expr, ”format”] — exports data in
the specified format ”format”.

• Map[f, expr] — applies f to each element on the
first level in expr.

• MapIndexed[f, expr] — applies f to the elements
of expr, giving the part specification of each ele-
ment as a second argument to f .

• Association[key1− > val1, key2− > val2, ...] —
represents an association between keys and values.

• AssociateTo[a, key− > val] — changes the asso-
ciation a by adding the key-value pair key− > val.

• SortBy[list, f] — sorts the elements of list in the
order defined by applying f to each of them.

• KeyMemberQ[assoc, form] — yields True if a
key in the association assoc matches form, and
False otherwise.

• KeyDrop[assoc, {key1, key2, ...}] — yields an as-
sociation from which elements with keys keyi have
been dropped.

• KeyTake[assoc, {key1, key2, ...}] — yields an as-
sociation containing only the elements with keys
keyi.

• RandomSample[{e1, e2, ...}, n] — gives a pseudo-
random sample of n of the ei.

183

• Select[list, crit] — picks out all elements ei of list
for which crit[ei] is True.

• Delete[expr, n] — deletes the element at position
n in expr. If n is negative, the position is counted
from the end.

• StringReplace[”string”, s− > sp] — replaces the
string expression s by sp wherever it appears in
”string”.

• Count[list, pattern] — gives the number of ele-
ments in list that match pattern.

In the next examples, the original test dataset is
extracted from WDR, and on its basis the correctness
of temporal pointer extraction and target search pattern
processing tools (mMRT tool based on MS Recognizers
and mNevod tool based on Nevod) are tested. The results
of the check can also be uploaded to WDR.

WDR supports the ability to work in parallel with
multiple programs, nodes, clients, which allows you to
organize a kind of (Mass Servicing System):

• one client uploads dataset items to the WDR;
• another client retrieves the set and runs the mNevod

tool, uploading the results back into WDR;
• the third client reads the set in parallel and runs

the mMRT tool, and uploads the results back into
WDR.

D. Creation of a thematic block, inclusion of temporal
markers analysis tools in the WDR

The upload of previously prepared data from other
Information Resources into the WDR is implemented.
The existing data can be modified on any computer
using any tool or with Wolfram Mathematica (or Wol-
framAlpha) toolsets. In particular, in the arsenal of tools
from WM most often used functions are as follows: lists
manipulation, imposition of various kinds of noise and
distortions by random number generators.

WDR creation, data downloading, limitations of
the free version. CreateDatabin[] creates a databin
in the Wolfram Data Drop and returns the correspond-
ing Databin object (CreateDatabin[options] creates a
databin with the specified options). When creating a
WDR, it is possible to pre-define the semantics of the
data that will be contained in this databin [11]. As a
result of executing the code

initialKb = CreateDatabin[];

the thematic block shown in Fig. 2 and Fig. 3 is created.
When creating a new block, the system assigns an
identifier to it. Using the identifier, basic operations on
uploading, selecting and deleting data can be performed
with the block. In our case, the obtained identifier is
placed in the variable initialKb, with which we operate
further.

The free version of WM has a number of restrictions
on the use of WDRs. In particular, the size of one element

Figure 2. The result of creating a thematic block.

Figure 3. Detailed information about a thematic block.

in WDR cannot exceed 25 KBytes. Because of this, each
element of the test dataset in the example is uploaded
separately. Another restriction is applied to the frequency
of uploads – no more than 60 per hour. To circumvent
this limitation, the original test dataset is divided into
parts of 60 or less items, and then each part is uploaded
at one hour intervals. The code used to upload the test
dataset into WDR is –

(* first batch of 60 elements: *)
specsToUpload = Take[specs, {1, 60}];
(* second batch of 60 elements: *)
specsToUpload = Take[specs, {61, 120}];
(* third batch of elements: *)
specsToUpload = Take[specs, {121, 142}];
(* upload batches, one hour interval: *)
DatabinUpload[initialKb, specsToUpload];.

