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Abstract: Reducing power consumption when solving computationally intensive problems is an important applied 
problem in science and industry. The paper presents the results of profiling four algorithms of finding the shortest paths between 
all pairs of graph vertices, which allowed us to estimate the power consumption and execution time of the algorithms on a 
multicore system. Profiling was performed on single-threaded implementations of the classical Floyd-Warshall algorithm, the 
algorithm based on vertex expansion of the graph, the homogeneous Floyd-Warshall block algorithm, and the heterogeneous 
block algorithm. The experiments used simple complete, oriented weighted graphs ranging in size from 1200 to 4800 vertices. 
Profiling performed via Intel VTune and Intel SoC Watch showed that the algorithm itself has the largest impact on power 
consumption. On graphs up to 1200 vertices, the power consumption is not proportionally dependent on the algorithm's 
execution time. For example, the slow classical Floyd-Warshall algorithm has consumed up to 20 % less energy compared to 
the faster block algorithms. As the graph size increases, the algorithm based on vertex expansion of the graph becomes strictly 
dominant; it consumed up to 25 % less energy than the blocked algorithms. With increasing the graph size, a proportional 
relationship between the algorithm execution time and the amount of energy consumed has been clearly established. 

Keywords: multicore processor; profiling; large size graph; shortest path search algorithm; energy consumption; 
runtime; optimization. 

 
Problem formulation 
Software profiling [1 – 3] aims for dynamic program analysis and measurement of the program’s 

time and memory complexity, power and energy consumption, usage of CPU instructions, duration of 
function calls, etc. Profiling is carried out by a profiler which instruments program source code or binary 
executable form. The objective of profiling is to gather information for program optimization. The tools 
of software analysis are important for understanding the program behavior and the utilization of 
computational resources. The results of software profiling can be used by developers of algorithms and 
computer programs, computer architects, compiler writers and consumers of software and computer 
systems. By means of the profiling techniques and tools, it is possible to choose the preferable 
programming language, compiler, algorithm, software tool, multi-core processor, multi-processor 
computing system accounting for time, space and power parameters.  
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In the paper, we have chosen as a benchmark the problem of searching for shortest paths between 
all pairs of vertices in a large dense graph and have chosen four competitive algorithms of solving the 
problem of finding optimal solutions on a multi-core system with respect to the time and power 
consumption parameters. The problem and algorithms have many application domains and are of high 
commercial importance, therefore, we need to know which combination of algorithm and its parameters 
yield the lowest runtime and lowest power consumption by the multi-core system. Intel VTune Profiler 
2023.0 [1, 2] is chosen as a tool for profiling and measuring the algorithm and program parameters. 

All pairs shortest path algorithms 
All four competitive algorithms that are selected for profiling target simple complete and dense 

directed graphs with real edge-weights and without cycle having negative sum of weights. The graphs 
provide high computational load of the algorithms during profiling, which gives the correct comparison 
of the algorithms and the comparison of their software implementations.  

Floyd-Warshall all-pairs shortest path algorithm (FW). Let G = (V, E) be a simple directed graph 
with real edge-weights consisting of a set V, |V| = N, of vertices and a set E of edges. Let W be the cost 
adjacency matrix for G: wi,i = 0, 1 £ i £N; is the cost (weight) of edge (i, j) if (i, j) Î E; wi,j = ∞ if i ≠ j 
and (i, j) Ï E. When G has no cycle with negative sum of weights, the dynamic programming Floyd-
Warshall algorithm (FW) computes [4 – 7] a series of distance matrices D0…Dk…DN such that D0 = W 
and each element  of matrix Dk, k = 1…N, is the length of the shortest path from i to j composed of 
the subset of vertices labelled 1 to k. The algorithm built on matrix D consists of three nested loops along 
variables k, i and j, which perform the same kind of calculations on all elements of the matrix. Each 
iteration along k accesses all elements of D. Totally, every element has N attempts to be updated. FW 
does not provide spatial and temporal data reference locality. The number of loops’ iterations is N3 no 
matter what the number of edges in the graph is. 

