УДК 621.793.18

ФОРМИРОВАНИЕ ФТОРУГЛЕРОДНЫХ ПОКРЫТИЙ ИОННО-ЛУЧЕВЫМ РАСПЫЛЕНИЕМ СОСТАВНОЙ МИШЕНИ

Шевчик Е.В. Потылкин А.Н.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Телеш Е.В. – ст. преподаватель кафедры ЭТТ

Аннотация. Исследовано влияние технологических режимов на оптические и гидрофобные свойства фторуглеродных покрытий, полученных ионно-лучевым распылением составной мишени из политетрафторэтилена и графита.

Ключевые слова: фторуглеродные покрытия, оптические характеристики, составная мишень, ионно-лучевое распыление, гидрофобные покрытия

Введение. Фторуглеродные тонкие пленки в настоящее время применяются в качестве изолирующих покрытий в электронике, оптических покрытий с низким коэффициентом преломления, гидрофобных, антифрикционных, защитных, антимикробных и химически стойких покрытий [1]. Для получения покрытий широко используется распыление полимерных мишеней из политетрафторэтилена [2]. Однако процесс распыления носит нестационарный характер, что не позволяет воспроизводимо получать покрытия с заданными характеристиками [3]. В работе [4] авторы предложили использовать композиционную мишень из углеродных нанотрубок и политетрафторэтилена для формирования фторуглеродных пленок. Мишень обладала удельным поверхностным сопротивлением меньше 100 Ом/□, что позволило осуществить стабильный процесс распыления.

В данной работе предложено использовать составную мишень из графита и политетрафторэтилена.

Основная часть. Формирование фторуглеродных покрытий осуществляли путём ионно-лучевого распыления составной мишени «политетрафторэтилен/50 % графит». Нанесение покрытий осуществляли на подложки из кремния и стекла K8. В процессе нанесения варьировались состав рабочей газовой среды, ускоряющее напряжение на аноде U_a и температура подложек T_m . Исследовано влияние состава температуры подложки на оптическое пропускание покрытий. На рисунке 1 приведены спектральные зависимости пропускания пленок, полученных при T_m =413 и 583 K. Наблюдалось существенное снижение пропускания в диапазоне 300–600 нм. Ухудшение оптических характеристик также можно объяснить десорбцией фтора и выгоранием углерода из покрытия.

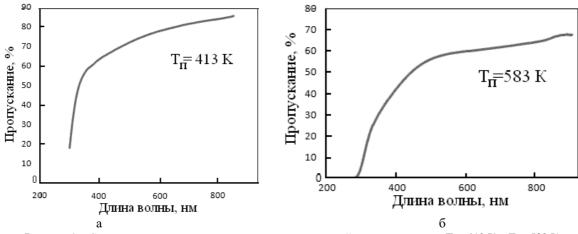


Рисунок 1 — Спектральные зависимости пропускания покрытий, полученных при T_n = 413 K и T_n = 583 K

На рисунке 2, а представлен ИК спектр пропускания покрытия, полученного при парциальном давлении хладона $2,0\cdot10^{-2}$ Па и температуре подложки 343 К. На спектре имелись три характерные полосы поглощения SiO_2 и кремниевой подложки. Области поглощения на 739, 1200 см⁻¹ соответствовали связям С–F. Большая область поглощения, наблюдаемая в диапазоне 1300-1800 см⁻¹, возникает из-за колебаний нескольких групп связей (С–O, С–F).

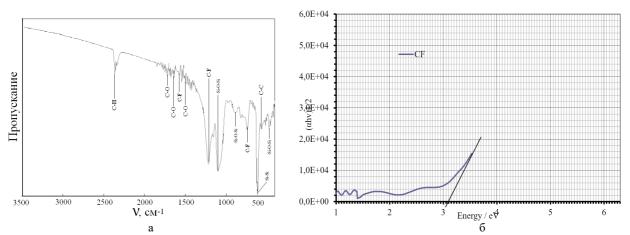


Рисунок 2 — ИК спектр пропускания фторуглеродного покрытия (a) и методика определения ширины запрещенной зоны (б)

Ширина запрещенной зоны E_g рассчитывалась путем анализа спектров пропускания (рис. 2. б). Она составила 3,10...3,25 эВ и практически не зависела от режимов формирования покрытий. Низкое значение E_g объясняется использованием подложек из обычного, а не кварцевого стекла.

