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Abstract—This paper contains an overview of approaches to 
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ontological structures for knowledge management problems.  
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I. INTRODUCTION 

The semantic space is associated with the process of 
cognition. Meanings, by their primary nature, are not 
something given at once, although they can be assimilated that 
way, but appear in the process of knowledge formation in the 
forms of signs and values. The becoming of knowledge is 
described by a meta-model of semantic space, which 
considers the formation of semantic subspaces [1]. A detailed 
discussion of approaches to constructing semantic spaces is 
discussed in [1]. 

The analysis of structural and quantitative features of 
semantic subspaces is considered as a process of cognition 
which can be expressed by a relationship within the 
framework of the knowledge specification model [2,1]. 
Analysis of structural properties establishes a correspondence 
between the analyzed structure and a scale. This 
correspondence considered as a mapping onto some 
ontological structure, for example, an ordinal scale. 

Let us also consider the measures and metric features of 
the structures of the semantic space not only for denotational, 
but also for operational semantics. Such features can be 
considered as invariants of the structures of the semantic space 
which can be used in tasks of comparing knowledge bases and 
equivalent transformations when processing knowledge 
including not only the tasks of reducing operational semantics 
to denotational ones but also in the opposite direction. 
Throughout this discussion we will use both models and 
methods of network analysis including dynamic network 
analysis and models of formal concept analysis [3]. 

II. BRIEF OVERVIEW OF APPROACHES TO THE ANALYSIS 

OF STRUCTURES AND MODELS OF QUANTITATIVE FEATURES 

Since the semantic space is considered for the structures 
of texts in languages of the model of a unified semantic 
representation of knowledge, the structures under 
consideration are reducible to graph ones [2,1]. 

As for the structural features, they are based on the 
structural features of graphs [4,5,6,7,8]: 

global (absolute): 

• coherence/incoherence, 

• strongly connected\not strongly connected, 

• non-recurrence (acyclicity)\recurrence (cyclicity), 

• regularity/irregularity, 

• trivial automorphism, 

• determinism/non-determinism, 

• reversibility/irreversibility; 

local (relative): 

• non-trivial automorphism, 

• non-recurrence (acyclicity)\recurrence (cyclicity), 

• determinism/non-determinism 

• reversibility/irreversibility. 

For the purpose of identifying operational semantics, such 
methods of structure analysis as identifying classes of 
automorphic elements, which have the global nature of the 
necessary structure analysis (working in conditions of 
complete information), are suitable for finite structures, texts, 
finite state machine models, etc. For potentially infinite 
structures such as languages, sets of syntactically correct texts, 
local methods can be applied focused on reducing dynamic 
structures to static ones and reducing the task of analyzing 
operational semantics [3] to analyzing denotational ones [9], 
which can also differ: working only in conditions of complete 
information, or which can work under conditions of 
incomplete information. Thus, the identification of 
operational semantics can be organized based on the analysis 
of automorphisms, transition to sublanguages and 
automorphic analysis based on queries. 

For a deeper study of structural features, methods of 
analysis of formal concepts are applicable. The use of methods 
for the analysis of formal concepts is considered as a special 
case of the use of the apparatus of meta-operations [2] which 
includes various types of compositions. 

It should be noted that the relationship between 
operational and denotational semantics and the transition from 
operational semantics to denotational semantics was 
considered in [3]. The transition in the opposite direction is 
closely related to the processes of formation of the sign of a 
set from its elements and (restoration) of the elements of the 
set according to its designation (sign). 

Due to the fact that sets can be reduced to such processes 
and operations, operations on sets that transform sets can be 
considered as meta-operations. Meta-operations are discussed 
in [2]. 
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Each meta-operation can be specified by a sequence of 
other meta-operations. For example, closure within the 
framework of formal concept analysis can be expressed by the 
following sequence: 

𝑥′ = ((𝑥 ∘⃖ 𝐴) ∘⃗ 𝐴) 

An important quality of the studied features of space 
elements, including structural and quantitative features, is 
their stability in relation to the identified structure of semantic 
relationships in the process of knowledge formation. 

Stability assumes that if a certain feature is considered in 
a substructure, then in the presence of a superstructure 
belonging to the same class of structures, for any feature 
specified in the substructure, there is a feature specified in the 
superstructure the values of which lie in the same interval as 
the values of the feature specified in the substructure, for all 
arguments from its domain of definition (attribute specified in 
the substructure). 

