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Abstract: Reducing power consumption when solving computationally intensive problems is an important applied
problem in science and industry. The paper presents the results of profiling four algorithms of finding the shortest paths between
all pairs of graph vertices, which allowed us to estimate the power consumption and execution time of the algorithms on a
multicore system. Profiling was performed on single-threaded implementations of the classical Floyd-Warshall algorithm, the
algorithm based on vertex expansion of the graph, the homogeneous Floyd-Warshall block algorithm, and the heterogeneous
block algorithm. The experiments used simple complete, oriented weighted graphs ranging in size from 1200 to 4800 vertices.
Profiling performed via Intel VTune and Intel SoC Watch showed that the algorithm itself has the largest impact on power
consumption. On graphs up to 1200 vertices, the power consumption is not proportionally dependent on the algorithm's
execution time. For example, the slow classical Floyd-Warshall algorithm has consumed up to 20 % less energy compared to
the faster block algorithms. As the graph size increases, the algorithm based on vertex expansion of the graph becomes strictly
dominant; it consumed up to 25 % less energy than the blocked algorithms. With increasing the graph size, a proportional
relationship between the algorithm execution time and the amount of energy consumed has been clearly established.

Keywords: multicore processor; profiling; large size graph; shortest path search algorithm; energy consumption;
runtime; optimization.

Problem formulation

Software profiling [1 — 3] aims for dynamic program analysis and measurement of the program’s
time and memory complexity, power and energy consumption, usage of CPU instructions, duration of
function calls, etc. Profiling is carried out by a profiler which instruments program source code or binary
executable form. The objective of profiling is to gather information for program optimization. The tools
of software analysis are important for understanding the program behavior and the utilization of
computational resources. The results of software profiling can be used by developers of algorithms and
computer programs, computer architects, compiler writers and consumers of software and computer
systems. By means of the profiling techniques and tools, it is possible to choose the preferable
programming language, compiler, algorithm, software tool, multi-core processor, multi-processor
computing system accounting for time, space and power parameters.
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In the paper, we have chosen as a benchmark the problem of searching for shortest paths between
all pairs of vertices in a large dense graph and have chosen four competitive algorithms of solving the
problem of finding optimal solutions on a multi-core system with respect to the time and power
consumption parameters. The problem and algorithms have many application domains and are of high
commercial importance, therefore, we need to know which combination of algorithm and its parameters
yield the lowest runtime and lowest power consumption by the multi-core system. Intel VTune Profiler
2023.0 [1, 2] is chosen as a tool for profiling and measuring the algorithm and program parameters.

All pairs shortest path algorithms

All four competitive algorithms that are selected for profiling target simple complete and dense
directed graphs with real edge-weights and without cycle having negative sum of weights. The graphs
provide high computational load of the algorithms during profiling, which gives the correct comparison
of the algorithms and the comparison of their software implementations.

Floyd-Warshall all-pairs shortest path algorithm (FW). Let G = (V, E) be a simple directed graph
with real edge-weights consisting of a set V, [V] = N, of vertices and a set £ of edges. Let W be the cost
adjacency matrix for G: w;; =0, 1 <i<N; w, is the cost (weight) of edge (i, ) if (7, /) € E; wi;=o0if i #/

and (i, j) ¢ E. When G has no cycle with negative sum of weights, the dynamic programming Floyd-
Warshall algorithm (FW) computes [4 — 7] a series of distance matrices D°...D¥...DN such that D= W

and each element d i’f ; of matrix DX, k=1...N, is the length of the shortest path from 7 to j composed of

the subset of vertices labelled 1 to k. The algorithm built on matrix D consists of three nested loops along
variables k, i and j, which perform the same kind of calculations on all elements of the matrix. Each
iteration along k accesses all elements of D. Totally, every element has N attempts to be updated. FIW
does not provide spatial and temporal data reference locality. The number of loops’ iterations is N° no
matter what the number of edges in the graph is.

Graph-expansion-based all-pairs shortest path algorithm (GEA). The graph-expansion-based
algorithm [8] of searching for shortest paths recalculates iteratively the lengths of shortest paths at each
step of adding a vertex & to graph G and adding row k and column £ to matrix D. The graph-size is
changed from 1 to N, and the size of matrix D is changed from 1 x 1 to N x N. Two operations are used
to carry out the changes: adding vertex k with calculating the shortest paths from vertices 1,...,k—1 to k
and from k to 1,..., k—1; updating shortest paths between pairs of vertices 1,..., k—1 with accounting for
paths passing through k. The operations are used for creating an initial version of pseudocode. The
algorithm is inferred by transforming the initial pseudo-code. Formal methods are used to do this: the
resynchronization of calculations, reordering of operations, merging loops, etc. The main advantage of
GEA is the increased temporal and spatial locality of data processing. It is obtained since the algorithm
operates on D‘s submatrices of monotonically increasing size. GEA reduces the number of loops’
iterations and makes lower the pressure on the processor caches.

