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Abstract. The wearable reflective photocapacitance plethysmograph (PPG) sensor can be integrated into the watch or
strap to provide instantaneous heart rate (HRs), causing minimal inconvenience to users. However, the existence of motion
artifacts (MAs) leads to inaccurate heart rate estimation. In order to solve this problem, I propose a new deep learning neural
network to ensure accurate estimation of HR in high-intensity exercise. Methods: I propose a deep neural network based on
multi-class and non-uniform multi-label classification for HR estimation. It includes two convolution layers, two short and long
term memory (LSTM) layers, one connection layer and three full connection layers including softma,also includes a
concatenation layer. The average absolute error of the algorithm for all training data sets and test data sets is less than 1.5 bpm,
including 1.09 bpm for training data sets and 1.46 bpm for test data sets. The proposed algorithm is superior to the most
advanced methods in accurate estimation of heart rate.
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Introduction.

Reflective photoplethysmography (PPG) sensor measures the intensity change of skin reflected
light and provides PPG signal representing the change of arterial blood volume between systolic and
diastolic phases of the heart cycle. The reason why the sensor is concerned is that it can be installed in a
watch or wrist strap to measure and monitor instantaneous heart rate (HRs), minimizing the
inconvenience to users. However, the sensor is sensitive to motion artifacts (MAs), which come from the
pressure and motion exerted on the wrist of the PPG sensor. Motion artifacts will eventually lead to
inaccurate heart rate estimation. A few years ago, Zhang and others shared the data set of acceleration
and PPG signals measured simultaneously in [1] motion, which prompted people to study the use of
acceleration signals to eliminate motion artifacts in PPG sensors. However, despite the efforts and
progress of algorithms, these methods do not always provide accurate results.

In this paper, the purpose is to measure heart rate more accurately,so I propose a new deep neural
network based on multi-class and non-uniform multi-label classification for human heart rate estimation.
In the proposed algorithm, I consider two power spectra from the input layer of PPG and acceleration
signals. In addition, I use the acceleration signal strength in the input layer. I assume that the acceleration
signal strength can provide information about the recent HR changes: high intensity represents intense
exercise, which may change HR. The proposed algorithm includes two convolution layers, two LSTM
layers, one connection layer and three full connection layers (including one softmax layer). In the
proposed algorithm, the power spectrum from PPG and acceleration signals is fed to two convolutions
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to provide MA cancellation in the PPG power spectrum. The output is flattened and connected to a fully
connected layer, which is then connected to the acceleration signal strength. Then, the output is fed to
two LSTM layers, and then to other full-connection layers including softmax. The LSTM layer uses
minimum outliers to track HR tracking. In this algorithm, I also propose a new scheme to modify the real
HR value to Gaussian distribution to evaluate the loss value. The performance of the proposed algorithm
is evaluated by comparing with the results of [1] - [ 18] previously reported.

Based on PPG, ACC, and acceleration intensity Datasets.

T'used two data sets to evaluate the proposed HR estimation algorithm - the IEEE Signal Processing
Cup (ISPC) 2015 data set (n=23) and the direct measurement data set obtained by the developed
equipment (n=48). These two sets of data include multi-channel PPG signal and three-axis accelerometer
signal, which are measured by the equipment on the wrist during high-intensity physical exercise. At the
same time, ECG signals ire measured in the chest as real HR reference. The data includes 12-minute
three-channel PPG signal and 50-Hz sampling three-axis acceleration signal. The dataset is divided into
two groups, BAMI-I and BAMI-II. During every 4 minutes of running and walking, the subjects walked
or ran with a treadmill stick in the last two minutes. I designed this link to reflect the heart rehabilitation
exercise of patients with heart disease who have poor exercise ability. They usually walk or run with a
treadmill stick. There are 17 males and 6 females, with an average age of 22.0+1.7 years. The whole
exercise process is also carried out on the treadmill. For these two data sets, the reference real heart rate
was measured by ECG data recorded simultaneously by 24-h the ambulatory ECG monitor (SEER Light,
GE Medical, Milwaukee, W1, USA).

In this study, I selected the ISPC data set (n=23) as the training data, because it includes various
movements, such as waking up, running, resting, jumping, push up, shaking hands, stretching, pushing
and boxing. I also added the own dataset BAMI-I (n=25) to the training data to increase the size of the
training data, and used another dataset named BAMI-II (n=23) to test the training algorithm. For all data
sets, the ecg-based HRs are calculated using an 8-second window, with a 2-second offset (6-second
overlap) to obtain the HRs every 2 seconds. In the whole study, the same window length (8 seconds) and
shift (2 seconds) are used to evaluate the performance of the proposed algorithm relative to the existing
algorithm [1] - [17].

Description of deep neural network algorithm based on ACC and PPG.

Figure 1 (a) summarizes the architecture of the proposed algorithm. It consists of eight layers: two
convolutional layers, two LSTM layers, one tandem layer and three full connection layers, including a
softmax layer. More specifically, a 2D convolution layer, a one-dimensional convolution layer, a flat
layer, a splice layer, a fully connected layer, two LSTM layers, and a fully connected layer folloid by a
softmax.

