В. Л. Ланин^{а*}, И. Б. Петухов^{b**}, Г. Е. Ретюхин^b

^аБелорусский государственный университет информатики и радиоэлектроники, г. Минск, 220013, Беларусь, ^{*}e-mail: <u>vlanin@bsuir.by</u> ^bOAO «Планар-CO», г. Минск, 220033, Беларусь, ^{**}e-mail: <u>petuchov@kbtem.by</u>

> Поступила в редакцию 20.07.2022 После доработки 10.10.2022 Принята к публикации 17.10.2022

Исследован процесс лазерного формирования микроотверстий в полупроводниковых подложках на установке лазерной обработки ЭМ-4452-1 с частотой следования импульсов пикосекундного лазера от 10 до 300 кГц при энергии излучения до 10 мкДж. Сочетание высокоскоростных перемещений лазерного луча системой гальваносканера и точного позиционирования обрабатываемого материала повышает эффективность лазерной микрообработки и расширяет функциональные возможности оборудования.

Ключевые слова: лазерное излучение, отверстия, полупроводниковые подложки, микрообработка

УДК 621.373.826 (075.8) https://doi.org/10.52577/eom.2022.58.6.73 ВВЕДЕНИЕ

Современная микроэлектроника требует создания микроустройств на основе широкого спектра материалов. К таким материалам можно отнести полупроводники (кремний, германий, арсенид галлия), пьезокварц, ниобат лития, танталат лития, лангасит, лангатат, лейкосапфир, стекло, различные виды алюмооксидной керамики и др. Жесткие требования предъявляются проведению технологических к операций, необходимых при обработке этих материалов. Наиболее распространенными технологическими операциями являются разделение подложек из перечисленных материалов на чипы сквозной резкой или скрайбированием, размерная микрообработка отверстий, формирование сквозных контуров, удаление покрытий в виде металлических и оксидных пленок с поверхности подложек из данных материалов. Существенными требованиями таким операциям являются соблюдение параметров точности размерной обработки, минимизация нарушенного слоя материала на границе реза, а при скрайбировании – минимизация ширины реза, при удалении покрытий – отсутствие повреждений материала подложки. Для выполнения данных требований все чаще используется лазерная микрообработка.

Частным случаем лазерной микрообработки является формирование микроотверстий в полупроводниковых материалах. Выбор источника лазерного излучения для микрообработки является сложной задачей, для решения которой зачастую приходится принимать компромиссные решения. С одной стороны, учитывают критерии, определяющие качество обработки, а с другой – производительность и стоимость применяемого оборудования.

ВЫБОР ЛАЗЕРНОЙ СИСТЕМЫ

Осуществление выбора лазерной системы и формирования сквозных отверстий метода зависит от технических требований, предъявляемых к лазерной обработке, и физикомеханических свойств обрабатываемых материалов. Процессы, протекающие при взаимодействии лазерного излучения с материалами, и результат этого взаимодействия сильно зависят коэффициента поглошения ОТ излучения пиковой мощности лазера и длительности воздействия излучения на материал. Независимо от механизма поглощения излучения результирующий рост температуры в зоне воздействия приводит к разрушению материала. Эффективность разрушения материала пол действием лазерного излучения зависит от плотности мощности и длительности воздействия лазерного излучения. Чем короче длина волны и меньше реальная угловая расходимость, тем точнее можно сфокусировать излучение и обеспечить минимально возможный размер зоны воздействия. Чем короче длительность импульса излучения, тем меньшее тепловое и деформационное влияние он оказывает на материал вне зоны облучения. Данный эффект определяется физическими процессами, происходящими в материале при поглощении лазерного излучения. Если импульс излучения достаточно короткий, а плотность энергии достаточно высока, то малый объем материала может быть расплавлен и

Рис. 2. Схема перемещения сфокусированного лазерного луча синхронно с перемещением обрабатываемой пластины координатным столом в режиме II.

испарен до того, как тепло из зоны облучения успеет распространиться в окружающий материал.

Качество лазерной микрообработки определяется степенью шероховатости обработанной поверхности, величиной нарушенного слоя в зоне термического влияния, отклонением геометрических размеров полученных контуров обработки от заданных.

обеспечения минимальной Для зоны термического (HAZ) влияния применяют короткие импульсы излучения (т_и), для минимальной зоны облучения (d) соответственно необходимы короткая длина волны (λ) и низкая расходимость излучения (0), а для высокой производительности процесса обработки нужны импульсы с высокой энергией излучения (Е_и) и высокая частота повторения импульсов (F). Точная геометрия и низкая шероховатость поверхности (R_z) достигаются оптимальным сочетанием E_{μ} , τ_{μ} , F и скорости процесса V.

Наиболее важным параметром, определяющим качество лазерной обработки, является коэффициент поглощения. Полупроводниковые материалы имеют наибольший коэффициент поглощения в областях видимого и ультрафиолетового диапазонов спектра. Оптический коэффициент поглощения излучения волны длиной 355 нм составляет для монокристаллического кремния 1,1×10⁶ см⁻¹.

