2015

УДК 535.568

ПОВЫШЕНИЕ БЫСТРОДЕЙСТВИЯ УСТРОЙСТВА СЕЛЕКЦИИ ФЕМТОСЕКУНДНЫХ ИМПУЛЬСОВ ДИСТАНЦИОННОГО СПЕКТРОМЕТРИЧЕСКОГО КОНТРОЛЯ ХИМИЧЕСКИХ ПРОЦЕССОВ

К.В. МЕЛЬНИКОВ, В.А. МЕЛЬНИКОВ

ООО «Лазерные и информационные технологии» Скорины 14, Минск, 220114, Беларусь

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 28 октября 2015

Приведены результаты исследования способов повышения быстродействия высоковольтных коммутаторов на МОП-транзисторах и разработки на их основе модуля управления модулятором добротности устройства селекции фемтосекундных импульсов лазерного излучателя дистанционного спектрометрического контроля. Экспериментально исследованы результаты влияния эффекта Миллера на скорость переключения МОПтранзистора.

Ключевые слова: электрооптический модулятор добротности, МОП-транзистор, фемтосекундный лазер, лазерная спектроскопия.

Введение

Лазерная спектроскопия является одним из методов дистанционной диагностики параметров исследуемого объекта. При помощи импульсов направленного лазерного излучения можно исследовать спектры флуоресценции и рассеяния удаленных объектов.

Применение лазеров ультракоротких импульсов (фемтосекундных и пикосекундных) позволяет использовать методы спектроскопии с временным разрешением до 10⁻¹⁴ с. С другой стороны, применение ультракоротких импульсов когерентного оптического излучения позволяет получить высокое значение интенсивности оптического излучения, что дает возможность осуществить нелинейное взаимодействие света с атомами и молекулами исследуемого вещества, за счет чего значительная часть частиц может быть переведена в возбужденное состояние с последующей генерацией ими оптического излучения.

В состав современного фемтосекундного лазера с активной синхронизацией мод входит устройство выделения фемтосекундного импульса из последовательности (либо цуга).

Устройство селекции фемтосекундных импульсов

Устройство выделения одиночного импульса из непрерывной последовательности фемтосекундных импульсов (рис. 1) представляет собой электрооптический модулятор добротности, выполненный по полуволновой схеме. Устройство включает в себя: блок управления модулятором добротности; модуль синхронизации и задержки; кристалл электрооптического элемента; поляризатор.

При отсутствии полуволнового напряжения на кристалле электрооптического элемента, устройство не пропускает импульсы оптического излучения. При подаче на электрооптический кристалл полуволнового напряжения фемтосекундный импульс лазерного излучения проходит на выход селектирующего устройства.

№ 7(93)

Рис. 1. Структурная схема устройства селекции фемтосекундных импульсов

Элементы на рис. 1: УС – устройство синхронизации по внешнему ТТЛ-сигналу; ГЗ – генератор задержки; ИВВН – источник высоковольтного напряжения; ВВК – высоковольтный коммутатор; ЭОЭ – кристалл электрооптического элемента; П – поляризатор; ЛОИ – ловушка оптических импульсов.

Импульсы на входе устройства должны обладать вертикальной поляризацией. Поляризация выходных импульсов – горизонтальная. Временная диаграмма работы устройства селекции фемтосекундных импульсов показана на рис. 2.

Рис. 2. Временная диаграмма работы устройства селекции фемтосекундных импульсов

Из рис. 2 очевидно, что длительность переключения электрооптического кристалла (практически равная длительности фронта высоковольтного управляющего импульса) не должна превышать 10 нс. Вопросы влияния входных параметров на повышение быстродействия высоковольтных устройств на полевых транзисторах с изолированным затвором и индуцированным каналом рассмотрены в [1, 2].

Влияние эффекта Миллера на быстродействие высоковольтного МОП-транзистора

Влияние проходной емкости на время включения мощных полевых транзисторов с изолированным затвором и индуцированным каналом выражается в затягивании времени заряда входной емкости C_{34} за счет разряда проходной емкости C_{C3} , ток которого препятствует росту напряжения U_{34} во входной цепи МОП-транзистора.

Количественная оценка влияния проходной емкости производится путем вычисления эквивалентной входной емкости с помощью формулы [1]:

$$C_{_{3H_{_{3KB}}}} = C_{_{3H}} + C_{_{C3}}(K+1), \tag{1}$$

где К – коэффициент усиления по напряжению.

Оценить коэффициент усиления по напряжению для одиночного каскада высоковольтного переключателя на МОП-транзисторе можно в предположении, что величина входного напряжения на затворе, соответствующая активной области работы полупроводникового прибора, определяется разностью между максимально допустимой величиной напряжения между затвором и истоком транзистора и пороговым напряжением $U_{3И \text{пор}}$.

