

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

44

UDC [611.018.51+615.47]:612.086.2

PROFILING OF ENERGY CONSUMPTION BY ALGORITHMS OF SHORTEST
PATHS SEARCH IN LARGE DENSE GRAPHS

O.N. Karasik

Technology Lead at ISsoft Solutions (part of Coherent
Solutions) in Minsk, Belarus, PhD in Technical

Science
prihozhy@yahoo.com

А.А. Prihozhy
Professor at the Computer and System Software
Department, Doctor of Technical Sciences, Full

Professor Belarusian National Technical University
karasik.oleg.nikolaevich@gmail.com

O.N. Karasik

Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science (2019).
Interested in parallel computing on multi-core and multi-processor systems.

A.A. Prihozhy

Full professor at the computer and system software department of Belarusian national technical university, D. Sc. (Eng
(1999) and full professor (2001). His research interests include programming and hardware description languages,
parallelizing compilers, and computer aided design techniques and tools for software and hardware at logic, high and system
levels, and for incompletely specified logical systems. He has over 300 publications in Eastern and Western Europe, USA and
Canada. Such worldwide publishers as IEEE, Springer, Kluwer Academic Publishers, World Scientific and others have
published his works.

Abstract: Reducing power consumption when solving computationally intensive problems is an important applied
problem in science and industry. The paper presents the results of profiling four algorithms of finding the shortest paths between
all pairs of graph vertices, which allowed us to estimate the power consumption and execution time of the algorithms on a
multicore system. Profiling was performed on single-threaded implementations of the classical Floyd-Warshall algorithm, the
algorithm based on vertex expansion of the graph, the homogeneous Floyd-Warshall block algorithm, and the heterogeneous
block algorithm. The experiments used simple complete, oriented weighted graphs ranging in size from 1200 to 4800 vertices.
Profiling performed via Intel VTune and Intel SoC Watch showed that the algorithm itself has the largest impact on power
consumption. On graphs up to 1200 vertices, the power consumption is not proportionally dependent on the algorithm's
execution time. For example, the slow classical Floyd-Warshall algorithm has consumed up to 20 % less energy compared to
the faster block algorithms. As the graph size increases, the algorithm based on vertex expansion of the graph becomes strictly
dominant; it consumed up to 25 % less energy than the blocked algorithms. With increasing the graph size, a proportional
relationship between the algorithm execution time and the amount of energy consumed has been clearly established.

Keywords: multicore processor; profiling; large size graph; shortest path search algorithm; energy consumption;
runtime; optimization.

Problem formulation
Software profiling [1 – 3] aims for dynamic program analysis and measurement of the program’s

time and memory complexity, power and energy consumption, usage of CPU instructions, duration of
function calls, etc. Profiling is carried out by a profiler which instruments program source code or binary
executable form. The objective of profiling is to gather information for program optimization. The tools
of software analysis are important for understanding the program behavior and the utilization of
computational resources. The results of software profiling can be used by developers of algorithms and
computer programs, computer architects, compiler writers and consumers of software and computer
systems. By means of the profiling techniques and tools, it is possible to choose the preferable
programming language, compiler, algorithm, software tool, multi-core processor, multi-processor
computing system accounting for time, space and power parameters.

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

45

In the paper, we have chosen as a benchmark the problem of searching for shortest paths between
all pairs of vertices in a large dense graph and have chosen four competitive algorithms of solving the
problem of finding optimal solutions on a multi-core system with respect to the time and power
consumption parameters. The problem and algorithms have many application domains and are of high
commercial importance, therefore, we need to know which combination of algorithm and its parameters
yield the lowest runtime and lowest power consumption by the multi-core system. Intel VTune Profiler
2023.0 [1, 2] is chosen as a tool for profiling and measuring the algorithm and program parameters.