The Take function is used (Take[list, n] gives the
first n elements of list; Take[list,−n] gives the last n
elements of list; Take[list, {m,n}] gives elements m
through n of list) to divide the dataset into parts. Each
part is uploaded separately using the DatabinUpload
function (DatabinUpload[bin, {entry1, entry2, ...}]
bulk uploads all the entries Subscript[entry, i] to a
databin; DatabinUpload[bin,EventSeries[...]] bulk
uploads all entries in an event series to a databin).

In WM, it is possible to add a single item to the
WDR – for this purpose the DatabinAdd function is
used. In the following example, the last element is
uploaded separately:

DatabinAdd[initialKb, specs[[143]]];.

184

The above steps are given as one of the options
that allow you to bypass the restrictions imposed, while
maintaining the simplicity of retrieving the uploaded
test dataset. Another option, which is more efficient
in terms of storage and time spent on uploading the
elements of the dataset, is to build a hierarchy. It was
noticed, that each element in the previously described
procedure does not exceed the size of 2 KBytes. Thus,
by combining the elements in a two-level hierarchy, in
batches of approximate size of 10, you can significantly
reduce the upload time of the entire dataset. However, in
this case, the extraction procedure becomes more com-
plicated, because it is necessary to perform additional
transformations and flatten the hierarchy, for example,
using the Flatten function (Flatten[list] – flattens
out nested lists; Flatten[list, n] – flattens to level n;
Flatten[list, n, h] – flattens subexpressions with head
h).

Extracting data from the WDR. Data extraction from
the WDR is performed using the functions Databin
(represents a databin in the Wolfram Data Drop) [12] and
Normal[expr] (converts expr to a normal expression
from a variety of special forms). An example of getting
the full content of a thematic block is shown in Fig. 4.
Examples of obtaining part of the content with a given
element extraction step are shown in Fig. 5 and Fig. 6.

Figure 4. Extracting all the data from the thematic block.

E. Using WDR during verification of functional com-
pleteness of temporal markers extraction tools

Basic steps to check the functional completeness of
temporal markers extraction tool [5] with WDR integra-
tion are as follows:

1) Retrieve the test dataset from the thematic block.
2) Start the tool to be tested (e.g. mNevod, mMRT).
3) Read the obtained extraction results.
4) Compare with the expected results from the meta-

information of the test dataset.

Figure 5. Extracting elements 1 through 7 from the thematic block.

Figure 6. Extracting the last 7 elements from the thematic block.

5) Upload the results into the WDR.
An example of mNevod results is shown in Fig. 7. The

form of representation is the same as that of the mMRT
module: for each Input string, the module lists extracted
temporal markers in the Results list in text and numeric
form.

Figure 7. Temporal markers extraction results by mNevod module.

It should be noted that Nevod library, due to its struc-
ture, opens an additional possibility to use WDR. Nevod
is a multipurpose library designed to search for pattern
matches in text. Patterns are defined independently from
the library in a special language of their description,
they allow to flexibly configure the search and extraction
of entities from the text [13]. Previously, to solve the
problem of extracting temporal pointers from text, a
standard date search set from Nevod’s library of basic

185

patterns was used. When testing the functional complete-
ness, the disadvantages of this pattern set were revealed,
it was supplemented and included as a component of
the mNevod module. Taking into account independence
of patterns from the library, it’s expedient to place the
received supplemented set of patterns in WDR. It will
allow to make publicly available the actual version of
the set, and at the same time will simplify the task of its
subsequent correction.

III. CREATING A THEMATIC BLOCK FOR OSTIS
CONFERENCE MATERIALS ANALYSIS

The purpose of this part of the work is to demonstrate
the simplest WM tools to create, maintain, use Wolfram
Data Repository to form a centralized repository and
integration with any other platforms and systems.