((𝑆 ⊆ 𝑈) → (𝛾(〈𝑓, 𝑆, 𝜆(𝑆)〉) = 𝛾(〈𝑓, 𝑈, 𝜆(𝑆)〉))) 

((𝑆 ⊆ 𝑈) → (𝛾(〈𝑓, 𝑆, 𝜆(𝑆)〉) ⊆ 𝛾(〈𝑓, 𝑈, 𝜆(𝑈)〉))) 

(𝛾(〈𝜑, 𝛼, 𝛽〉) = {〈𝜒, 𝜑(〈𝛼, 𝜒〉)〉|𝜒 ∈ 𝛽}) 

The basis of such stability is topological relations in the 
structure of semantic interrelations of space elements. The 
structure of semantic space can be expressed through the 
concept of topological closure. 

Topological closures are the basis for identifying 
topological subspaces. 

Among the topological spaces considered are topological 
spaces based on extensional and fully connected closures, 
which can be finite. Such spaces are stable with respect to 
NON-factors of knowledge [1]. 

When analyzing topological properties, the structure of the 
ordinal scale must have the properties of a lattice, and 
additional restrictions are imposed on the mapping of the 
analyzed structure onto this lattice. To determine the sets of 
elements (topological base) that are mapped into a sublattice 
(one lattice node), meta-operations are considered that 
implement (topological) closure operators. 

Stable structures of semantic space can be considered as 
components for constructing knowledge bases. Such 
structures form a topological semantic space based on the 
denotational semantics of the represented knowledge. From 
the point of view of operational semantics, one can also 
analyze the topological properties of operations based on their 
transitive closures within the corresponding topological space. 
Such closures can be irreflexive or recurrent (including 
reflexive), which is associated with the recurrence property 
characteristic of reconstruction and selection problems in 
accordance with the general classification of problems [2]. 

Since the number of elements in the fragments under study 
is not limited, the number of features that map the elements of 
the fragments onto ordinal and metric scales is not limited. 
The number of possible display options for structures of 
different sizes is infinite, infinite and uncountable. 
Requirements for structural stability reduce the number of 
options, but presumably do not reduce it quantitatively. This 
assumption is associated with the number of structurally 
distinguishable fragments (motifs [10]) in graph structures, 

which are an objective basis for considering a significant 
number of different topologies on the same structure. 

Stability requirements are general for both structural 
(𝜆(𝑆) = 2𝑆), and for quantitative characteristics (𝜆(𝑆) = 𝑆), 

(𝜆(𝑆) = 𝑆2), 𝑓 ∈ (2(𝑆2)𝑆1 )
𝑆1×𝑆2

, where ∅ ⊂ 𝑆2 ∩ ℝ𝑛. From 

the point of view of the metamodel of the semantic space, the 
transition in one of the arguments from it to its superset is a 
transition in time in accordance with the “information arrow 
of time”. 

Synthesis of dynamic models based on the results of 
structure analysis and transition to the analysis of operational 
semantics. For this task, many methods can be considered, 
among which the following types can be distinguished: 
methods based on (topological) closures, including methods 
based on the analysis of automorphisms, including conditional 
morphisms (see dynamic network analysis [7] and 
game-theoretic centrality [11]), methods based on 
composition-based closures, unidirectional and bidirectional 
methods, including formal concept analysis methods. Below 
are examples of transitions from static structures to dynamic 
ones (Fig.5 and Fig.6). 

As for quantitative characteristics, they are also based on 
quantitative characteristics of graphs: 

The following features are used: 

• quasimetric [4] having properties: identity, non-
negativity, triangle inequality; 

identity: 𝜌(𝑥, 𝑥) = 0 

non-negativity: 𝜌(𝑥, 𝑦) ≥ 0 

Triangle inequality: 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦) 

𝜌(𝑥, 𝑦) = ⋀
𝑧

(𝜌(𝑥, 𝑧) ⊕ 𝜌(𝑧, 𝑦)); 

𝜌 = ((𝐴⋀
⊕

𝜌) ⋁𝐴), where 𝜌 – quasimetric (matrix), 𝐴 – 

adjacency matrix; 

• farness: 

𝐹(𝑥) = ⨁𝑦𝜌(𝑥, 𝑦) 

• centralities [11,9,4]: 

local centralities: 

degree centrality: 

𝑑𝑒𝑔(𝑥) = 𝑖 ∗ 𝐴 ∗ 𝑥 , where 𝑥  – vertex vector, 𝐴  – 

adjacency matrix, 𝑖 = {1}𝑑𝑖𝑚(𝑖) – one’s vector; 

eigenvalue centrality [7]: 

𝑥 = 1/𝜆𝑚𝑎𝑥 ∗ 𝐴 ∗ 𝑥 

𝐴 ∗ 𝑥 = 𝜆𝑚𝑎𝑥 ∗ 𝑥, where 𝜆𝑚𝑎𝑥   – maximal eigenvalue of 
𝐴. 