All pairs shortest path algorithms
All four competitive algorithms that are selected for profiling target simple complete and dense

directed graphs with real edge-weights and without cycle having negative sum of weights. The graphs
provide high computational load of the algorithms during profiling, which gives the correct comparison
of the algorithms and the comparison of their software implementations.

Floyd-Warshall all-pairs shortest path algorithm (FW). Let G = (V, E) be a simple directed graph
with real edge-weights consisting of a set V, |V| = N, of vertices and a set E of edges. Let W be the cost
adjacency matrix for G: wi,i = 0, 1 £ i £N; is the cost (weight) of edge (i, j) if (i, j) Î E; wi,j = ∞ if i ≠ j
and (i, j) Ï E. When G has no cycle with negative sum of weights, the dynamic programming Floyd-
Warshall algorithm (FW) computes [4 – 7] a series of distance matrices D0…Dk…DN such that D0 = W
and each element of matrix Dk, k = 1…N, is the length of the shortest path from i to j composed of
the subset of vertices labelled 1 to k. The algorithm built on matrix D consists of three nested loops along
variables k, i and j, which perform the same kind of calculations on all elements of the matrix. Each
iteration along k accesses all elements of D. Totally, every element has N attempts to be updated. FW
does not provide spatial and temporal data reference locality. The number of loops’ iterations is N3 no
matter what the number of edges in the graph is.

Graph-expansion-based all-pairs shortest path algorithm (GEA). The graph-expansion-based
algorithm [8] of searching for shortest paths recalculates iteratively the lengths of shortest paths at each
step of adding a vertex k to graph G and adding row k and column k to matrix D. The graph-size is
changed from 1 to N, and the size of matrix D is changed from 1 × 1 to N × N. Two operations are used
to carry out the changes: adding vertex k with calculating the shortest paths from vertices 1,…,k-1 to k
and from k to 1,…, k-1; updating shortest paths between pairs of vertices 1,…, k-1 with accounting for
paths passing through k. The operations are used for creating an initial version of pseudocode. The
algorithm is inferred by transforming the initial pseudo-code. Formal methods are used to do this: the
resynchronization of calculations, reordering of operations, merging loops, etc. The main advantage of
GEA is the increased temporal and spatial locality of data processing. It is obtained since the algorithm
operates on D‘s submatrices of monotonically increasing size. GEA reduces the number of loops’
iterations and makes lower the pressure on the processor caches.

Blocked Floyd-Warshall all-pairs shortest path algorithm (BFW). The authors of [9 – 14]
proposed a blocked version BFW of the Floyd-Warshall algorithm FW. BFW divides set V of vertices
into subsets V0…VM-1 of size S and splits matrix D into blocks of size S ´ S each, creating a block-matrix
B[M ´ M], where equality M × S = N holds. The main loop of BFW performs M iterations, S times less
than FW. Each iteration consists of three phases: calculation of diagonal block (m, m), which accounts
for paths inside the subgraph on subset Vm of vertices; calculation of (M – 1) cross blocks on column m
through the diagonal block, which accounts for paths from vertices of Vv to vertices of Vm; calculation of
(M – 1) cross blocks on row m through the diagonal block, which accounts for paths from vertices of Vm
to vertices of Vv; calculation of (M – 1)2 peripheral blocks on the cross of row v and column u through
other blocks m on the row and on the column, which accounts for paths from vertices of Vv to vertices of
Vu passing through vertices of Vm. The single block calculation algorithm which implements FW
computes all four types of blocks. The algorithm exploits spatial (sequential) data locality within each
block, which increases the efficiency of the hierarchical cache memory operation. Its main loop has M

jiw ,

k
jid ,

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

46

iterations, S times less compared to FW. Therefore, every iteration updates each element of the matrix as
many as S times, performing the update locally by using one to three blocks simultaneously.