Graph-expansion-based all-pairs shortest path algorithm (GEA). The graph-expansion-based 
algorithm [8] of searching for shortest paths recalculates iteratively the lengths of shortest paths at each 
step of adding a vertex k to graph G and adding row k and column k to matrix D. The graph-size is 
changed from 1 to N, and the size of matrix D is changed from 1 × 1 to N × N. Two operations are used 
to carry out the changes: adding vertex k with calculating the shortest paths from vertices 1,…,k-1 to k 
and from k to 1,…, k-1; updating shortest paths between pairs of vertices 1,…, k-1 with accounting for 
paths passing through k. The operations are used for creating an initial version of pseudocode. The 
algorithm is inferred by transforming the initial pseudo-code. Formal methods are used to do this: the 
resynchronization of calculations, reordering of operations, merging loops, etc. The main advantage of 
GEA is the increased temporal and spatial locality of data processing. It is obtained since the algorithm 
operates on D‘s submatrices of monotonically increasing size. GEA reduces the number of loops’ 
iterations and makes lower the pressure on the processor caches. 

Blocked Floyd-Warshall all-pairs shortest path algorithm (BFW). The authors of [9 – 14] 
proposed a blocked version BFW of the Floyd-Warshall algorithm FW. BFW divides set V of vertices 
into subsets V0…VM-1 of size S and splits matrix D into blocks of size S ´ S each, creating a block-matrix 
B[M ´ M], where equality M × S = N holds. The main loop of BFW performs M iterations, S times less 
than FW. Each iteration consists of three phases: calculation of diagonal block (m, m), which accounts 
for paths inside the subgraph on subset Vm of vertices; calculation of (M – 1) cross blocks on column m 
through the diagonal block, which accounts for paths from vertices of Vv to vertices of Vm; calculation of 
(M – 1) cross blocks on row m through the diagonal block, which accounts for paths from vertices of Vm 
to vertices of Vv; calculation of (M – 1)2 peripheral blocks on the cross of row v and column u through 
other blocks m on the row and on the column, which accounts for paths from vertices of Vv to vertices of 
Vu passing through vertices of Vm. The single block calculation algorithm which implements FW 
computes all four types of blocks. The algorithm exploits spatial (sequential) data locality within each 
block, which increases the efficiency of the hierarchical cache memory operation. Its main loop has M 
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iterations, S times less compared to FW. Therefore, every iteration updates each element of the matrix as 
many as S times, performing the update locally by using one to three blocks simultaneously.  

Heterogeneous blocked Floyd-Warshall all-pairs shortest path algorithm (HBFW). Starting from 
the homogeneous blocked algorithm, the heterogeneous shortest paths algorithm [15 – 22] distinguishes 
four types of blocks: diagonal, vertical of cross, horizontal of cross, and peripheral. To speed up the 
computations, new separate algorithms for all block types have been developed, which reduce the 
number of iterations in nested loops and account for the sequential reference locality of data in CPU 
caches. The algorithms are faster than the single block calculation algorithm due to accounting for 
features of the four block types and the data dependences between the blocks. They improve the spatial 
and temporal reference locality in processing large graphs. 

It is interesting that all four algorithms have the same computational complexity. They differ each 
other by the way and the efficiency of utilization of the multi-core system computational resources, in 
particular caches. 

Profiling tool 
We used Intel VTune Profiler 2023.0 (and build in Intel SoC Watch utility) to measure energy 

consumption [1]. Intel SoC Watch is a command line tool for monitoring metrics related to power 
consumption on Intel architecture platforms. It can report power states for the system/CPU/GPU/devices, 
processor frequencies and throttling reasons, total energy consumption over a period, power consumption 
rate, and other metrics that provide insight into the system's energy efficiency. Intel SoC Watch collects 
data from both hardware and operating system with low overhead [2]. In our experiments, we focused 
on the measurement of energy consumption of the CPU package for a full duration of the algorithm 
execution. The energy consumption of the CPU package includes the energy that is consumed by all 
cores, by the each-core-separate L1 and L2 private caches, by the shared L3 cache and by other hardware 
components included into the CPU package. The energy consumption is measured in millijoules (mJ). 
We used the following parameters of the profiling tool: 

socwatch.exe -f power -f hw-cpu-pstate -o <output> --program <algorithm application> 
The switch “-f power” configures profiling of energy and power metrics; “-f hw-cpu-pstate” 

configures hardware profiling of CPU P-state residence information (the collected information is not 
reported in the paper); “-o <output>” and “--program <algorithm application>” switches configure 
application to store profiling results into <output> and to collect information about <algorithm 
application> execution. 