Blocked Floyd-Warshall all-pairs shortest path algorithm (BFW). The authors of [9—14]
proposed a blocked version BFW of the Floyd-Warshall algorithm FW. BFW divides set V' of vertices
into subsets Vo... Va1 of size S and splits matrix D into blocks of size S x S each, creating a block-matrix
B[M x M], where equality M - S = N holds. The main loop of BFW performs M iterations, S times less
than FW. Each iteration consists of three phases: calculation of diagonal block (2, m), which accounts
for paths inside the subgraph on subset V, of vertices; calculation of (M — 1) cross blocks on column m
through the diagonal block, which accounts for paths from vertices of ¥, to vertices of V.,; calculation of
(M — 1) cross blocks on row m through the diagonal block, which accounts for paths from vertices of V,
to vertices of V,; calculation of (M — 1)? peripheral blocks on the cross of row v and column u through
other blocks m on the row and on the column, which accounts for paths from vertices of V,, to vertices of
V. passing through vertices of V. The single block calculation algorithm which implements FW
computes all four types of blocks. The algorithm exploits spatial (sequential) data locality within each
block, which increases the efficiency of the hierarchical cache memory operation. Its main loop has M
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iterations, S times less compared to F . Therefore, every iteration updates each element of the matrix as
many as S times, performing the update locally by using one to three blocks simultaneously.

Heterogeneous blocked Floyd-Warshall all-pairs shortest path algorithm (HBFW). Starting from
the homogeneous blocked algorithm, the heterogeneous shortest paths algorithm [15 — 22] distinguishes
four types of blocks: diagonal, vertical of cross, horizontal of cross, and peripheral. To speed up the
computations, new separate algorithms for all block types have been developed, which reduce the
number of iterations in nested loops and account for the sequential reference locality of data in CPU
caches. The algorithms are faster than the single block calculation algorithm due to accounting for
features of the four block types and the data dependences between the blocks. They improve the spatial
and temporal reference locality in processing large graphs.

It is interesting that all four algorithms have the same computational complexity. They differ each
other by the way and the efficiency of utilization of the multi-core system computational resources, in
particular caches.

Profiling tool

We used Intel VTune Profiler 2023.0 (and build in Intel SoC Watch utility) to measure energy
consumption [1]. Intel SoC Watch is a command line tool for monitoring metrics related to power
consumption on Intel architecture platforms. It can report power states for the system/CPU/GPU/devices,
processor frequencies and throttling reasons, total energy consumption over a period, power consumption
rate, and other metrics that provide insight into the system's energy efficiency. Intel SoC Watch collects
data from both hardware and operating system with low overhead [2]. In our experiments, we focused
on the measurement of energy consumption of the CPU package for a full duration of the algorithm
execution. The energy consumption of the CPU package includes the energy that is consumed by all
cores, by the each-core-separate L1 and L2 private caches, by the shared L3 cache and by other hardware
components included into the CPU package. The energy consumption is measured in millijoules (.]).
We used the following parameters of the profiling tool:

socwatch.exe -f power -f hw-cpu-pstate -o <output> --program <algorithm application>

The switch “-f power” configures profiling of energy and power metrics; “-f hw-cpu-pstate”
configures hardware profiling of CPU P-state residence information (the collected information is not
reported in the paper); “-o <output>" and “--program <algorithm application>" switches configure
application to store profiling results into <ouspur> and to collect information about <algorithm
application> execution.

Experimental results

All experimental runs of the four shortest path algorithms and their program implementations were
carried out on a desktop computer equipped with an Intel Core 17-10700 CPU processor which contains
8 cores (16 hardware threads) with the support of “Intel Turbo Boost 2.0, “Intel Turbo Boost Max 3.0”
and “Enhanced Intel SpeedStep” technologies. Every core is equipped with a private L1 (512KB), L2
(2MB) caches and shared L3 (16MB) cache. Its base frequency is 2.90 GHz. Due to the active “Intel
Turbo Boost 2.0 Technology” the frequency can increase up to 4.70 GHz, and due to the active “Intel
Turbo Boost Max 3.0 Technology” it can increase up to 4.80 GHz. The algorithms were implemented in
the C++ language using GNU GCC compiler v12.2.0.