Heterogeneous blocked Floyd-Warshall all-pairs shortest path algorithm (HBFW). Starting from
the homogeneous blocked algorithm, the heterogeneous shortest paths algorithm [15 – 22] distinguishes
four types of blocks: diagonal, vertical of cross, horizontal of cross, and peripheral. To speed up the
computations, new separate algorithms for all block types have been developed, which reduce the
number of iterations in nested loops and account for the sequential reference locality of data in CPU
caches. The algorithms are faster than the single block calculation algorithm due to accounting for
features of the four block types and the data dependences between the blocks. They improve the spatial
and temporal reference locality in processing large graphs.

It is interesting that all four algorithms have the same computational complexity. They differ each
other by the way and the efficiency of utilization of the multi-core system computational resources, in
particular caches.

Profiling tool
We used Intel VTune Profiler 2023.0 (and build in Intel SoC Watch utility) to measure energy

consumption [1]. Intel SoC Watch is a command line tool for monitoring metrics related to power
consumption on Intel architecture platforms. It can report power states for the system/CPU/GPU/devices,
processor frequencies and throttling reasons, total energy consumption over a period, power consumption
rate, and other metrics that provide insight into the system's energy efficiency. Intel SoC Watch collects
data from both hardware and operating system with low overhead [2]. In our experiments, we focused
on the measurement of energy consumption of the CPU package for a full duration of the algorithm
execution. The energy consumption of the CPU package includes the energy that is consumed by all
cores, by the each-core-separate L1 and L2 private caches, by the shared L3 cache and by other hardware
components included into the CPU package. The energy consumption is measured in millijoules (mJ).
We used the following parameters of the profiling tool:

socwatch.exe -f power -f hw-cpu-pstate -o <output> --program <algorithm application>
The switch “-f power” configures profiling of energy and power metrics; “-f hw-cpu-pstate”

configures hardware profiling of CPU P-state residence information (the collected information is not
reported in the paper); “-o <output>” and “--program <algorithm application>” switches configure
application to store profiling results into <output> and to collect information about <algorithm
application> execution.

Experimental results
All experimental runs of the four shortest path algorithms and their program implementations were

carried out on a desktop computer equipped with an Intel Core i7-10700 CPU processor which contains
8 cores (16 hardware threads) with the support of “Intel Turbo Boost 2.0”, “Intel Turbo Boost Max 3.0”
and “Enhanced Intel SpeedStep” technologies. Every core is equipped with a private L1 (512KB), L2
(2MB) caches and shared L3 (16MB) cache. Its base frequency is 2.90 GHz. Due to the active “Intel
Turbo Boost 2.0 Technology” the frequency can increase up to 4.70 GHz, and due to the active “Intel
Turbo Boost Max 3.0 Technology” it can increase up to 4.80 GHz. The algorithms were implemented in
the C++ language using GNU GCC compiler v12.2.0.

We conducted a series of experiments on multiple randomly generated complete directed weighted
graphs of 1200, 2400, 3600 and 4800 vertices. Every experiment was repeated several times and results
were verified against the results of original Floyd-Warshall algorithm executed on the same graphs. All
runs of blocked algorithms were done on multiple block sizes: 30x30, 48x48, 50x50, 75x75, 100x100,
120x120, 150x150, 200x200, 240x240, 300x300, 600x600, 1200x1200 and 2400x2400. All block sizes
divide the matrix into equal blocks without remainders (for smaller graphs some of the block sizes were
omitted). To understand the energy efficiency related to the discussed algorithms we measured the
execution time, the average power and the total energy consumed by the processor package. In all the
experiments, the results are represented with figures and pictures corresponding to algorithms FW, GEA,

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

47

BFW and HBFW. Figures 1–4 depict the execution time (ms) and energy consumption (mJ) depending
on the block size (and for non-block algorithms the values are repeated across all the block sizes).

a b

Figure 1. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangle and dash line), GEA

(circle and solid line), BFW (square and long-dash line) and HBFW (diamond and dash-dot line)
algorithms across all the block sizes on the graph of 1200 vertices

