УДК 004.932+004.258

СКЕЛЕТИРОВАНИЕ НИЗКОКОНТРАСТНЫХ ЗАШУМНЫХ СЕРЫХ ИЗОБРАЖЕНИЙ

Ц. МА, А.А. БОРИСКЕВИЧ

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Поступила в редакцию 13 Марта 2023

Аннотация. Для повышения устойчивости скелетов полутоновых изображений с двухмодовой гистограммой яркости к шуму в статье предложена модель скелетизации, учитывающая наличие мультипликативной и аддитивной составляющих шума на бинарном скелетизируемом изображении. С учетом данной модели разработан алгоритм скелетизации, отличающийся учетом искажений форм областей скелетизируемого бинарного изображения в результате низкочастотной фильтрации исходного полутонового изображения и позволяющий уменьшить ошибки скелетизации полутоновых изображений.

Ключевые слова: скелетизация полутоновых изображений, мультипликативный шум, аддитивный шум, чувствительность скелета к шуму.

Введение

Алгоритмы скелетизации полутоновых изображений формируют более устойчивые к шуму скелеты. Они основаны на предварительной низкочастотной фильтрации исходных полутоновых изображений с использованием неориентированных и ориентированных в пространстве Гаусс-фильтров в сочетании с поиском в разномасштабных версиях исходного изображения значимых точек или однородных по яркости областей, подбором параметров фильтра, обеспечивающих наименьшую чувствительность скелета к шуму. Среди этих алгоритмов наиболее эффективен алгоритм, в котором выбор параметров низкочастотного фильтра основан на вычислении минимального значения метрики чувствительности скелета к шуму [1–4].

Скелет может формироваться с помощью любого алгоритма бинарной скелетизации. Недостатки алгоритма [2] состоят в том, что: а) используемая метрика чувствительности скелета к шуму не учитывает искажения форм областей скелетизируемого бинарного изображения в результате низкочастотной фильтрации исходного полутонового изображения; б) не определены значения отношения «сигнал/шум» для исходного полутонового изображения при которых полутоновая скелетизация позволяет уменьшить ошибки формирования скелетов по сравнению с бинарной скелетизацией.

Целью работы являются уменьшение ошибок скелетизации полутоновых изображений с двухмодовым распределением яркости в условиях шума и определение значений отношения «сигнал/шум» для эффективного использования скелетизации на основе предварительной низкочастотной фильтрации.

Алгоритм скелетизации полутоновых изображений на основе адаптивной низкочастотной фильтрации

Скелеты часто используются в распознавании образов и, поэтому, должны быть стабильными при изменении контраста и действия шума. Эти свойства скелетов напрямую зависят от качества алгоритмов скелетизации. В условиях высокого контраста и слабого шума на исходном полутоновом изображении широко используются алгоритмы бинарной скелетизации.

Они относительно просты и могут быть устойчивы к мультипликативному шуму, проявляющемуся на границах областей после бинаризации. Однако, при снижении контраста и усилении зашумления исходного полутонового изображения скелеты, формируемые такими алгоритмами, разрушаются под действием аддитивного шума, проявляющегося в глубине областей скелетизируемого бинарного изображения.

Для скелетизации полутоновых изображений \hat{I} с двухмодовой гистограммой яркости в условиях аддитивного шума предлагается алгоритм, основанный на адаптивных низкочастотной фильтрации и бинаризации для формирования скелетизированного изображения $S = \|\tilde{s}(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$ с использованием сглаженного $\tilde{I} = \|\tilde{i}(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$ и бинарного $B = \|\tilde{b}(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$ изображений. Сущность данного алгоритма состоит в выборе значения

σ дисперсии Гаусс-фильтра, обеспечивающим минимальное значение модифицированной метрики чувствительности скелета к шуму, учитывающей искажения форм бинарных областей скелетизируемого изображения в результате низкочастотной фильтрации исходного полутонового изображения и вычисляемой с помощью выражения

$$M_{\rm S}(B,B,S) = \frac{1}{N_{\rm S}(S)} \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} m_{\rm S}(B,B,y,x), \tag{1}$$

где $N_{\rm s}(M_{\rm B})$ – функция, определяющая количество единичных элементов в бинарной матрице

$$M_{\rm B} = \left\| m_{\rm B}(y,x) \right\|_{\left(y=0,Y-1,x=0,X-1\right)}, \qquad N_{\rm S}(M_{\rm B}) = \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} m_{\rm B}(y,x); \qquad m_{\rm S}(y,x) - \text{чувствительность } \mathbf{K}$$