Experimental results 
All experimental runs of the four shortest path algorithms and their program implementations were 

carried out on a desktop computer equipped with an Intel Core i7-10700 CPU processor which contains 
8 cores (16 hardware threads) with the support of “Intel Turbo Boost 2.0”, “Intel Turbo Boost Max 3.0” 
and “Enhanced Intel SpeedStep” technologies. Every core is equipped with a private L1 (512KB), L2 
(2MB) caches and shared L3 (16MB) cache. Its base frequency is 2.90 GHz. Due to the active “Intel 
Turbo Boost 2.0 Technology” the frequency can increase up to 4.70 GHz, and due to the active “Intel 
Turbo Boost Max 3.0 Technology” it can increase up to 4.80 GHz. The algorithms were implemented in 
the C++ language using GNU GCC compiler v12.2.0. 

We conducted a series of experiments on multiple randomly generated complete directed weighted 
graphs of 1200, 2400, 3600 and 4800 vertices. Every experiment was repeated several times and results 
were verified against the results of original Floyd-Warshall algorithm executed on the same graphs. All 
runs of blocked algorithms were done on multiple block sizes: 30x30, 48x48, 50x50, 75x75, 100x100, 
120x120, 150x150, 200x200, 240x240, 300x300, 600x600, 1200x1200 and 2400x2400. All block sizes 
divide the matrix into equal blocks without remainders (for smaller graphs some of the block sizes were 
omitted). To understand the energy efficiency related to the discussed algorithms we measured the 
execution time, the average power and the total energy consumed by the processor package. In all the 
experiments, the results are represented with figures and pictures corresponding to algorithms FW, GEA, 



    

Девятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA 
и анализ высокого уровня», Минск, Республика Беларусь, 17-18 мая 2023 года 

 

47 
 

BFW and HBFW. Figures 1–4 depict the execution time (ms) and energy consumption (mJ) depending 
on the block size (and for non-block algorithms the values are repeated across all the block sizes).  

 

  
a b 

 
Figure 1. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangle and dash line), GEA 

(circle and solid line), BFW (square and long-dash line) and HBFW (diamond and dash-dot line) 
algorithms across all the block sizes on the graph of 1200 vertices 

 
On the graphs of 1200 vertices (Figure 1), algorithm GEA demonstrated the lowest energy 

consumption (13 % better than FW) and the lowest execution time (25 % faster than HBFW) against all 
algorithms under consideration. Both block algorithms BFW and HBFW demonstrated higher energy 
consumption than FW by 25 % and 2 % respectively. In terms of runtime, FW and BFW showed the 
comparable execution time, while HBFW outranked both showing by 21 % lower execution time. 

 
 

  
a b 

 
Figure 2. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangles and dash 

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 2400 vertices  

 
On larger graphs of 2400 vertices (Figure 2), the situation is slightly changed. The GEA algorithm 

remains the best one in both energy consumption and execution time. However, the blocked algorithms 
BFW and HBFW demonstrated lower energy consumption (by 14 % and 32 % respectively) and smaller 
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execution time (by 33 % and 49 % respectively) against FW. The comparison of BFW against HBFW 
shows that HBFW has lower energy consumption and lower execution time over BFW. 

 

  
a b 

 
Figure 3. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangles and dash 

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 3600 vertices 

 
On graphs of 3600 and 4800 vertices (Figure 3 and Figure 4), the algorithms demonstrated the 

same patterns of behavior. GEA remains the best one among all the algorithms under profiling. Both 
BFW and HBFW showed consistently lower energy consumption and lower execution time than FW. 
HBFW continues to demonstrate the reduction of energy consumption and execution time against BFW. 

  
a b 

 
Figure 4. a) Energy consumption (mJ) and b) execution time (ms) of FW (triangles and dash 

line), GEA (circle and solid line), BFW (squares and long-dash line) and HBFW (diamonds and dash-
dot line) algorithms across all the block sizes on the graph of 4800 vertices 

 
Table 1 and Table 2 report the data which summarizes the information presented in Figures1 – 4 

and compares the best runs of the GEA, BFW and HBFW algorithms over the FW algorithm in terms of 
energy consumption and execution time. We can observe that GEA significantly outranks all other 
algorithms, and HBFW is preferable against BFW. BFW gives better results at smaller sizes of blocks, 
and HBFW gives better results at larger block-sizes. 
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Table 1. Comparison of best runs (on lowerst energy consumption) of GEA, BFW and HBFW algorithms 
against FW algorithm along all experimental graphs in terms of energy consumption and execution time. 