PageRank centrality: 

𝑥𝑖 = 𝛼 ∗ ∑ 𝑎𝑗𝑖 ∗ 𝑥𝑖/ ∑ 𝑎𝑗𝑖𝑖𝑗 + (1 − 𝛼)/𝑛 , where 𝑎𝑗𝑖  – 

element of 𝐴, 𝛼 ∈ [0; 1], 𝑛 – number of vertexes. 

Katz centrality: 

𝑥𝑖 = ∑ ∑ 𝛼𝑘 ∗ (𝐴𝑘)𝑗𝑖

𝑁

𝑗=1

∞

𝑘=1
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𝑥𝑖 = 𝛼 ∗ ∑ 𝑎𝑖𝑗 ∗ (𝑥𝑗 + 1)
𝑁

𝑗=1
 

communicability centrality: 

𝐶𝑜𝑚(𝑥) = (𝑒𝐴)𝑖𝑖 

information centrality [1]; 

harmonic centrality: 

𝐹(𝑥) = ⨁𝑦≠𝑥

1

𝜌(𝑥, 𝑦)
 

closeness: 

𝐶(𝑥) = 1/𝐹(𝑥) 

percolation centrality: 

𝑃𝐶𝑡(𝑣) =
1

𝑛−2
∗ ∑

𝜎𝑠𝑟(𝑣)

𝜎𝑠𝑟
𝑠≠𝑣≠𝑟 ∗

𝑥𝑡
𝑠

∑[𝑥𝑡
𝑖]−𝑥𝑡

𝑣
 , where 𝜎𝑠𝑟  – 

number of shoterst paths, 𝜎𝑠𝑟(𝑣)  – number of shoterst paths 

that pass through 𝑣, 𝑥𝑡
𝑠  – percolation state of the node 𝑠 at 

time 𝑡; 

betweennes centrality: 

𝐶(𝑣) = ∑
𝜎𝑠𝑟(𝑣)

𝜎𝑠𝑟
𝑠≠𝑣≠𝑟

 

global centralities: 

Freeman centralization: 

𝐶𝑥 =
∑ (𝐶𝑥(𝑝∗)−𝐶𝑥(𝑝𝑖))𝑛

𝑖=1

max
𝐺

∑ (𝐶𝑥(𝑝∗)−𝐶𝑥(𝑝𝑖))𝑛
𝑖=1

. where 𝐶𝑥(𝑝
𝑖
)  – centrality of 

element 𝑝
𝑖
, 𝐶𝑥(𝑝

∗
) is centrality of element 𝑝

∗
 centrality with 

maximal centrality among elements, 𝐺 – any graph with the 
same vertexes number. 

Considering the listed types of features (global – graph, 
vertex, edge, etc.), the identification of these features can be 
considered as the result of an extended cognition process 
within the framework of the knowledge specification model, 
moving from mapping elements of the formal ontology model 
of the original structure to mapping elements of formal 
ontology models (generalized) strings composed of elements 
of this structure. Thus, features can be classified by the type 
of their areas of departure and destination as well as by the 
type of computational complexity of meta-operations (within 
closed systems of meta-operations): features expressed by: a 
polynomial formula [12,13], ratio of polynomials, elementary 
functions, and features that are not expressed by elementary 
functions. 

∑ (𝐴𝑅 ∗ 𝛽)𝑘∞
𝑘=0   

∑
(𝐴𝑅∗𝛾)𝑘

𝑘!

∞
𝑘=0   

Let us note the following features: the defining properties of 

these features can be specified both in recurrent and non-

recurrent form. The calculation of features can be done 

exactly (using a formula) or approximately (using a recurrent 

formula); in addition, the expression can be linear or 

nonlinear (power law, etc.). A more detailed classification of 

features can be given based on the circuit complexity of the 

operation of their calculation, which is specified by a 

sequence of meta-operations. Let's consider invariant 

properties for models that were built on the basis of closures. 
We will distinguish information properties based on the 

number of (reachable, achieved, attainable): states, 
(internally) distinguishable states, paths (cycles), (internally, 
potentially) distinguishable cycles. 