Tools of sampling and placement in WDR of programs
of last five OSTIS conferences, examples of intellectual
analysis, in particular, selection of reports of the indi-
cated authors are explained. It is essential, that (for the
purpose of demonstration of possibilities of integration
of means of different programs, packages, systems) the
information processing and analysis are carried out by
means of Nevod library, and also by means of WM tools.

A. Preparing material for analysis

The examples below illustrate the preprocessing and
placement in WDR of information extracted from the
programs of five most recent OSTIS conferences.

There are four steps involved in preparing the materi-
als:

1) Extract materials from the conference website,
according to the list of years, programs of meet-
ings (plenary, breakout sessions, as well as ex-
hibition and poster demonstrations) and generate
PDF files "ostis-2018", "ostis-2019", "ostis-2020",
"ostis-2021", "ostis-2022" with subsequent place-
ment in the folder with the current WM notebook.

2) Convert received PDF files into plain text format.
3) Remove introductory explanations and summaries.
4) Upload prepared materials in WDR.
Step 1. Materials retrieval can be performed either

manually or automatically using the WM tools for work-
ing with WWW resources, for example, described in [3].

Step 2. For each prepared file, its contents are loaded
and converted into a text format for further processing.
The Import function is used to specify the data format to
which the file contents will be converted when loaded.
To apply the function to more than one file, the /@
function, a shortened version of the Map function (apply
the function to each item in the list), is used. The code
for loading and converting files is the following:

dataDir = NotebookDirectory[];
files = FileNames[” ∗ .pdf”, dataDir <> ”pdf/”];
contents = Import[#, ”Plaintext”]&/@files;.

Step 3. The introductory explanations (introductions
from organizing committee to conference schedule) and
summaries (abstracts) are deleted. During this procedure,
it is advisable to save the cover pages of the programs to
extract the year of the conference later. The processing is
done using the function StringSplit[”string”, patt, n]
(splits into substrings separated by delimiters matching
the string expression patt, into at most n substrings).
The implementation uses the additional option to search
for a case insensitive pattern (IgnoreCase− > True).
The code for material cleaning is as follows:

getT itlePage = If [Length[#] > 1,#[[1]], ””]&
[StringSplit[#,"организационный комитет", 2,
IgnoreCase− > True]]&;

getMainBody = #[[Length[#]]]&
[StringSplit[#,"график работы конференции", 2,
IgnoreCase− > True]]&;

getClean = getT itlePage[#] <> getMainBody[#]&;
preparedContents = Map[getClean, contents];.

The final getClean function is a composite of two
other functions: getT itlePage extracts the title page and
getMainBody extracts the main conference program
text. The getT itlePage function is designed taking
into account the fact, that some input documents were
represented by the conference web-pages saved in PDF
format, in which this page is missing. The If function
is used to check the presence of the title page.

Step 4. To upload data into the WDR, WM’s capa-
bilities are applied. The creation of the thematic block
using the CreateDatabin function is described above.
At this stage peculiarities of work with text data, in
particular with the Cyrillic alphabet were found out. In
spite of the fact that each prepared document does not
exceed the limit of 25KB per element, the final size of
the loaded document increased several times and did not
correspond to the specified limit. It turned out that the
reason was the presence of Cyrillic letters in the materi-
als. When converting the text to the Wolfram Language
format, Cyrillic characters are represented in the wrong
encoding, due to which the final size of the downloaded
document increases many times. To get around this
drawback, the resulting materials are compressed using
WM Compress function. Accordingly, when extracting
materials for analysis, the restoration of the original data
is performed using the paired function Uncompress.
Thus, the code of WDR creation, uploading and extrac-
tion of materials is the following:

initialDatabin = Databin[initialDatabinId];
DatabinUpload[initialDatabin, Compress/@

preparedContents];
downloadedContents = Uncompress/@Normal[

initialDatabin];.