Величина максимального порогового напряжения $U_{3Ипор}$ для высоковольтного МОПтранзистора APT4F120K производства компании «Advanced Power Technology» при температуре окружающей среды 25 °C составляет 5 В. Максимально допустимое напряжение на затворе транзистора $U_{3Иmax}$ составляет ±30 В. В данном случае отрицательные значения нас не интересуют, т.е., отталкиваемся от значения $U_{3Иmax} = 30$ В. Считая напряжение на стоке транзистора U_{CH} равным 800 В (данное допущение обусловлено последующими измерениями), имеем оценочный коэффициент усиления МОП-транзистора:

$$K = \frac{U_{\rm CH}}{U_{\rm 3H_{\rm max}} - U_{\rm 3H_{\rm HOP}}}$$

и, подставляя величины напряжений в (2), получаем оценочное значение коэффициента усиления полевого транзистора, равное 32.

Емкостные параметры рассматриваемого транзистора, декларируемые производителем при напряжении между выводами стока и истока, равным 25 В, и измеренные авторами при напряжении 800 В (см. табл. 1) приведены ниже и составляют для входной емкости C_{34} – 1385/1230 пФ, для проходной емкости C_{C3} – 17/3,5 пФ. В числителе дроби указаны значения емкостей для напряжения на стоке транзистора, равном 25 В, в знаменателе – 800 В.

Подстановка полученных данных в выражение (1) дает следующие результаты для эквивалентной входной емкости МОП-транзистора:

– для напряжения между стоком и истоком полупроводникового прибора, равного 25 В, значение эквивалентной входной емкости С_{3Иэкв} составляет 1946 пФ, что свидетельствует о существенном влиянии эффекта Миллера на переключение транзистора в области низких напряжений сток-исток (эквивалентная входная емкость почти на 50 % превышает значение С_{3И};

– для напряжения между стоком и истоком, равного 800 В, величина эквивалентной входной емкости равна 1345 пФ. В этом случае влияние проходной емкости мощного полевого транзистора с изолированным затвором и индуцированным каналом на эквивалентную входную емкость не превышает 10 %.

Были проведены измерения емкостных параметров различных типов МОПтранзисторов с характеристиками, максимально подходящими для использования в качестве элементов высоковольтных высокоскоростных коммутаторов.

Для проведения измерений емкостных параметров транзисторов использовался прибор B1505A Power Device Analyzer / Curve Tracer фирмы Agilent с дополнительными модулями HVSMU (high-voltage source monitor unit), MFCMU (multi-frequency capacitance measurement unit) и приспособлением «high-voltage bias-T» N1259A, позволяющий в данной конфигурации производить измерения емкостных параметров при напряжениях смещения от -3 кВ до +3 кВ, работать с токами до 2,5 A (для диапазона напряжений $\pm 1,5$ кВ) и мощными импульсами длительностью 10 мкс, а также измерять сопротивление канала МОП-транзистора во включенном состоянии с точностью до 10 мкОм.

Результаты измерения емкостных параметров различных типов высоковольтных (имеющих допустимое напряжение между выводами стока и истока 800–1200 В, постоянный ток нагрузки не менее 2 А и время включения не хуже 10 нс) мощных полевых транзисторов с изолированным затвором и индуцированным каналом различных фирм-производителей в зависимости от напряжения между выводами стока и истока представлены в табл. 1.

На основе результатов анализа данных табл. 1 установлено, с увеличением напряжения на стоке МОП-транзистора выходная и проходная емкости транзисторов уменьшаются в разы, тогда как уменьшение входной емкости большинства транзисторов составляет порядка 10 %. Для рассматриваемых полупроводниковых приборов емкость Миллера (проходная емкость) при подаче напряжения 800 В между выводами стока и истока уменьшилась от 3,5 до 6,3 раз в зависимости от типа исследуемого МОП-транзистора. При этом для большинства из тестируемых полупроводниковых приборов значение проходной емкости при величине напряжения между стоком и истоком, равной 800 В, меньше, чем при напряжении, равном

(2)

200 В. За исключением МОП-транзистора серии CoolMOS фирмы-производителя «Infineon» SPP02N80C3, минимальная величина проходной емкости которого находится в области стокового напряжения 200 В.