We conducted a series of experiments on multiple randomly generated complete directed weighted
graphs of 1200, 2400, 3600 and 4800 vertices. Every experiment was repeated several times and results
were verified against the results of original Floyd-Warshall algorithm executed on the same graphs. All
runs of blocked algorithms were done on multiple block sizes: 30x30, 48x48, 50x50, 75x75, 100x100,
120x120, 150x150, 200x200, 240x240, 300x300, 600x600, 1200x1200 and 2400x2400. All block sizes
divide the matrix into equal blocks without remainders (for smaller graphs some of the block sizes were
omitted). To understand the energy efficiency related to the discussed algorithms we measured the
execution time, the average power and the total energy consumed by the processor package. In all the
experiments, the results are represented with figures and pictures corresponding to algorithms FIW, GEA,
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BFW and HBFW. Figures 1-4 depict the execution time (ms) and energy consumption (7.J) depending
on the block size (and for non-block algorithms the values are repeated across all the block sizes).
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Figure 1. a) Energy consumption (m.J) and b) execution time (ms) of FW (triangle and dash line), GEA
(circle and solid line), BFW (square and long-dash line) and HBFW (diamond and dash-dot line)
algorithms across all the block sizes on the graph of 1200 vertices

On the graphs of 1200 vertices (Figure 1), algorithm GEA demonstrated the lowest energy
consumption (13 % better than /) and the lowest execution time (25 % faster than HBFW) against all
algorithms under consideration. Both block algorithms BFW and HBFW demonstrated higher energy
consumption than FW by 25 % and 2 % respectively. In terms of runtime, FW and BFW showed the
comparable execution time, while HBFW outranked both showing by 21 % lower execution time.
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Figure 2. a) Energy consumption (m.J) and b) execution time (ms) of FIW (triangles and dash

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 2400 vertices

On larger graphs of 2400 vertices (Figure 2), the situation is slightly changed. The GEA algorithm
remains the best one in both energy consumption and execution time. However, the blocked algorithms
BFW and HBFW demonstrated lower energy consumption (by 14 % and 32 % respectively) and smaller
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execution time (by 33 % and 49 % respectively) against FW. The comparison of BFW against HBFW
shows that HBF W has lower energy consumption and lower execution time over BFW.
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Figure 3. a) Energy consumption (m.J) and b) execution time (ms) of FIW (triangles and dash
line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 3600 vertices

On graphs of 3600 and 4800 vertices (Figure 3 and Figure 4), the algorithms demonstrated the
same patterns of behavior. GEA remains the best one among all the algorithms under profiling. Both
BFW and HBFW showed consistently lower energy consumption and lower execution time than FW.
HBFW continues to demonstrate the reduction of energy consumption and execution time against BF V.
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Figure 4. a) Energy consumption (m.J) and b) execution time (ms) of FW (triangles and dash
line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 4800 vertices

Table 1 and Table 2 report the data which summarizes the information presented in Figuresl —4
and compares the best runs of the GEA, BFW and HBFW algorithms over the /W algorithm in terms of
energy consumption and execution time. We can observe that GEA significantly outranks all other
algorithms, and HBFW is preferable against BFW. BFW gives better results at smaller sizes of blocks,
and HBFW gives better results at larger block-sizes.

48



Jesamas Meocoynapoonas nayuno-npaxmudeckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U aHanu3 8vlcoko2o ypoeusay, Murnck, Pecnybnuka Berapycw, 17-18 mas 2023 200a

Table 1. Comparison of best runs (on lowerst energy consumption) of GEA, BFW and HBFW algorithms
against F W algorithm along all experimental graphs in terms of energy consumption and execution time.

Graph Size 1200 2400 3600 4800
Algorithm BFW | HBFW BFW | HBFW BFW | HBFW BFW | HBFW
GEA GEA GEA GEA
Block Size 120 600 200 1200 200 1800 1600 | 1600
Execution Time (ms) 0.595 | 0988 | 0.792 | 0450 | 0.673 | 0.514 | 0.439 | 0.599 | 0470 | 0.466 | 0.630 | 0.519
Energy Consumed () 0.870 | 1257 | 1.023 | 0.567 | 0.863 | 0.687 | 0.474 | 0.674 | 0.541 | 0.481 | 0.646 | 0.583

Table 2. Comparison of best runs (on lowerst execution time) of GEA, BFW and HBFW algorithms
against F W algorithm along all experimental graphs in terms of energy consumption and execution time.