B. Examples of knowledge extraction, interpretation us-
ing the Nevod library

Preparing data for analysis by Nevod library —
exporting to plain text files

186

The preprocessed documents of the conference pro-
grams extracted from the thematic block are saved to text
files using the Export function. File names are generated
as integers in order using the Range function. The path
to the files is specified in the data folder in the subfolder
"txt":

plainTextF iles = FileNameJoin[{dataDir <>
”./txt”, T oString[#] <> ”.txt”}]&/@Range[
Length[downloadedContents]];.

Then the Export function is applied to each element
of the list using the MapIndexed function. Along with
the contents of the element (parameter #1) it passes the
sequence number of the element in the list (parameter
#2 – list of one number element):

MapIndexed[Export[plainTextF iles[[#2[[1]]]],#1]&,
downloadedContents];.

Preparing to launch the Nevod library
To integrate with the Nevod library, the Nevod utility

module was developed. Integration is performed through
intermediate files. Mandatory parameters are passed to
the input of the module in the following order:

1) path to the file with search patterns;
2) path to the file to perform search in;
3) path to the output file for writing results in JSON

format.
In the example, reports of the author whose name

is specified in the template or query are selected and
prepared for subsequent output. The files with search
patterns for the two authors are in the data folder.

The following code generates the full paths to the files
with the patterns to search the reports of the authors
"Таранчук" (patterns-taranchuk.np) and "Головко"

(patterns-golovko.np):

taranchukPatternsPath = dataDir <>
”patterns− taranchuk.np”;

golovkoPatternsPath = dataDir <>
”patterns− golovko.np”;.

Fig. 8 shows the contents of the patterns-taranchuk.np
file to search for the reports of the author "Таранчук".
The main patterns whose matches are returned as results
are "ЦелевойДоклад". (extracts the list of reports by
the searched author with the report topic, full list of
authors, and time) and "ГодПроведенияКонференции"
(extracts the year of the conference). Other templates are
internal and describe the constructs for extracting the tar-
get author ("ЦелевойАвтор"), time range ("Диапазон"),
authors list ("Авторы"), and report list ("Доклад").

To start the Nevod module RunProcess function is
used, particularly, its variant, which allows to pass a
list of startup arguments. The path to the module to be
launched is saved in nevodPath. File names for saving
Nevod module results are generated beforehand from
input file names by replacing the extension from "txt"
to "json" and placing them in a different folder:

Figure 8. Nevod patterns to search for the target author’s reports.

fileBaseNames = FileBaseName/@FileNames[
plainTextF iles];

resultTaranchukFileNames = FileNameJoin[{
dataDir <> ”/json”,# <> ”− taranchuk” <>
”.json”}]&/@fileBaseNames;

resultGolovkoF ileNames = FileNameJoin[{
dataDir <> ”/json”,# <> ”− golovko” <>
”.json”}]&/@fileBaseNames;.

For example, for the input text file "1.txt" the names
of the output files with the search results will be (taking
into account relative paths) "./json/1-taranchuk.json" and
"./json/1-golovko.json" respectively.

The MapIndexed function runs the Nevod module
separately for each input file and places the results in the
corresponding output file from the resultF ileNames
list:

(* Таранчук *)
MapIndexed[RunProcess[{nevodPath,

taranchukPatternsPath,#1,
resultTaranchukFileNames[[#2[[1]]]]}]&,
plainTextF iles];

(* Головко *)
MapIndexed[RunProcess[{nevodPath,

golovkoPatternsPath,#1,
resultGolovkoF ileNames[[#2[[1]]]]}]&,
plainTextF iles]

{<|ExitCode->0,StandardOutput->,StandardError-
>|>,<|ExitCode->0,StandardOutput->,StandardError-
>|>,<|ExitCode->0,StandardOutput->,StandardError-
>|>,<|ExitCode->0,StandardOutput->,StandardError-
>|>,<|ExitCode->0,StandardOutput->,StandardError->|>}

The presence of the value ExtiCode− > 0 in the
results of the RunProcess function indicates that the
run of the module for each input file was successful.