	Напряжение сток-исток, В	25			200			800		
Тип транзистора	Фирма- произво- дитель	Входная емкость,пФ	Выходная емкость,пФ	Проходная емкость,пФ	Входная емкость,пФ	Выходная емкость,пФ	Проходная емкость,пФ	Входная емкость,пФ	Выходная емкость,пФ	Проходная емкость,пФ
2SK3748	Microsemi	790	140	70	730	60	18	690	45	11
2SK3745	SANYO	400	85	45	370	18	14	340	12	8
FQI4N80	Fairchild	680	75	8,6	550	14	3,3	510	10	2,4
SPP02N80C3	Infineon	300	52	18	290	13	3,2	270	7,5	4,3
APT4F120K	Advanced Power Technology	1395	100	18	1315	38	6,1	1230	18	3,5
STP2NK100Z	ST Micro- electronics	499	53	9	402	15	2,8	388	12	2,2

Таблица 1. Измеренные емкостные параметры мощных высоковольтных МОП-транзисторов различных фирм-производителей в зависимости от напряжения между выводами стока и истока

Выходная емкость МОП-транзисторов, основной вклад в которую вносит емкость защитного диода, обратно включенного параллельно выводам стока и истока, демонстрирует плавную зависимость уменьшения емкости при возрастании напряжения между выводами стока и истока для всех типов исследуемых мощных высоковольтных полевых транзисторов с изолированным затвором и индуцированным каналом. За счет влияния эффекта Миллера увеличивается время переключения транзистора, однако существенное влияние проходной емкости МОП-транзистора сказывается только при низких уровнях напряжения, приложенного к выводам стока и истока полупроводникового прибора. При напряжения между стоком и истоком, равным 800 В, влияние эффекта Миллера кратно уменьшается. Для дальнейшего уменьшения влияния проходной емкости на скорость переключения высоковольтных коммутаторов на основе МОП-транзисторов рекомендуется выбирать транзисторы с более высоким значением сопротивления канала в открытом состоянии. Это обусловлено современной технологией производства полевых транзисторов, поскольку использование более слаболегированного и более толстого эпитаксиального слоя обеспечивает меньшую емкость между выводами затвора и стока.

Результаты и их обсуждение

Параметры разработанного устройства управления модулятора добротности фемтосекундного лазера для спектроскопии представлены в табл. 2.

	T	· .			~				
	Папаметны	і устроиствя	УППАВ ПЕНИЯ	молупятор	эм добротно	сти фемтосек	унлного пязеі	эя лля спект	поскопии
гаозпіца 2.	incipu	Jerponerba	Jupublicium	mogyminop	Jul Hoobound	will weathored	y induitor o suase	Ja Agun chichti	poentomini

Параметр	Значение параметра
Напряжение питания, В	21,626,4
Потребляемый ток, мА, не более	750
Частота переключения, Гц, не более	100
Амплитуда импульса запуска, В, не менее	3
Длительность импульса запуска, нс, не менее	50
Длительность фронта импульса запуска, нс, не менее	10
Амплитуда высоковольтного импульса, В	65008000
Длительность высоковольтного импульса, нс	1820
Длительность фронта/среза высоковольтного импульса, нс	912
Задержка между импульсом запуска и выходным высоковольтным импульсом, нс, не более	45
Джиттер выходного высоковольтного импульса относительно импульса запуска, нс, не более	1
Время выхода термостата на режим после подачи напряжения питания, с, не более	300
Материал используемого электрооптического кристалла	DKDP

Устройство селекции фемтосекундных импульсов может быть использовано как в излучателях фемтосекундных лазеров для выделения одиночного оптического импульса из непрерывной последовательности импульсов с последующим его усилением, так и для улучшения контрастности в устройствах лазерной спектроскопии. При небольшой модернизации устройства управления модулятора добротности также возможна работа с кристаллами BBO.

Заключение

Исследовано влияние эффекта Миллера на скорость переключения одиночного каскада на высоковольтном МОП-транзисторе. Экспериментально показано, что влияние проходной емкости транзистора на скорость его переключения кратно уменьшается при возрастании напряжения между выводами стока и истока с 25 до 800 В. Для минимизации влияния эффекта Миллера предложено использовать для проектирования высоковольтных коммутирующих схем МОП-транзисторы с большим значением сопротивления канала в открытом состоянии, поскольку этот параметр соответствует меньшему значению собственной емкости между выводами стока и затвора полупроводникового прибора. На основании высоковольтного коммутатора на полевых транзисторах с изолированным затвором и индуцированным каналом разработано устройство селекции фемтосекундных импульсов, предназначенное для использования в лазерных излучателях устройств дистанционной лазерной спектроскопии.

PERFORMANCE IMPROVEMENT OF FEMTOSECOND PULSES SELECTION DEVICE FOR CHEMICAL PROCESSES REMOTE SPECTROMETRIC CONTROL

K.V. MELNIKOV, V.A. MELNIKOV

Abstract

Results of switching velocity performance improvement for high voltage switches based on MOSFTEs are presented. Parameters of developed Q-switch driver for femtosecond laser pulse picker to use at remote spectrometric control laser radiation unit are given. Miller effect influence for high voltage MOSFET switching speed experimentally investigated.

Список литературы

- 1. Тогатов В.В., Гнатюк П.А., Терновский Д.С. // ПТЭ: 2008. № 6. С. 32–43.
- 2. Biryuchinskiy, S., Melnikov, K., Melnikov, V. // Advanced Materials Research. 2013. Vol. 679. P. 53-57.