Graph Size 1200 2400 3600 4800
Algorithm BFW | HBFW BFW | HBFW BFW | HBFW BFW | HBFW
GEA GEA GEA GEA
Block Size 200 600 200 1200 200 1800 120 1600
Execution Time (ms) 0.595 | 0985 | 0.792 | 0450 | 0.673 | 0.514 | 0.439 | 0.599 | 0470 | 0.466 | 0.621 | 0.519
Energy Consumed () 0.870 | 1260 | 1.023 | 0.567 | 0.863 | 0.687 | 0.474 | 0.674 | 0.541 | 0.481 | 0.683 | 0.583

Conclusion.

Profiling of program code executed on a multi-core system is an effective means of measuring and
estimating parameters of competitive algorithms and detecting areas of their preferable usage. It can help
to identify and reduce the consumption of computational and energy resources significantly when solving
fundamental tasks such as searching for the shortest paths between all pairs of vertices in a graph. In
particular, the research results obtained in the paper show that the recently proposed algorithm that is
based on stepwise addition of vertices to the graph has convincing time and energy advantages over the
well-known classical Floyd-Warshall algorithm and its blocked versions that target the increase of cache
efficiency and establishing parallel computations on multicore systems.
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AnHoTanms. CHIDKEHHE SHEpronoTpeOieHUs NMpH PeIeHnH 33a1ad, TPeOYIOMIMX OOJNBIIMX BBIYHCIHTEIBHBIX
MOIIHOCTEH, SIBISIETCS] BOYKHOM NPHKIIaTHONW MpoOIeMoii B HayKe M NMPOM3BOJICTBE. B cTarhe mpencTaBieHb!l pe3ysbTaThl
MIPOQUIMPOBAHHS YETHIPEX aIrOPUTMOB MOHMCKA KpaTYailnX ITyTeil MeX/Iy BCEMH NapaMH BEpLIMH rpada, MO3BOIMBIIIE
OLICHWUTH JHEPronoTpeOsicHHe ¥ BpEMs BBINOJHEHWS AITOPUTMOB Ha MHOTOsIepHOM cucteme. IlpodrmpoBanue
BBITIOJTHSUIOCHh HAa OHOTIOTOYHBIX PEeaIM3alisiX Kilaccuueckoro anropurma droiina-Yopiuasnia, aropuTMa, ToCTPOSHHOTO
Ha BEPIIMHHOM PacIMpeHnH rpada, 0JHOpoHOro O6104yHOro ainropurma drmoiina-Yopiiamia ¥ HEOJHOPOIHOTO OJI0YHOTO
anropuTMa. B skcriepuMeHTax NCHOJb30BAIICH IPOCTHIE MOJTHBIE, OPUEHTHPOBAHHBIE B3BEILIEHHBIE rpadb pazmepoM ot 1200
no 4800 BepmmH. IIpodrmpoBanue, BbmoaHeHHOEe TocpenctBoMm Intel VTune u Intel SoC Watch, mokasamo, uto
HauOoJIbIIIee BIMSIHIE Ha SHEPrornoTpediieHne okaspiBaer cam anroput™. Ha rpadax 1o 1200 BepmH, notpedieHne sHeprun
MOXKET TIPONOPIMOHATBHO HE 3aBHUCETh OT BPEMEHM BBIIOIHEHMS anroputMa. Hampumep, MemyieHHBIH KIIacCHUYECKUN
anroput™ Drnoiina-Yopmamwia norpedmwn 10 20% MeHbIe SHEpriy 10 CpaBHEHWIO C Oosee OBICTPHIMH OIOYHBIMH
anroputMamu. C yBenmmueHweM pasmepa rpada, ajaropuT™, MOCTPOSHHBIM Ha BEPIIMHHOM pacIIMpeHHn rpada, crai
OJTHO3HAYHO JIOMUHHUPYIOLINM; OH ITOTPeOHIT 10 25% MEHBIIIE SHEPTHH, YeM OJIOUHBIE alIrOpUTMBL. [ Ipy yBenmaennu pa3mepa
rpadpa, 4eTKO YCTaHaBIIMBACTCSI IPOITOPLMOHATIbHAS 3aBUCHMOCTD MEX/Ty BpEMEHEM BBITTOIHEHHS aJITOPUTMA F KOITMYECTBOM
TIOTPEOIIIEMOH SHEPTHIL

KuioueBsble cioBa: MHOTOsZICpHBIN Tporieccop; NMpoduimpoBaHne; rpad OOJNBIIOro pa3Mepa; arOpHTM IOKCKa
KpaTJalIlnX MyTel; SHeprornoTpedieHye; BpeMs! BBITOIHEHHST; ONTHMU3ALISL.
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