Output the extraction results for the specified au-
thors. The search results for each of the authors searched
by Nevod are saved in JSON format. To read these files,
Import function with this format is used. The function is
applied to each file, which allows to get a list of results.

187

taranchukResultsNV = Import[#, ”JSON”]&/@
resultTaranchukFileNames;

golovkoResultsNV = Import[#, ”JSON”]&/@
resultGolovkoF ileNames;

The results obtained in JSON format have a specific
structure, an example of which (with line feeds saved) is
shown in Fig. 9.

Figure 9. Example of Nevod module results, initial structure.

In subsequent processing with WM tools, the results
are reduced to a flat representation, eliminating redun-
dant line feeds. The functions for converting to such a
representation are given below:

getY earNV = ”text”/.
("ГодПроведенияКонференции"/.#)[[1]]&;

getReportT itleNV = StringReplace[”\r\n”− > ” ”]
[("Тема"/.(”extractions”/.#))[[1]]]&;

getReportT imeNV = StringReplace[”\r\n”− > ” ”]
[("Время"/.(”extractions”/.#))[[1]]]&;

getReportDetailsNV =< |
”T ime”− > getReportT imeNV [#],
”T itle”− > getReportT itleNV [#]| > &;

getReportListNV = getReportDetailsNV/@
("ЦелевойДоклад"/.#)&;

getTargetReportsNV = If [KeyExistsQ[#,
"ЦелевойДоклад"], getReportListNV [#], {}]&;

getResultsNV =< |
getY earNV [#]− > getTargetReportsNV [#]| >

&;.

The code for getting the final results is shown below:

taranchukResults = getResultsNV/@
taranchukResultsNV

golovkoResults = getResultsNV/@
golovkoResultsNV .

The final results for each of the authors are shown in
Fig. 10 and Fig. 11.

The results show that author Таранчук had no reports
in 2018, two reports in 2019, one each in 2020 and 2021,
and two in 2022; author Головко published in each of
the five years listed.

C. Examples of knowledge extraction and interpretation
using Wolfram Mathematica tools

Extracting and processing information from thematic
blocks is possible with Mathematica tools [14], some of
which were listed above. It should be added that any
kernel and application package functions and proprietary
program modules can be used. The above examples can

Figure 10. Flat results for the author Таранчук.

Figure 11. Flat results for the author Головко.

be repeated with string templates, list manipulations,
rearranging text phrases, and layouts. Below are a few
examples and the codes for getting the results with these
WM tools.

Extracting the year of the conference. To extract
the conference year, StringCases function is used to
extract patterns from strings. ”WhitespaceCharacter”
(including string translation), ”DigitCharacter”, ” ∼∼
” – strict following, ”x...” – repeat one or more times,
”a|b” – alternative choice between a and b. Additional
work with nested lists: Flatten – flatten nested lists,
Part – get a part of the list. Parameter IgnoreCase
allows you to match with the template without taking into
account the upper or lower case of the string. Extracting

188

the year from the title page of the program or in the first
footer:

getY earWM = Part[#, 1]&@ ∗ Flatten@∗
StringCases[DigitCharacter..]@ ∗ StringCases[
("Программа"∼∼ WhitespaceCharacter.. ∼∼
”OSTIS − ” ∼∼ DigitCharacter..)
|("Минск"∼∼ WhitespaceCharacter.. ∼∼
"БГУИР"∼∼ WhitespaceCharacter.. ∼∼
DigitCharacter..), IgnoreCase− > True];

Extracting one participant of the conference.
The ”LetterCharacter” pattern describes a letter

character. The first pattern below checks that the last
name starts with a capital letter using the UpperCaseQ
function. Longest pattern allows to select the longest
match. It should be noted that in this particular case, the
order of the alternatives is important. First is the longer
one, second is the shorter one, since the second one is
a superset of the first one; if written in reverse order, it
returns the shortest match.