Загрязнение поверхности защитного стекла или колпака, расположенных перед объективом камеры наблюдения, со временем может существенно ухудшить качество изображения. Поэтому фторуглеродные тонкопленочные покрытия широко применяются в качестве гидрофобных для защиты от загрязнения и воды. Проведено нанесение покрытий при использовании различных давлениях рабочих газов, варьировании температуры подложки T_{π} и ускоряющего напряжения U_a . В качестве подложки применялось оптическое стекло К8. Угол смачивания дистиллированной водой измерялся с применением гониометра ЛК-1. Результаты приведены в таблице 1.

таблица т теследования выпяния режимов напессиям на утол сма извания						
No	Давление	Давление	Ua,	I _M ,	Τπ,	Угол
п/п	Ar,	C_3F_8 ,	кВ	мА	К	смачивания,
	Па	Па				град.
1	$5,2\cdot 10^{-2}$	_	1,0	20	343	102
2	$5,2\cdot 10^{-2}$	_	1,0	20	438	105
3	$5,0\cdot 10^{-2}$	$3,1\cdot 10^{-2}$	1,2	25	343	98
4	$5,1\cdot 10^{-2}$	$2,0\cdot 10^{-2}$	1,2	20	343	104
5	$5,2\cdot 10^{-2}$	_	1,6	27	473	107
6	$5,2\cdot 10^{-2}$	$1,1\cdot 10^{-2}$	1,3	26	343	101
7	5,2·10 ⁻²	$5.3 \cdot 10^{-2}$	1.4	30	343	107

Таблица 1 – Исследования влияния режимов нанесения на угол смачивания

Анализ данных таблицы показывает, что, нагрев подложки способствовал увеличению угла смачивания. Таким образом, ионно-лучевое распыление составной мишени из фторопласта и графита позволило получить качественные прозрачные гидрофобные покрытия на стекле.

Заключение. Проведенные исследования показали перспективность применения составных мишеней для формирования фторуглеродных покрытий с высокими оптическими и гидрофобными характеристиками.

59-я научная конференция аспирантов, магистрантов и студентов

Список литературы

- 1. Drabik, M. Super-hydrophobic coatings prepared by RF magnetron sputtering of PTFE/M. Drabik et al.//Plasma Processes Polym. 2010. –V.7. P. 544 551.
- 2. Телеш, Е.В. Ионно-лучевое распыление мишени из политетрафторэтилена / Е.В. Телеш, В.А. Точеный// Приборостроение 2021: материалы 14-й Междун. научно-технической конференции (Минск, 18–20 ноября 2021 г.) / Белорус. нац. техн. ун-т. Минск, 2021 С. 355 356.
- 3. He, J.L. Deposition of PTFE thin films by ion beam sputtering and a study of ion bombardment effect / J.L. He, W.Z. Li, L.D. Wang, H.D. Li // Nuclear Instrum. and Methods in Phys. Research Section B: Beam Interactions with Materials and Atoms. 1998.—V.135.—Issue 1–4.—PP. 512—516.
- 4. Kim, S.H. Fluorocarbon thin films fabricated using carbon nanotube/polytetrafluoroethylene composite polymer targets via mid-frequency sputtering/Kim S.H. et al. //Scientific Report. 2017. 7. P. 1451 1461.

UDC 621.793.18

FORMATION OF FLUOROCARBON COATINGS BY ION-BEAM SPUTTERING OF A COMPOSITE TARGET

Shevchik E.V., Potylkin A.N.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus

Telesh E.V. – senior lecturer at the Department of ETT

Annotation. The effect of technological regimes on the optical and hydrophobic properties of fluorocarbon coatings obtained by ion-beam sputtering of a composite target of polytetrafluoroethylene and graphite has been studied.

Keywords: fluorocarbon coatings, optical characteristics, composite target, ion-beam sputtering, hydrophobic coatings