Quantitative measures, their values and sets of their values 
will first of all be considered as invariants of (semantically 
closed) structures of semantic space. In order to identify the 
closest ones when searching in knowledge management 
problems. 

Below are examples of calculating some quantitative 
characteristics (Fig.1, Fig.2 and Fig.3). 

III. ONTOLOGICAL STRUCTURES AND ITS MEASURES 

Within the context of task types (kinds) of general 
classification of problems [2], reflexive transitive closures of 
operations are important to be able models of information 
storage systems with some information capacity.  

A. State capacity 

The state capacity can be expressed with the following 
features: 

• (active information volume) number of states of 
operational closure (for finite irreflexive closured this measure 
is reducing); 

• (reactive information volume) number of states of 
reverse-operational closure; 

• (real information volume) number of states of maximal 
reflexive operational subclosure; 

• (imaginary information volume) number of states of 
complement of maximal reflexive operational subclosure to 
the union of operational and reverse-operational closures. 

 
Reachable (future) vertexes (accessible (active)) 

𝐶(𝑥) = ⋁
𝑧

((𝐴𝑅)𝑧⋀𝛽),  where 𝑥 is the set of vertexes, 𝐴𝑅  – 

the adjacency matrix of the structure 𝑅 and  𝛽 is the indicator 

vector of 𝑥. 
Leaved (past) vertexes (released (reactive)) 

𝑅(𝑥) = ⋁
𝑧

(((𝐴𝑅)𝑇)𝑧⋀𝛽) 

Selected vertexes (real) 

𝑅(𝑥)⋀𝐶(𝑥) 

Selected vertexes (imaginary) 

𝑉(𝑥)/(𝑅(𝑥)⋀𝐶(𝑥)) 

 

B. Transition capacity 

Let‘s consider the open (acyclic) or closed path’s (cyclic) 
flows for corresponding open or closed structures and take the 
following requirements for its flow  𝑐𝑖𝑗 . 

Each edge is associated with a flow (energy) 𝑐𝑖𝑗. Each vertex 

𝑠 is associated with a flow с𝑠 = ∑ 𝑐𝑠𝑗
𝑛
𝑗=1 . In addition to the 

forward flow, the backward flow с−1
𝑗𝑖  is also calculated, 

с−1
𝑠 = ∑ с−1

𝑠𝑗
𝑛
𝑗=1 . Their differences are equal to  
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𝑑𝑖𝑗 = 𝑐
𝑖𝑗

− с−1
𝑗𝑖, 𝑑𝑠 = 𝑐𝑠 − с−1

𝑠. Forward (local) amplitude 

is calculated 𝑝
𝑖𝑗

=
𝑑𝑖𝑗

𝑐𝑖+с−1
𝑖

+
1

∑ 𝑎𝑖𝑗
𝑉
𝑗=1

. 

∑ 𝑐𝑖𝑗
𝑁
𝑗=1 = ∑ 𝑐𝑗𝑖

𝑁
𝑗=1   

𝑐𝑖𝑗 =
∑ 𝑐𝑖𝑗

𝑁
𝑗=1

∑ 𝑎𝑖𝑗
𝑁
𝑗=1

∗ 𝑎𝑖𝑗   ; 𝑐𝑖𝑗 ∗ ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 𝑎𝑖𝑗 ∗ ∑ 𝑐𝑖𝑗

𝑁
𝑗=1   

We have also in the matrix form: 

𝐴𝑇 ∗ 𝐶 = (𝐴 ∗ 1) ∙ 𝐶  

For the structure on Fig. 2 and its forward flow we have: 

{

𝑐11 = 𝑐12

𝑐56 = 𝑐57

𝑐89 = 𝑐814

𝑐1112 = 𝑐1113

  

We will find the minimal natural solution. 

As the result of the meeting these requirements we obtain 
the following table of results (see Fig.1 (right), Fig.2, Fig.3). 