upperLetter = LetterCharacter?UpperCaseQ;
authorPattern = upperLetter ∼∼

LetterCharacter.. ∼∼ WhitespaceCharacter.. ∼∼
Longest[(upperLetter ∼∼ ”.” ∼∼
WhitespaceCharacter... ∼∼ upperLetter ∼∼ ”.”)
|(upperLetter ∼∼ ”.”)];

Extracting several participants. Template ”...” is used to
repeat a particular part zero or more times.

multipleAuthorsPattern = Longest[
authorPattern ∼∼ WhitespaceCharacter... ∼∼
(”, ” ∼∼ WhitespaceCharacter.. ∼∼
authorPattern)...];

Extracting a time range.

timePattern = DigitCharacter ∼∼
DigitCharacter ∼∼ ” : ” ∼∼ DigitCharacter ∼∼
DigitCharacter;

timeIntervalPattern = timePattern ∼∼ ”− ” ∼∼
(WhitespaceCharacter...) ∼∼ timePattern;

Extracting elements of the program schedule, except
reports.

getNotReports = StringCases[
timeIntervalPattern.. ∼∼ WhitespaceCharacter..
∼∼"регистрация"|"открытие"|"заседание"|
"совещание"|"перерыв"|"обед"|"съезд",
IgnoreCase− > True];

Removing all the elements of the program schedule,
except reports.

getTrimmedText = StringReplace[#,
getNotReports[#]− > ””]&;

Extracting a list of all reports.

getReports = StringCases[Shortest[
timeIntervalPattern ∼∼ __ ∼∼
multipleAuthorsPattern]]@ ∗ getTrimmedText;

Extracting reports with the specified author. This
extraction is represented by a configurable function.
The input is a string parameter, specifying the author’s
surname. The result is a new function that filters the list
of reports in search of reports of the specified author.

getReportsWithAuthor = Function[{author},
Select[#, StringContainsQ[StringCases[#,
multipleAuthorsPattern][[1]], author]&]&];

Extracting report details: time and title.

getReportT ime = StringCases[{
timeIntervalPattern, ”\n”− > ” ”}];

getReportT itle = StringReplace[{
(timeIntervalPattern|
multipleAuthorsPattern)− > ””, ”\n”− > ” ”}];

getReportDetailsWm =< |
”T ime”− > getReportT ime[#][[1]],
”T itle”− > getReportT itle[#]| > &;

Final function applied to the input file.

getResultsWM = Function[{author},
< |getY ear[#]− > getReportDetailsWm/@
getReportsWithAuthor[author][getReports[#]]
| > &];

Extraction results for the specified author.
Extraction result for the author Таранчук is shown in Fig. 12,

obtained with the following code:

taranchukResults2 = getResultsWM ["Таранчук"]/@
downloadedContents.

{<|2018->{ }|>, <|2019->{ <|Time->11:15- 11:40,Title-> ПРИМЕРЫИС-
ПОЛЬЗОВАНИЯ НЕЙРОННЫХ СЕТЕЙ В АНАЛИЗЕ ГЕОДАННЫХ
|>, <|Time->11:10- 11:30,Title-> ИНФОРМАЦИОННЫЙПОИСКИМА-
ШИННЫЙ ПЕРЕВОД В РЕШЕНИИ ЗАДАЧИ АВТОМАТИЧЕСКОГО
РАСПОЗНАВАНИЯ ЗАИМСТВОВАННЫХ ФРАГМЕНТОВ ТЕКСТО-
ВЫХ ДОКУМЕНТОВ |>}|>, <|2020->{ <|Time->11:00- 11:20,Title->
Примеры интеллектуальной адаптации цифровых полей средствами
системы ГеоБаза Данных |>}|>, <|2021->{ <|Time->10:00- 10:30,Title->
Интерактивные и интеллектуальные средства системы ГеоБазаДанных
|>}|>, <|2022->{ <|Time->10:00- 10:30,Title-> Проблемы и перспективы
автоматизации различных видов и областей человеческой деятельности
с помощью интеллектуальных компьютерных систем нового поколения
|>, <|Time->11:30- 12:00,Title-> Интеграция инструментов компьютер-
ной алгебры в приложения OSTIS |>}|>}

Figure 12. Extraction results for the author Таранчук.