Авторами работы [1] исследовалось воздействие единичных лазерных импульсов наносекундного диапазона длительности на поверхность пластин монокристаллического кремния для излучения с длиной волны 355 нм при плотности мощности от 0,2 до 11,5 ГВт/см². При максимальной плотности мощности глубина отверстий составила 60 мкм. При плотности мощности 0,8 ГВт/см² получены отверстия диаметром 10 мкм и глубиной 10 мкм. Частота следования импульсов составляла 400 Гц при максимальной энергии в импульсе 0,5 мДж при длительности импульса 44 нс. Для фокусировки

(б) Рис. 3. Внешний вид отверстий, полученных при использовании наносекундного (а) и пикосекундного лазера (б).

Рис. 4. Интегрированный модуль лазерной маркировки на базе импульсного волоконного лазера ULPN-355-10-1-3-М.

Рис. 5. Установка лазерной обработки ЭМ-4452-1.

Таблица.	Основные параметры установки лазе	рной обработки ЭМ-	4452-1
----------	-----------------------------------	--------------------	--------

Наименование параметра	Единица измерения	Значение параметра
Длина волны излучения лазера	HM	355
Энергия лазерного импульса	мкДж	10
Частота следования лазерных импульсов	кГц	10-300
Длительность импульса лазера	нс	1,5
Фокусное расстояние объектива	MM	65
Дискретность перемещения координатного стола	МКМ	1
Погрешность позиционирования по координатам	МКМ	5
Х, У		
Толщина пластин, подложек	МКМ	100-400
Минимальный диаметр отверстия	МКМ	20

использовалась плоско-выпуклая линза с фокусным расстоянием 50 мм.

Авторами работы [2] проведены исследования кремниевых сверления пластин толщиной 200 мкм лазерными системами, содержащими гальваносканер и лазеры Nd: YVO₄ (длина волны 355 нм), с длительностями импульсов в пикосекундном и наносекундном диапазонах. Сфокусированный на кремниевую пластину лазерный луч двигался при помощи гальваносканера (рис. 1). Лазерное излучение направлялось через расширитель пучка (коллиматор) на сканер, управляющий отклонением излучения в двух взаимноперпендикулярных направлениях, и фокусировалось объективом на поверхность обрабатываемой пластины.

К преимуществам использования сканера можно отнести возможность получения высокой производительности лазерной обработки за счет использования высоких скоростей перемещения лазерного луча. К недостаткам – снижение точности позиционирования луча и возможности получения минимального диаметра в фокусе при использовании больших полей обработки.

Частота следования импульсов пикосекундного лазера при проведении лазерной обработки находилась в диапазоне от 100 до 500 кГц, наносекундного - от 20 до 200 кГц. Средняя мощность излучения наносекундного и пикосекундного лазеров не превышала 460 мВт. Расчетный диаметр пятна лазера составлял 10 МКМ. Величина перекрытия лазерных импульсов составляла от 80 до 90%. Вращающийся сканером луч перемещался по круговой траектории на поверхности пластины (рис. 2). Время сверления отверстия составило 0,78 с. Типичный размер сквозного отверстия, полученного при энергии импульса 15 мкДж и частоте следования импульсов 30 кГц, составил сверху (на входе в пластину) 80 мкм, снизу (на выходе) – 30 мкм. Скорость быстрого вращательного движения луча равнялась 115 мм/с. Скорость движения центра вращения по круговой траектории – 20 мм/с.

По результатам экспериментальных исследований можно сделать заключение, что по качеству лазерной обработки и производительности процессы с использованием пико- и наносекундных импульсов излучения схожи. Отличие заключается размерах В зоны нарушенного материала. Для отверстий, обработанных излучением пикосекундного лазера, такая зона практически отсутствует, а для отверстий, обработанных излучением наносекундного лазера, глубина зоны нарушенного материала составила около 1 мкм. На рис. 3 приведены отверстий, изображения полученных при использовании наносекундного (а) и пикосекундного (б) лазера. Слева показано входное сечение отверстий, справа – выходное. Энергия импульсов составляла соответственно 15,3 мкДж для наносекундного лазера и 4,6 мкДж – для пикосекундного лазера.

В настоящем исследовании для лазерного формирования микроотверстий в полупроводниковых материалах использовалась установка лазерной обработки ЭМ-4452-1 (ОАО «Планар-СО», г. Минск), которая может применяться для скрайбирования и сквозной резки пластин. Сфокусированное лазерное излучение позволяет формировать микроотверстия в различных материалах, поглощающих лазерное излучение УФ-диапазона (длина волны 355 нм) [3].

Управление установкой осуществляется при помощи промышленного компьютера. Создание рабочей программы производится с использованием меню установочных и технологических параметров и редактора AUTOCAD. Изображение обрабатываемого объекта посредством телевизионной системы выводится на дисплей компьютера.