Graph Size 1200 2400 3600 4800 

Algorithm 
GEA 

BFW HBFW 
GEA 

BFW HBFW 
GEA 

BFW HBFW 
GEA 

BFW HBFW 

Block Size 120 600 200 1200 200 1800 1600 1600 

Execution Time (ms) 0.595 0.988 0.792 0.450 0.673 0.514 0.439 0.599 0.470 0.466 0.630 0.519 

Energy Consumed (mJ) 0.870 1.257 1.023 0.567 0.863 0.687 0.474 0.674 0.541 0.481 0.646 0.583 

 
Table 2. Comparison of best runs (on lowerst execution time) of GEA, BFW and HBFW algorithms 
against FW algorithm along all experimental graphs in terms of energy consumption and execution time. 

Graph Size 1200 2400 3600 4800 

Algorithm 
GEA 

BFW HBFW 
GEA 

BFW HBFW 
GEA 

BFW HBFW 
GEA 

BFW HBFW 

Block Size 200 600 200 1200 200 1800 120 1600 

Execution Time (ms) 0.595 0.985 0.792 0.450 0.673 0.514 0.439 0.599 0.470 0.466 0.621 0.519 

Energy Consumed (mJ) 0.870 1.260 1.023 0.567 0.863 0.687 0.474 0.674 0.541 0.481 0.683 0.583 

 
Conclusion.  
Profiling of program code executed on a multi-core system is an effective means of measuring and 

estimating parameters of competitive algorithms and detecting areas of their preferable usage. It can help 
to identify and reduce the consumption of computational and energy resources significantly when solving 
fundamental tasks such as searching for the shortest paths between all pairs of vertices in a graph. In 
particular, the research results obtained in the paper show that the recently proposed algorithm that is 
based on stepwise addition of vertices to the graph has convincing time and energy advantages over the 
well-known classical Floyd-Warshall algorithm and its blocked versions that target the increase of cache 
efficiency and establishing parallel computations on multicore systems. 
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Аннотация. Снижение энергопотребления при решении задач, требующих больших вычислительных 
мощностей, является важной прикладной проблемой в науке и производстве. В статье представлены результаты 
профилирования четырех алгоритмов поиска кратчайших путей между всеми парами вершин графа, позволившие 
оценить энергопотребление и время выполнения алгоритмов на многоядерной системе. Профилирование 
выполнялось на однопоточных реализациях классического алгоритма Флойда-Уоршалла, алгоритма, построенного 
на вершинном расширении графа, однородного блочного алгоритма Флойда-Уоршалла и неоднородного блочного 
алгоритма. В экспериментах использовались простые полные, ориентированные взвешенные графы размером от 1200 
до 4800 вершин. Профилирование, выполненное посредством Intel VTune и Intel SoC Watch, показало, что 
наибольшее влияние на энергопотребление оказывает сам алгоритм. На графах до 1200 вершин, потребление энергии 
может пропорционально не зависеть от времени выполнения алгоритма. Например, медленный классический 
алгоритм Флойда-Уоршалла потребил до 20% меньше энергии по сравнению с более быстрыми блочными 
алгоритмами. С увеличением размера графа, алгоритм, построенный на вершинном расширении графа, стал 
однозначно доминирующим; он потребил до 25% меньше энергии, чем блочные алгоритмы. При увеличении размера 
графа, четко устанавливается пропорциональная зависимость между временем выполнения алгоритма и количеством 
потребляемой энергии. 

Ключевые слова: многоядерный процессор; профилирование; граф большого размера; алгоритм поиска 
кратчайших путей; энергопотребление; время выполнения; оптимизация. 
  