IV. CONCLUSION

As an analogue of the integration of knowledge bases
of the corporate OSTIS-system into the OSTIS Ecosys-
tem, the example of integration of the local intelligent
computer system based on Nevod library with the knowl-
edge base of Wolfram Mathematica computer algebra
system (Wolfram Data Repository) is presented.

The possibilities of working with Wolfram Data
Repository are described by the example of creating a

189

thematic block of temporal markers analysis. In par-
ticular, functions for creating a thematic block, data
upload and extraction from Wolfram Data Repository
with the given sampling parameters are shown. The
methodology for checking the functional completeness of
temporal markers extraction tools from text, with focus
on recognition rather than unambiguous identification,
is described. This methodology is supplemented by the
possibility to publish a thematic block in the public
domain in order to maintain the current state of the test
dataset.

The process of analyzing OSTIS conference mate-
rials for finding the reports written by a specific au-
thor is described in detail. Preparation of materials and
their uploading in Wolfram Data Repository carried out
by means of Wolfram Mathematica. For the purpose
of demonstration of possibilities of integration with
other platforms, systems, extraction and interpretation of
knowledge are made independently by means of Nevod
library, and by means of Wolfram Mathematica. Usage
of Wolfram Mathematica tools for text manipulation
and pattern search is described in detail. A step-by-step
explanation of a final extraction pattern construction, as
well as a brief description of main functions used to
build it, is provided. The knowledge extraction results,
produced by Nevod and by Wolfram Mathematica tools,
are shown and uploaded to Wolfram Data Repository.

REFERENCES

[1] V. V. Golenkov, N. A. Guliakina, D. V. Shunkevich Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i jek-
spluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid in-
telligent computer systems], Bestprint, 2021, P. 690

[2] Wolfram Mathematica: Modern Technical Computing. Available
at: https://www.wolfram.com/mathematica (accessed 2023, Feb).

[3] V. B. Taranchuk Integration of computer algebra tools into OSTIS
applications. Open semantic technologies for intelligent systems,
2022, no 6, pp. 369-374.

[4] Nevod is a language and technology for pattern-based text search.
Available at: https://github.com/nezaboodka/nevod (accessed
2022, Apr).

[5] V. A. Savenok, V. B. Taranchuk Vozmozhnosti i sredstva bib-
lioteki Nevod pri reshenii zadach izvlecheniya vremennykh
ukazatelei v tekste [Features and tools of the Nevod library in
solving problems of extracting temporal markers in the text].
Problemy fiziki, matematiki i tekhniki [Problems of Physics,
Mathematics and Technics], 2022, no 4, pp. 84-92, https://do
i.org/10.54341/20778708_2022_4_53_84.

[6] E. A. Suleimanova Semanticheskii analiz kontekstnykh dat [Se-
mantic analysis of contextual dates]. Programmnye sistemy:
teoriya i prilozheniya [Program systems: theory and applica-
tions], 2015, vol. 6, no 4, pp. 367-399.

[7] Microsoft.Recognizers.Text provides recognition and resolution
of numbers, units, and date/time expressed in multiple languages.
Available at: https://github.com/microsoft/Recognizers-Text
(accessed 2022, Apr).

[8] Intelligent Virtual Agents and Bots | Microsoft Power Virtual
Agents. Available at: https://powervirtualagents.microsoft.c
om/en-us (accessed 2022, Apr).

[9] Recognizers Test Cases Specs for Date Extractor. Available at:
https://github.com/microsoft/Recognizers-Text/blob/master/Spec
s/DateTime/English/DateExtractor.json (accessed 2022, Apr).