локальным искажениям скелета, определяемая с помощью выражения

$$m_{\rm S}(B,B,y,x) = \begin{cases} 1 \operatorname{при} \left(N_{\rm ES}(y,x) > 2 \right) \lor \left(\tilde{s}(y,x) \oplus \hat{s}(y,x) = 1 \right), \\ 5 \operatorname{при} \left(\sum_{j=-1}^{1} \sum_{i=-1}^{1} \hat{b}(y+j,x+i) = 0 \right) \land \left(N_{\rm ES}(y,x) > 1 \right), \\ 10, \operatorname{при} \left(\frac{\left| N_{\rm S}(B) - N_{\rm S}(B) \right|}{N_{\rm S}(B)} > 0, 02 \right) \lor \left(R(S) \neq R(S) \right) \\ 0 \text{ в других случаях;} \end{cases}$$
(2)

где R(B) и R(B) – количество областей на изображениях B и B; $N_{ES}(y,x) = 9 - \sum_{j=-1}^{1} \tilde{s}(y+j,x+i) -$ количество граничных пикселей для каждого пикселя скелета.

Алгоритм состоит из следующих шагов.

1) Инициализация значений переменных алгоритма: дисперсии ($\sigma = 1$); количества итераций (n = 0); матрицы бинарного изображения $B \left(B = f_{\rm B}(\hat{I})\right)$.

2) Начало цикла вычисления метрики чувствительности. Формирование сглаженного изображения \tilde{I} в результате свертки исходного изображения \hat{I} с ядром $G(\sigma) = \|g(y, x, \sigma)\|_{(y=-Y_G, Y_G, x=-X_G, X_G,)}$ гаусс-фильтра, элементы которого определяются с помощью выражения

$$g(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{y^2 + x^2}{2\sigma^2}},$$
(3)
при $y = \overline{-\left\lceil 2\sigma \right\rceil, \left\lceil 2\sigma \right\rceil}, x = \overline{-\left\lceil 2\sigma \right\rceil, \left\lceil 2\sigma \right\rceil}.$

55

3) Формирование гистограммы яркости сглаженного изображения \tilde{I} и определение по ней порога бинаризации $T_{\rm B}$. Формирование бинарного изображения B с помощью алгоритма адаптивной пороговой обработки Otsu [4].

4) Формирование *n*-го скелетизированного изображения S(n) с помощью алгоритма бинарной скелетизации (например OPTA [5] и др.).

5) Вычисление *n*-го значения метрики $M_{s}(B,B,S,n)$ чувствительности скелета к шуму с использованием выражения (1).

6) Приращение значения дисперсии: $\sigma = \sigma + 1$.

7) Приращение счетчика количества итераций: n = n + 1.

8) Проверка счетчика количества итераций на достижение максимального значения, например, 20 (зависит от доступных вычислительных ресурсов). Если *n* < 20 переход на шаг 2.

9) Поиск минимального значения $M_{\rm SMin}$ метрики чувствительности скелета к шуму и номера $N_{\rm SMin}$ итерации для такой метрики: $M_{\rm SMin} = \min \left(M_{\rm S}(B,B,S,n) \right);$ $\left(M_{\rm SMin} = M_{\rm S} \left(B,B,S,n \right) \right) \Rightarrow \left(N_{\rm SMin} = n \right)$ при $n = \overline{0,19}.$

10) Завершение алгоритма и формирование результата: $S(N_{\text{SMin}})$.

Оценка эффективности алгоритмов скелетизации полутоновых изображений

Для оценки эффективности алгоритмов скелетизации использованы тестовые полутоновые изображения с контролируемым контрастом и уровнем аддитивного шума, формируемые согласно схеме, приведенной на рис. 1.

Рис. 1. Схема генерации тестовых полутоновых изображений с заданным контрастом и шумом с использованием бинарных изображений

На вход схемы подается тестовое бинарное изображение $B_{\rm T} = \|b_{\rm T}(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$, на основе которого формируется тестовое полутоновое изображение $I_{\rm T} = \|\dot{i}_{\rm T}(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$ с помощью выражения

$$i_{\rm T}(y,x) = 255b_{\rm T}(y,x) + \text{Rand}(0,50)\overline{b_{\rm T}(y,x)},$$
(4)
при $y = \overline{0,Y-1}, x = \overline{0,X-1},$

где Rand(n,m) – функция, формирующая случайное значение в заданном диапазоне [n,m].