On the graphs of 1200 vertices (Figure 1), algorithm GEA demonstrated the lowest energy

consumption (13 % better than FW) and the lowest execution time (25 % faster than HBFW) against all
algorithms under consideration. Both block algorithms BFW and HBFW demonstrated higher energy
consumption than FW by 25 % and 2 % respectively. In terms of runtime, FW and BFW showed the
comparable execution time, while HBFW outranked both showing by 21 % lower execution time.

a b

Figure 2. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangles and dash

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 2400 vertices

On larger graphs of 2400 vertices (Figure 2), the situation is slightly changed. The GEA algorithm

remains the best one in both energy consumption and execution time. However, the blocked algorithms
BFW and HBFW demonstrated lower energy consumption (by 14 % and 32 % respectively) and smaller

15000

17000

19000

21000

23000

25000

27000

29000

30 48 50 75 100 120 150 200 240 300 400 600
150

200

250

300

350

400

450

30 48 50 75 100 120 150 200 240 300 400 600

60000

70000

80000

90000

100000

110000

120000

130000

140000

30 48 50 75 10
0

12
0

15
0

20
0

24
0

30
0

60
0

12
00

1500

2000

2500

3000

3500

4000

4500

5000

30 48 50 75 100 120 150 200 240 300 600 1200

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

48

execution time (by 33 % and 49 % respectively) against FW. The comparison of BFW against HBFW
shows that HBFW has lower energy consumption and lower execution time over BFW.

a b

Figure 3. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangles and dash

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 3600 vertices

On graphs of 3600 and 4800 vertices (Figure 3 and Figure 4), the algorithms demonstrated the

same patterns of behavior. GEA remains the best one among all the algorithms under profiling. Both
BFW and HBFW showed consistently lower energy consumption and lower execution time than FW.
HBFW continues to demonstrate the reduction of energy consumption and execution time against BFW.

a b

Figure 4. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangles and dash

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 4800 vertices

Table 1 and Table 2 report the data which summarizes the information presented in Figures1 – 4

and compares the best runs of the GEA, BFW and HBFW algorithms over the FW algorithm in terms of
energy consumption and execution time. We can observe that GEA significantly outranks all other
algorithms, and HBFW is preferable against BFW. BFW gives better results at smaller sizes of blocks,
and HBFW gives better results at larger block-sizes.

200000

250000

300000

350000

400000

450000

500000

550000

30 48 50 75 10
0

12
0

15
0

20
0

24
0

30
0

60
0

12
00

18
00

6000

8000

10000

12000

14000

16000

18000

30 48 50 75 10
0

12
0

15
0

20
0

24
0

30
0

60
0

12
00

18
00

500000

600000

700000

800000

900000

1000000

1100000

1200000

30 48 50 75 10
0

12
0

15
0

20
0

24
0

30
0

60
0

12
00

16
00

24
00

15000

20000

25000

30000

35000

40000

30 48 50 75 10
0

12
0

15
0

20
0

24
0

30
0

60
0

12
00

16
00

24
00

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

49

Table 1. Comparison of best runs (on lowerst energy consumption) of GEA, BFW and HBFW algorithms
against FW algorithm along all experimental graphs in terms of energy consumption and execution time.

Graph Size 1200 2400 3600 4800

Algorithm
GEA

BFW HBFW
GEA

BFW HBFW
GEA

BFW HBFW
GEA

BFW HBFW

Block Size 120 600 200 1200 200 1800 1600 1600

Execution Time (ms) 0.595 0.988 0.792 0.450 0.673 0.514 0.439 0.599 0.470 0.466 0.630 0.519

Energy Consumed (mJ) 0.870 1.257 1.023 0.567 0.863 0.687 0.474 0.674 0.541 0.481 0.646 0.583

Table 2. Comparison of best runs (on lowerst execution time) of GEA, BFW and HBFW algorithms
against FW algorithm along all experimental graphs in terms of energy consumption and execution time.