TABLE I.  TABLE OF D YNAMIC STRUCTURE CHARACTERISTICS 

Edge 

number 

Flow 

difference 

Forward 

amplitude 

Backward 

amplitude 

0 3 19/32 35/35=1 

1 -3 13/32 29/29=1 

2 3 35/35=1 35/35=1 

3 -3 29/29=1 29/29=1 

4 3 35/35=1 19/34 

5 -1 15/29 15/34 

6 -2 14/29 30/30=1 

7 2 34/34=1 34/34=1 

8 -2 30/30=1 30/30=1 

9 0 16/34=8/17 16/30=8/15 

10 2 18/34=9/17 18/35 

11 -2 30/30=1 14/30=7/15 

12 -2 30/30=1 30/30=1 

13 1 17/30 33/33=1 

14 -3 13/30 29/29=1 

15 1 33/33=1 17/35 

16 -3 29/29=1 29/29=1 

17 3 35/35=1 35/35=1 

18 -3 29/29=1 13/32 

19 3 35/35=1 19/32 

Analogically, we can get the result for open (unclosed) 
structure (Fig. 1 (left)). 

Each strongly connected structure has a (own) period [14] 

𝑇 which is the GCD of all periods (lengths of simple cycles) 

in this structure and also has a partition into levels of wave 

fronts corresponding to this period. The number of these 

levels will be called the length of the structure 𝐿 = 𝑇. The 

length 𝐿 of an acyclic structure is the maximum length of the 

shortest path for two connected vertices. Each (acyclic) 

structure has a mapping 𝑊 of the set of numbers of moments 

of time onto the set of subsets of vertices according to the 

levels of wave fronts at given moments of time the number of 

which does not exceed the length and diameter of the 

structure. Each wave front has energy 𝐸(𝑡) = ∑ 𝑐𝑠𝑠∈𝑊(𝑡) . 

The amplitude at the top of the wavefront 𝑝
𝑠
𝑡 =

𝑐𝑠

𝐸(𝑡)
 is in the 

interval [0; 1] . The average amplitude is inversely 

proportional to the number of wavefront elements 
𝐸(𝑡)

|𝑊(𝑡)|
. The 

wavefront entropy at time t is expressed by: 

− ∑ (
|𝑈𝑠

(𝑡)
|

𝑝𝑠
𝑡

∗ ln
|𝑈𝑠

(𝑡)
|

𝑝𝑠
𝑡

)
𝑠∈𝑊(𝑡)

 

where 𝑈𝑠
(𝑡) is the set of undistinguishable (automorphic) 

vertices of the vertex 𝑠 in wavefront 𝑡 

{𝑠} ⊆ 𝑈
𝑠

(𝑡)
⊆ 𝑊(𝑡) 

The set of indistinguishable moments of time is 𝐼(𝑡). 

{𝑡} ⊆ 𝐼(𝑡) ⊆ 𝐷𝑜𝑚(𝑊) 

Average (arithmetic) entropy of structure: 

−
1

𝑇
∗ ∑ ∑ (

|𝑈𝑠
(𝑡)

|

𝑝𝑠
𝑡

∗ ln
|𝐼(𝑡)| ∗ |𝑈𝑠

(𝑡)
|

𝑇 ∗ 𝑝𝑠
𝑡

)
𝑠∈𝑊(𝑡)

𝑇

𝑡=1
 

We will call entropy (neg-information) in a strongly 
connected structure real (elliptic) and also call entropy in an 
acyclic structure imaginary (hyperbolic). 

IV. CONCLUSION 

The paper provides an overview of existing approaches to 
the analysis of semantic space structures and measures on 
graph structures. The approach to the analysis of semantic 
space structures based on a knowledge specification model 
and the use of meta-operations is proposed. Requirements for 
the characteristics of these structures identifiable as a result of 
such analysis are formulated. In accordance with them, it is 
proposed to consider topologically closed structures of 
semantic space as the basic structures to be analyzed. The 
transition from static structures to dynamic ones based on the 
use of meta-operations and closure operators is considered. 
Quantitative features for the dynamic structures of the 
semantic space are proposed. These features based on the 
general classification of problems in order to solve knowledge 
management problems. 
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Fig. 1. Examples of open (acyclic) dynamic structure and its flows (left) and closed (strongly connected) dynamic structure and its flow differencies (right) 

 

Fig. 2. Example of closed (strongly connected) dynamic structure and its forward and backward flows 

𝐴 =

0 3 −3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

−3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 

 
Fig. 3. The matrix of flow differences 
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Fig. 4. Example of the symmetric ontological structure (left) and the corresponding sythesized dynamic strucrure of its found elements (right); 

different arcs denote different operations 

 

 

Fig. 5. Example of the asymmetric ontological structure (left) and the corresponding sythesized dynamic strucrure of its found elements (right); 

different arcs denote different operations 

 

 

 