Изображение $I_{\rm T}$ проходит через три Гаусс-фильтра, в результате чего формируется размытое полутоновое изображение $I_{\rm G} = \left\| i_{\rm G}(y, x) \right\|_{(y=0,Y-1,x=0,X-1)}$ с помощью выражения

$$i_{\rm G} = f_{\rm G} \Big(f_{\rm G} \Big(f_{\rm G} \Big(i_{\rm T} \big(y, x \big), \sigma \big), \sigma \Big), \sigma \Big), \tag{5}$$

где $f_{\rm G}(I_{\rm X},\sigma)$ – функция свертки изображения $I_{\rm X}$ с ядром Гаусс-фильтра с параметром σ .

С помощью преобразования гистограммы яркости сглаженного изображения $I_{\rm G}$ с коэффициентом $C_{\rm H} \in (0;1)$ формируется низкоконтрастное изображение $I_{\rm C} = \|i_{\rm C}(y,x)\|_{(y=\overline{0,Y-1},x=\overline{0,X-1})}$, значения пикселей которого вычисляются с помощью выражения $i_{\rm C}(y,x) = \frac{i_{\rm G}(y,x)}{1-1} + C_{\rm C} \max(L_{\rm C})$ (6)

$$i_{\rm C}(y,x) = \frac{\iota_{\rm G}(y,x)}{(1-2C_{\rm H})} + C_{\rm H} \max(I_{\rm G}), \tag{6}$$

при $y = \overline{0, Y - 1}, x = \overline{0, X - 1}.$

В изображение $I_{\rm C}$ добавляется аддитивный гауссовский шум, в результате чего формируется зашумленное низкоконтрастное полутоновое изображение $I_{\rm CN} = \|i_{\rm CN}(y,x)\|_{(y=0,Y-1,x=0,X-1)}$, значения пикселей которого вычисляются с помощью выражения

$$i_{\rm CN}(y,x) = i_{\rm C}(y,x) + A_{\rm HT} {\rm Rand}(-1,1),$$
(7)

при $y = \overline{0, Y - 1}$, $x = \overline{0, X - 1}$, где $A_{\rm HT}$ – амплитуда шума.

На основе изображения $I_{\rm CN}$ формируется нормированное и квантованное тестовое изображение \hat{I} , значения пикселей которого вычисляются с помощью выражения

$$\hat{i}(y,x) = \left[\frac{255i_{\rm CN}(y,x)}{\max(I_{\rm CN})}\right],\tag{8}$$

при $y = \overline{0, Y - 1}, x = \overline{0, X - 1},$ где [] – символ операции округления до ближайшего целого.

Алгоритм	$C_{_{ m H}} = 0,1$	$C_{\rm H} = 0, 2$	$C_{\rm H} = 0,25$	$C_{\rm H} = 0,35$	$C_{\rm H} = 0,45$
OPTA					÷
ATF	K	V.	Y	V	V
ATFM	R	N.	N.	V	K

Рис. 2. Скелетизированные изображения, полученные при $\sigma = 1,0$, $A_{\rm HT} = 10$

На рис. 2 приведены комбинированные изображения $(B + \tilde{S})$, сформированные в результате сложения бинарных изображений B, полученных после адаптивной пороговой обработки, и бинарных скелетизированных изображений \tilde{S} , полученных с помощью алгоритмов ОРТА, АТF и предложенного ATFM. Из рис. 1 следует, что алгоритм ATFM позволяет формировать скелеты более устойчивые к шуму (имеют меньше структурных искажений) по сравнению с ОРТА и ATF.