Graph Size 1200 2400 3600 4800

Algorithm
GEA

BFW HBFW
GEA

BFW HBFW
GEA

BFW HBFW
GEA

BFW HBFW

Block Size 200 600 200 1200 200 1800 120 1600

Execution Time (ms) 0.595 0.985 0.792 0.450 0.673 0.514 0.439 0.599 0.470 0.466 0.621 0.519

Energy Consumed (mJ) 0.870 1.260 1.023 0.567 0.863 0.687 0.474 0.674 0.541 0.481 0.683 0.583

Conclusion.
Profiling of program code executed on a multi-core system is an effective means of measuring and

estimating parameters of competitive algorithms and detecting areas of their preferable usage. It can help
to identify and reduce the consumption of computational and energy resources significantly when solving
fundamental tasks such as searching for the shortest paths between all pairs of vertices in a graph. In
particular, the research results obtained in the paper show that the recently proposed algorithm that is
based on stepwise addition of vertices to the graph has convincing time and energy advantages over the
well-known classical Floyd-Warshall algorithm and its blocked versions that target the increase of cache
efficiency and establishing parallel computations on multicore systems.

References

[1] Intel Corporation. Intel SoC Watch and Intel VTune Profiler [Electronic resource]. Mode of access:
https://www.intel.com/content/www/us/en/docs/system-bring-up-toolkit/get-started-gui-de-windows/2022-1/intel-soc-watch-
and-intel-vtune-profiler.html. Date of access: 18.03.2023.

[2] Intel SoC Watch User Guide for Windows OS [Electronic resource]. Mode of access:
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-soc-watch-user-guide-external-windows.pdf. Date
of access: 18.03.2023

[3] Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths
algorithms. System analysis and applied information science, 2019, No. 4, pp. 10 – 18.

[4] Floyd, R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, 5(6), p.345.
[5] Singh, A., Mishra, P.K. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm.

International Journal of Computer Applications, Vol.107, No.16, 2014, pp. 23 – 27.
[6] Madkour, A, Aref, W.G., Rehman, F.U., Rahman, M.A., Basalamah, S. A Survey of Shortest-Path Algorithms.

ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.
[7] Pettie, S. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science. 312

(1), 2004: 47 – 74.
[8] Prihozhy А., Karasik O. Inference of shortest path algorithms with spatial and temporal locality for Big Data

processing // Сборник материалов VIII Международной научно-практической конференции. Минск: Беспринт, 2022.
P. 56 – 66.

[9] Venkataraman, G., Sahni, S., Mukhopadhyaya, S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of
Experimental Algorithmics (JEA), Vol 8, 2003, pp. 857 – 874.

[10] Park, J.S., Penner, M., and Prasanna, V.K. Optimizing graph algorithms for improved cache performance. IEEE
Trans. on Parallel and Distributed Systems, 2004, 15(9), pp. 769 – 782.

[11] Albalawi, E., Thulasiraman, P., Thulasiram, R. Task Level Parallelization of All Pair Shortest Path Algorithm in
OpenMP 3.0. 2nd International Conference on Advances in Computer Science and Engineering (CSE 2013), 2013, Los Angeles,
CA, July 1-2, 2013, pp. 109 – 112.

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года

50

[12] Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core Computers. IEEE
SOUTHEASTCON 2014, pp. 1 – 7.

[13] Karasik O.N., Prihozhy A.A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core
implementation. System analysis and applied information science, 2022, No. 3, pp. 57 – 65. https://doi.org/10.21122/2309-
4923-2022-3-57-65.

[14] Prihozhy A.A. Optimization of data allocation in hierarchical memory for blocked shortest paths algorithms.
System analysis and applied information science. 2021, No. 3, pp. 40 – 50.

[15] Прихожий, А. А. Разнородный блочный алгоритм поиска кратчайших путей между всеми парами
вершин графа / А. А. Прихожий, О. Н. Карасик // Системный анализ и прикладная информатика. – № 3. – 2017. – С.
68 – 75.