[10] D. A. Surkov, I. V. Shimko, V. A. Savenok et al. Sposob poiska
v tekste sovpadenii s shablonami : pat. 037156, Belarus, MPK
G06F 17/27, G06F 17/24, Evraziiskaya patentnaya organizatsiya,
2021, byul. no 2.

[11] Data Semantics | Wolfram Datadrop Quick Reference. Available
at: https://www.wolfram.com/datadrop/quick-reference/data-sem
antics (accessed 2023, Feb).

[12] Databin — Wolfram Language Documentation. Available at: ht
tps://reference.wolfram.com/language/ref/Databin.html (accessed
2023, Feb).

[13] Nevod Basic Patterns. Available at: https://github.com/nezaboo
dka/nevod-patterns (accessed 2023, Feb).

[14] Working with String Patterns — Wolfram Language Documenta-
tion. Available at: https://reference.wolfram.com/language/tutoria
l/WorkingWithStringPatt\erns.html (accessed 2023, Feb).

Инструменты создания и сопровождения
базы знаний путем интеграции системы
Wolfram Mathematica и пакета Nevod

Таранчук В. Б., Савёнок В. А.
Одним из итогов текущего рассмотрения состояния тех-

нологий проектирования и анализа баз знаний, программных
и аппаратных платформ реализации семантически совме-
стимых интеллектуальных компьютерных систем является
заключение о необходимости формулировки принципов кол-
лективного проектирования, разработки, верификации баз
знаний. Соответственно, важно не только сформулировать
и обосновать теорию, формализовать требования, но и
разработать инструменты представления такой формальной
теории в виде (формате) базы знаний соответствующего
портала научных знаний. Именно такая концепция является
целью реализации и развития Экосистемы OSTIS, которая,
в частности, предназначена для решения задач сближе-
ния и слияния функциональных свойств систем различных
классов; расширения спектра, организационно-технического
объединения, осуществления координации программных,
вычислительных и телекоммуникационных средств; унифи-
кации интеллектуальных компьютерных систем. Особое ме-
сто в таком объединении следует отвести решению вопросов
интеграции средств ЭкосистемыOSTIS с системами компью-
терной математики, особенно с системами компьютерной
алгебры.

В данной работе приведен пример интеграции локальной
интеллектуальной компьютерной системы на основе библио-
теки Nevod с базой знаний системы компьютерной алгеб-
ры Wolfram Mathematica, что можно интерпретировать как
аналог действий по локализации баз знаний корпоративной
ostis-системы в состав Экосистемы OSTIS. Представлены и
поясняются примеры использования инструментов анализа
локальной базы знаний, ее перевода из статуса виртуальный
в статус реальной.

Received 25.03.2023

190

https://www.wolfram.com/mathematica
https://github.com/nezaboodka/nevod
https://doi.org/10.54341/20778708_2022_4_53_84
https://doi.org/10.54341/20778708_2022_4_53_84
https://github.com/microsoft/Recognizers-Text
https://powervirtualagents.microsoft.com/en-us
https://powervirtualagents.microsoft.com/en-us
https://github.com/microsoft/Recognizers-Text/blob/master/Specs/DateTime/English/DateExtractor.json
https://github.com/microsoft/Recognizers-Text/blob/master/Specs/DateTime/English/DateExtractor.json
https://www.wolfram.com/datadrop/quick-reference/data-semantics
https://www.wolfram.com/datadrop/quick-reference/data-semantics
https://reference.wolfram.com/language/ref/Databin.html
https://reference.wolfram.com/language/ref/Databin.html
https://github.com/nezaboodka/nevod-patterns
https://github.com/nezaboodka/nevod-patterns
https://reference.wolfram.com/language/tutorial/WorkingWithStringPatt\erns.html
https://reference.wolfram.com/language/tutorial/WorkingWithStringPatt\erns.html