For the input layer, the power spectrum from PPG signal and acceleration signal is divided into
two (size 2 x 222): the top signal is from PPG (Ps (1)), and the bottom signal is from acceleration (Pa (1)).
Note that the power spectrum is based on each 8-second window and then shifted for 2 seconds (6-second
overlap). Input layer input to 32 2x37 cores, two-dimensional convolution with a step of 4, and then
perform the nonlinear function leaky corrected linear unit (ReLU) and 1x2 max pooling, in steps of 2.
The resulting size is 1x28%32.The characteristic diagram of 32 shows the intermediate PPG power
spectrum after MA cancellation. Send characteristic map into 64 1x5-core, one-dimensional convolution
with a side of 1, and then carry out leaky ReLU and 1 with a side of 2x2 max pooling, get other sizes of
1x14x64, showing the PPG power spectrum of MA elimination. The resulting feature map is spread
evenly to 896 nodes, which are fully connected to 512 nodes with leaking ReLU.

Subsequently, the acceleration intensity I (I) is connected with 512 activations. I assume that the
acceleration intensity represents how the current HR value will change in the near future. For example,
high acceleration intensity means high intensity exercise, which may increase HR. 513 connected nodes
are sent to two LSTM layers. These two LSTM layers act as HR tracking algorithms by considering the
local HR tracking mode. Due to the existence of LSTM layer, even if the signal to noise ratio (SNR) of
PPG signal is extremely low, the dominant frequency corresponding to HR will not deviate seriously in
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the continuous window. The first layer LSTM contains 512 nodes, each node has 6 time steps, and all
nodes are connected to the second layer LSTM. Note that six time steps provide the best accuracy. The
numerical analysis of the effect of time step will be introduced. The second LSTM layer also includes
six time steps, each of which provides an output with a length of 222. Then, only the output from the last
time step is fed to the full connection layer, which is connected to 222 nodes with leaking ReLU. In the
frequency range of 0.6-3.3 Hz, the frequency resolution is 0.012 Hz, and the result of the final PPG power
spectrum after MA cancellation is 222 activations. The activation is input to the softmax layer, which
provides the final probability of the real HR value.
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Figure 1. The architecture of the proposed algorithm; 2D convolution layer, 1D convolution layer, a full
connection layer,a concatenation layer two LSTM layers and a full connection layer are structured in
sequence

To avoid over-fitting, I applied dropout to two convolution layers and two LSTM layers. For
convolution layer, the exit rate is set to 0.3. For LSTM layer, the drop rate of input linear transformation
is 0.3, and the drop rate of loop state is 0.2. Given a set of parameters of the algorithm, softmax provides
the probability corresponding to each HR value subdivided in 222 frequency boxes: from 0.6 to 3.3 Hz,
with an interval of 1/222. Therefore, with the real HR value, I can consider the multi-class classification
problem, which calculates the cost through multi-class cross entropy & Value is

(1

where and  are the true HR probability and the predicted HR probability, respectively, for the
frequency bin at the window. In the multiclass cross-entropy, has the value of one only when the

frequency bin corresponds to a true HR. Otherwise, has the value of 0. Then, the formulation can be
simplified as

2)

where y'_,  is the predicted HR probability in the frequency bin covering the true HR value.

However, this method has a disadvantage that the frequency bin covering the real HR value may
not accurately represent the real HR.Please note that the real HR is obtained from the ECG data sampled
at 50 Hz in the BAMI I and II data sets and from the ECG data sampled at 125 Hz in the ISPC data set,
while the frequency box is obtained from the PPG signal sampled at 25 Hz. To solve this problem, I will
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pay & Multiply the normalized Gaussian function, where the Gaussian distribution centered on the real
HR is normalized to get the maximum value. The revised cost function is

3)
where represents real HR. Through modification, I can alleviate the problem of non-
overlapping HR based on ECG and PPG. In this study, we chose the standard deviation o =3.

Experimental Result.

Based on the proposed algorithm, I found that the AAE and ARE values of the training data set
(n=48) ire 1.09 bpm and 0.92% respectively, and the AAE and ARE values of the test data set (n=23) ire
1.46 bpm and 1.23% respectively. Table 1 summarizes the performance. Specifically, the AAE and ARE
values of the ISPC dataset are 0.76 bpm and 0.66% respectively, and the AAE and ARE values of the
BAMI-I dataset are 1.39 bpm and 1.17% respectively.
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Table 1. Performance summary with each dataset: ISPC and BAMI-I ire used as training set, and BAMI-
IT was used as test set

AAE(bpm) ARE(%)
. ISPC(n=23) 0.76 0.66
Training set BAMLI(1=25) 139 1.09 117 0.92
Test set BAMI-II(n=23) 1.46 1.23

Figure 2 shows the HR trajectory based on the proposed algorithm and acceleration intensity
estimation; Figure 2 (a) and (b) show the results of the ISPC dataset, and Figure 2 (c) and (d) show the
results of the BAMI-I and BAMI-II dataset. On the top panel of the figure.