Для полутоновых изображений с различными коэффициентом $C_{\rm H}$ модификации гистограммы, параметром размытием σ и амплитудой $A_{\rm HT}$ шума и различных алгоритмов в табл. 1 приведены значения отклонения $E_{\rm S}$ от эталонного скелета при отсутствии шума, вычисляемые с помощью разности изображений скелетов S и S_1 при отсутствии и наличии аддитивного шума (S = S или S = S в зависимости от алгоритма) в условиях заданного контраста:

$$E_{\rm S} = \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} \left| S - \hat{S} \right| / \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} S, \tag{9}$$

при $y = \overline{0, Y - 1}, x = \overline{0, X - 1}.$

В табл. 1 приведены также значения контраста C_1 , вариации V_1 , адаптивного порога T_B , определяемого с помощью алгоритма Otsu, минимальное I_{MIN} и максимальное I_{MAX} значения пикселей полутонового изображения без шума и время T_P скелетизации. Значения контраста C_I и вариации V_I вычисляются с помощью выражения

$$C_{\rm I} = \sqrt{\frac{1}{YX} \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} \left(\hat{i} \left(y, x \right) - \mu \left(\hat{I} \right) \right)^2},$$

$$V_{\rm I} = \frac{D_{\rm ST} \left(I \right)}{\mu \left(I \right)},$$
(10)
(11)

где $\mu(I)$ – среднее значение яркости пикселей для изображения *I*, $\mu(I) = \frac{1}{YX} \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} i(y, x);$

 $D_{\rm st}(I)$ – дисперсия значений пикселей для изображения *I*.

	$C_{\rm H}$	$E_{\rm s}$		C	V	T.	7	I	$T_{\rm P}, { m c}$			
		OPTA	ATF	ATFM	υ	• 1	* B	⁴ MAX	⁴ MIN	OPTA	ATF	ATFM
	0,1	0,005	0,631	0,151	0,326	0,799	125	230	30	0,225	3,089	2,855
$A_{\rm HT} = 10$	0,2	0,010	0,613	0,154	0,244	0,566	141	204	55	0,211	2,903	2,827
	0,25	0,106	0,695	0,318	0,203	0,459	151	191	68	0,212	2,962	2,870
$\sigma = 0,5$	0,35	1,121	0,681	0,431	0,122	0,262	164	166	91	0,384	2,923	2,847
	0,45	11,773	0,766	0,631	0,040	0,082	180	140	115	1,066	4,048	4,058
	0,1	0,246	0,582	0,574	0,326	0,798	119	230	32	0,289	3,765	3,669
A = 20	0,2	0,968	0,713	0,441	0,244	0,567	119	204	55	0,443	3,848	3,741
$A_{\rm HT} = 20$	0,25	1,648	0,812	0,554	0,203	0,459	128	191	67	0,426	3,880	3,893
$\sigma = 0,5$	0,35	5,249	0,649	0,585	0,122	0,263	134	166	91	0,972	5,119	5,061
	0,45	15,727	0,645	0,413	0,040	0,082	156	140	116	0,493	3,502	3,821
	0,1	1,074	0,635	0,356	0,313	0,766	128	230	38	0,373	3,861	3,767
	0,2	1,017	0,713	0,151	0,234	0,543	143	204	61	0,395	3,898	3,790
$A_{\rm HT} = 10$	0,25	1,342	0,663	0,156	0,195	0,441	146	191	72	0,389	3,866	3,785
$\sigma = 1$	0,35	2,207	0,617	0,597	0,117	0,252	164	166	94	0,501	3,967	4,036
	0,45	12,663	0,713	0,587	0,039	0,079	182	140	116	0,995	4,497	4,812
	0,1	1,756	0,699	0,654	0,313	0,767	109	230	38	0,489	4,008	4,063
$A_{\rm HT} = 20$	0,2	2,305	0,064	0,515	0,234	0,543	115	204	58	0,538	3,962	4,142
	0,25	2,833	0,663	0,679	0,195	0,441	123	191	71	0,583	4,111	4,254
$\sigma = 1$	0,35	6,049	0,667	0,649	0,117	0,251	141	166	94	0,971	5,893	6,347
	0.45	15.372	0.738	0.859	0.039	0.079	148	140	116	0.406	3.745	4.103

Табл. 1. Оценка показателей эффективности алгоритмов скелетизации

Для полутоновых изображений с резкими перепадами яркости (при $A_{\rm HT} = 20$) алгоритм ATFM позволяет: а) повысить устойчивость скелетов к шуму в сравнении с алгоритмом OPTA; б) при низком уровне шума ($A_{\rm HT} = 10$) и низком контрасте повысить устойчивость скелетов к шуму в сравнении с алгоритмом ATF; в) при высоком уровне шума ($A_{\rm HT} = 20$) сохранить устойчивость скелетов к шуму в сравнении с алгоритмом ATF. Предложенный алгоритм ATFM имеет одинаковую скорость скелетизации с алгоритмом ATF.