[16] Prihozhy А. А., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm.
Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no. 1 (266), pp. 77–83. DOI: 10.52065/2520-
6141-2023-266-1-13.

[17] Карасик, О. Н., Прихожий, А. А. Потоковый блочно-параллельный алгоритм поиска кратчайших путей
на графе. Доклады БГУИР. – 2018. – № 2. – С. 77 – 84.

[18] Прихожий А.А., Карасик О.Н. Исследование методов реализации многопоточных приложений на
многоядерных системах // Информатизация образования. 2014. № 1. P. 43–62.

[19] Прыхожы, А. А., Карасік, А. М. Кааператыўныя блочна-паралельныя алгарытмы рашэння задач на
шмат'ядравых сістэмах. Системный анализ и прикладная информатика. – 2015. – № 2. – С. 10 – 18.

[20] Prihozhy, A.A. Analysis, transformation and optimization for high performance parallel computing. Minsk:
BNTU, 2019. – 229 p.

[21] Прихожий, А.А., Карасик, О.Н. Кооперативная модель оптимизации выполнения потоков на
многоядерной системе. Системный анализ и прикладная информатика, – 2014. – № 4. – C. 13–20.

[22] Prihozhy A.A. Optimization of data allocation in hierarchical memory for blocked shortest paths algorithms.
System analysis and applied information science. 2021, No. 3, pp. 40–50.

ПРОФИЛИРОВАНИЕ ПОТРЕБЛЕНИЯ ЭНЕРГИИ АЛГОРИТМАМИ ПОИСКА

КРАТЧАЙШИХ ПУТЕЙ НА БОЛЬШИХ ПЛОТНЫХ ГРАФАХ

О.Н. Карасик
Ведущий инженер иностранного

производственного унитарного предприятия
«ИССОФТ СОЛЮШЕНЗ» (ПВТ, г. Минск),

 к.т.н.

А.А. Прихожий
Профессор кафедры «Программное обеспечение

информационных систем и технологий»
Белорусского национального технического

университета, д.т.н., профессор

ИСсофт Солюшенс (часть Кохерент Солюшенс), Беларусь
Беларуский национальный технический университет, Беларусь
E-mail: prihozhy@yahoo.com

Аннотация. Снижение энергопотребления при решении задач, требующих больших вычислительных
мощностей, является важной прикладной проблемой в науке и производстве. В статье представлены результаты
профилирования четырех алгоритмов поиска кратчайших путей между всеми парами вершин графа, позволившие
оценить энергопотребление и время выполнения алгоритмов на многоядерной системе. Профилирование
выполнялось на однопоточных реализациях классического алгоритма Флойда-Уоршалла, алгоритма, построенного
на вершинном расширении графа, однородного блочного алгоритма Флойда-Уоршалла и неоднородного блочного
алгоритма. В экспериментах использовались простые полные, ориентированные взвешенные графы размером от 1200
до 4800 вершин. Профилирование, выполненное посредством Intel VTune и Intel SoC Watch, показало, что
наибольшее влияние на энергопотребление оказывает сам алгоритм. На графах до 1200 вершин, потребление энергии
может пропорционально не зависеть от времени выполнения алгоритма. Например, медленный классический
алгоритм Флойда-Уоршалла потребил до 20% меньше энергии по сравнению с более быстрыми блочными
алгоритмами. С увеличением размера графа, алгоритм, построенный на вершинном расширении графа, стал
однозначно доминирующим; он потребил до 25% меньше энергии, чем блочные алгоритмы. При увеличении размера
графа, четко устанавливается пропорциональная зависимость между временем выполнения алгоритма и количеством
потребляемой энергии.

Ключевые слова: многоядерный процессор; профилирование; граф большого размера; алгоритм поиска
кратчайших путей; энергопотребление; время выполнения; оптимизация.