The estimated HR trace results are compared with the results considering only the dominant power
spectrum of PPG.In addition, it can be seen from the bottom panel of Figure 2 that the acceleration
intensity is related to the increase of HR. In particular, Figure 2 (a) and (b) show the results of subjects
14 and 17. These two sets of data are considered to be the most challenging because the measured PPG
signal is seriously damaged by MAs, resulting in a very low signal-to-noise ratio.

In fact, for topic 14 in the dataset, the reported AAEs are 6.63 bpm [1], 8.07 bpm [2], 7.29 bpm
[3], 4.89 bpm [6], 9.59 bpm [7], 1.60 bpm [17], 12.12 bpm [4], 7.91 bpm [13] and 7.66 bpm [8]. For
subject 17, the reported AAEs ire 7.82 bpm [1], 7.01 bpm [2], 3.01 bpm [3], 3.05 bpm [6], 3.01 bpm [7],
2.04 bpm [17], 3.31 bpm [4], 2.44 bpm [13] and 2.77 bpm [8]. On the other hand, the algorithm I
proposed provides very accurate estimates of the whole segmented HR for two subjects (AAE: 0.87 bpm
for subject 14 and 1.49 bpm for subject 17). Figure 2 (c) and (d) also show the results when the signal-
to-noise ratio is very low. For Topic 1 in the BAMI-I dataset, when only the dominant power spectrum
of PPG is used, the AAE is 46.64 bpm, and the AAE of WFPV is 14.27 bpm. On the other hand, the
results show that AAE is 1.45 bpm.
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Figure 2.Estimated HR trace based on the proposed algorithm (Tops) and acceleration intensity
(Bottoms); (a) Subject 14 (ISPC), (b) Subject 17 (ISPC),(c) Subject 1 (BAMI-I) and (d) Subject 22
(BAML-I).

Conclusion.

The proposed deep learning algorithm estimates HR based on the power spectrum of PPG and
acceleration signals and cascaded acceleration strengths. The algorithm consists of a two-dimensional
convolutional layer, a one-dimensional convolutional layer, and a fully connected layer for MA
cancellation. The algorithm also includes a connection layer, two LSTM layers, a fully connected layer,
and a softmax layer for human resource tracking and estimation. The AAE of the algorithm for the
training dataset and the test dataset is 1.09 bpm and 1.46 bpm, respectively, which exceeds the results of
the most advanced methods currently available and allows for more accurate measurement of heart rate.

However, the most important aspect of future research will involve the implementation of energy
saving when implementing the proposed algorithm in real time on wearable devices. Deep learning is
undoubtedly to provide good performance, but the implementation of wearable devices faces many
challenges, because they require low-power algorithms due to limited computing power.
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AnHoTamust. HocnMerii oTpakaTenbHBIA  (POTOKOHIEHCATOpHBI 00beMHBIH Tpad (PPG) matamk Moxker ObITh
MHTETPUPOBAH B YaChI MM PEMEIIIOK, YTOOBI 00ECIICUNTh MTHOBEHHBIH cepedunsiii pum (HR), MuHmMmsmpyst HeynoOcTBa Jist
niofb3oBarestst. OHaKo HATMYNE CTIOPTHBHBIX TIceBoTeHel (MA) IPHBOIMT K HETOYHBIM OLIEHKAM CEpIIeYHOr0 putMa. UTo0b!
PELIMTH 3Ty MpodIIeMy, 51 IPEIVIOXKIIT HOBYIO HEHPOHHYIO CeTh TIIyOOKoro oOyueHust uist obectiedeHnst TouHoi orienkr HR B
BBICOKOMHTEHCUBHBIX yripakHeHwsix. Metox: [l onenkn HR Obiia npemwioskena rimyOokast HEHpOHHAs! CeTh, OCHOBaHHAS Ha
MHO)KECTBEHHOM 1 HEOTHOPOAHOM KiIacCHU(HMKAIMK C HECKOJIBKMMH MeTKamMi. OHa BKIIFOYAET B ce0sl JBa CJI0Sl HAMOTKY, JIBA
CI1051 KpaTKOCPO4HOH 1 osrocpounoi namsity (LSTM), coemMHUTENBHBINA CII0H ¥ TP TIOJHBIX COSMHEHMS, BKITFOYast copMmy,
a TaKKe KacKauHbli croi. CpemHsist abCOMOTHAs TIOTPEIHOCTh AJITOPUTMA JUTS BCEeX HaOOPOB JIAHHBIX 00y4eHMs 1 HabOpoB
TECTOBBIX JIAHHBIX COCTaBIIIET MeHee 1,5 bpm, 13 KoTophIx HabOp AaHHBIX 00y4deHnst cocTapisieT 1,09 bpm, a Habop TecTOBBIX
naHHbIX - 1,46 bpm. IlpemyiokeHHbIE anrOpUTMBI MPEBOCXOAT CaMble COBPEMEHHBIE METOIbI TOYHOM OLEHKH YacTOTHI
CEepICUYHBIX COKpAILEHUI.

Kirouessle ciioBa: PPG, LSTM, cBepTKu, Kackaibl, MyJIbC U IBKKYLLMECS TICEBIOTEHN
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