Для алгоритмов ОРТА [5] и ZS [6] проанализированы зависимости отклонения $E_{\rm s}$ от отношения $R_{\rm sn}$ «сигнал/шум», вычисляемого с помощью выражения

$$R_{\rm SN} = \frac{\frac{1}{YX} \sum_{y=0}^{Y-1} \sum_{x=0}^{X-1} \left(i(y,x) - I_{\rm MIN} \right)}{D_{\rm ST}(N_{\rm HT})}$$
(12)

При $\sigma = 0.5$, $0.17 > V_1 > 0.16$ алгоритм ATFM позволяет уменьшить отклонения скелета от эталона при $R_{\rm SN} = 2$ примерно в 3,6 раза в сравнении с алгоритмом OPTA (при проигрыше алгоритму ATF на основе OPTA в 1,2 раза) и в 2,1 раза в сравнении с алгоритмом ZS (при выигрыше по сравнению с алгоритмом ATF на основе ZS в 1,03 раза) и при $R_{\rm SN} = 1$ примерно в 19,4 в сравнении с алгоритмом OPTA (при выигрыше по сравнению с алгоритмом ATF на основе OPTA в 1,2 раза) и в 12,5 раза в сравнении с алгоритмом ZS.

При $\sigma = 1,0$, $V_{\rm I} \approx 0,65$, $R_{\rm SN} = 5$ алгоритм АТFM позволяет уменьшить отклонение скелета от эталона примерно в 5,2, 2,8, 1,6 и 1,03 раз в сравнении с алгоритмами ОРТА, АТF на основе ОРТА, ZS и ATF на основе ZS соответственно. При $\sigma = 1,0$, $V_{\rm I} = 0,164$ алгоритм ATFM позволяет уменьшить отклонение скелета от эталона при $R_{\rm SN} = 2$ примерно в 4,8, 1,0, 2,7 и 1,1 раз в сравнении с алгоритмами ОРТА, ATF на основе ОРТА, ZS и ATF на основе ZS соответственно и при $R_{\rm SN} = 1$ примерно в 16,7, 1,0, 11,3 и 1,06 раз в сравнении с алгоритмами ОРТА, ATF на основе ОРТА, ZS и ATF на основе ZS соответственно.

Заключение

Предложена модель скелетизации полутоновых изображений, основанная на двухмодовой яркости учитывающая влияние яркостно-контрастных гистограмме И параметров, мультипликативной и аддитивной составляющих шума на качество скелетизированного изображений. Модель позволяет определить условия эффективной скелетизации полутоновых изображений при которых искажения обусловлены влиянием только мультипликативной составляющей или комбинацией мультипликативной и аддитивной составляющих шума. Разработан алгоритм скелетизации полутоновых изображений основанный на предложенной модели и адаптивной низкочастотной фильтрации, отличающийся от известных алгоритмов учетом искажений форм областей скелетизируемого бинарного изображения в условиях аддитивного шума. Определены условия влияния контрастно-яркостных параметров изображений на качество скелетизации.

SKELETING OF LOW-CONTRAST NOISY HALFTONE IMAGES

J MA, A.A. BORISKEVICH

Abstract. To increase the stability of the skeletons of halftone images with a two-mode brightness histogram to noise, the article proposes a skeletonization model that considers the presence of multiplicative and additive noise components in a binary skeletonized image. Considering this model, a skeletonization algorithm has been developed, which considers the distortions in the shapes of the areas of the skeletonized binary image as a result low frequency filtering of the original halftone image and allows reducing errors in the skeletonization of halftone images.

Keywords: skeletonization of halftone images, multiplicative noise, additive noise, sensitivity of the skeleton to noise.

Список литературы

1. Hoffman M.E., Wong E.K. // Photonics West'98 Electronic Imaging, International Society for Optics and Photonics. 1998. Vol. 30. P. 1369–1373.

2. Chatbri H., Kameyama K. // Pattern Recognition. 2014. Vol. 42. P. 1-10.

3. Cai J. // The Computer Journal. 2012. Vol. 55. P. 887–896.

4. Otsu N. // IEEE trans. on systems, man, and cybernetics. 1979. Vol. 9. P. 62-66.

5. Chin R.T., [et al.]. // Computer Vision Graphics and Image Processing. 1987. Vol. 40. P. 30-40.

6. Zhang T.Y., Suen C.Y. // Communications of the ACM. 1984. Vol. 27. P. 236–239.