Лазерная микрообработка проводится сочетанием программно-управляемых перемещений обрабатываемой пластины по координатам *X*, *Y*, *Z* и перемещений лазерного луча гальваносканером в плоскости *XY*. Формирование реза происходит по траектории движения лазерного луча. Установка оснащена системой технического зрения с распознаванием обрабатываемых кристаллов пластин по их топологическому рисунку. При лазерной обработке отсутствует механическое воздействие на обрабатываемый материал, возникающие деформации минимальны.

В основу лазерной системы установки положен интегрированный модуль лазерной маркировки на базе импульсного во локонного лазера ULPN-355-10-1-3-М (ООО НТО «ИРЭ-Полюс», г. Москва). Внешний вид данной лазерной системы приведен на рис. 4. Внешний вид установки лазерной обработки ЭМ-4452-1 представлен на рис. 5, а основные параметры – в таблице.

МЕТОДИКА ЭКСПЕРИМЕНТА

Работа установки лазерной обработки ЭМ-4452-1 предусматривает два технологических режима: без использования гальваносканера (режим I) и с использованием гальваносканера (режим II).

Режим I применяется для формирования микроотверстий, когда точность работы гальваносканера не позволяет получать требуемую геометрию отверстия. Данный режим позволяет использовать точные перемещения стола с пластиной на низкой скорости относительно неподвижного лазерного луча. Однако при этом на малых скоростях привода перекрытие лазерных импульсов приближается к 100%, что может привести к дополнительной тепловой нагрузке на обрабатываемый материал, потере качества обработки. Снижая частоту следования лазерных импульсов, потерю качества обработки можно компенсировать, но производительность обработки будет низкой. Формирование реза в данном режиме происходит по схеме вложенных контуров [4]. На рис. 6 приведена схема расположения вложенных контуров.

данном режиме указывают скорость В перемещений стола по координатам Х, У и величину перемещения стола по координате Z после выполнения каждой серии вложенных контуров, количество циклов перемещений по вложенным контурам, число вложенных контуров, шаг между контурами и значение радиуса каждого вложенного контура. Применение вложенных контуров позволяет увеличить ширину реза с целью компенсации экранирования лазерного излучения стенками реза для поддержания эффективного съема материала в процессе резки, а количество лазерной вложенных контуров выбирается, исходя в основном из требуемой глубины реза. Лазерная резка производится послойным удалением материала при обработке серии вложенных контуров.

Режим II предусматривает формирование реза быстрым перемещением луча гальванометрическими сканерами и медленными точными перемещениями пластины координатным столом (XYZ). Для формирования микроотверстий в данном режиме используется схема перемещения сфокусированного лазерного луча синхронно с перемещением обрабатываемой пластины координатным столом. В этом режиме указывают диаметр окружности, формируемой сканером, количество векторов на окружности, задержку на векторе и количество проходов лазерного луча по окружности (рис. 2).

Рассчитаны основные параметры процесса лазерного формирования отверстий в кремниевых пластинах. Термическая глубина проникновения для кремния:

$$X = \left(\alpha \tau\right)^{1/2},\tag{1}$$

где α – коэффициент температуропроводности кремния 89×10^{-5} м²/с, τ – длительность лазерного импульса.

Для импульсного волоконного лазера ULPN-355-10-1-3-М эта глубина составила 1,15 мкм.

Средняя мощность лазерного импульса:

$$P_{u_{MMn.}} = \frac{E_{u_{Mn.}}}{\tau},$$
 (2)

где E_{umn} – энергия лазерного импульса, (10⁻⁵ Дж).

При длительности лазерного импульса 1,5×10⁻⁹ с его средняя мощность составила 6,7 кВт.

Диаметр луча в фокусе:

$$d = \frac{4 f M^2 \lambda}{(\pi D)},\tag{3}$$

где f – фокусное расстояние объектива (65 мм); M^2 – качество луча (1,4); D – диаметр луча на входе в объектив (4 мм); λ – длина волны лазера (355 нм).

При длине волны 355 нм диаметр луча в фокусе равен 10 мкм. При этом плотность мощности в фокусе достигла 2×10^9 BT/см².

Скорость перемещения луча при обработке:

$$V = d \times F \times (1 - O_d), \tag{4}$$

где *F* – частота следования лазерных импульсов; О_d – коэффициент перекрытия лазерных импульсов.

Для коэффициента $O_d = 0.8$, являющегося оптимальным по соотношению качество/производительность, скорость перемещения луча при обработке составляла 400 мм/с при частоте следования импульсов 200 кГц.

Рис. 6. Схема расположения вложенных контуров в режиме І.

Рис. 7. Схема профиля («песочные часы») отверстия, сформированного двусторонней лазерной обработкой: *D*_{верх} – диаметр отверстия на верхней поверхности пластины; *D*_{низ} – диаметр отверстия на нижней поверхности пластины; *D*_{середина} – диаметр отверстия на уровне половины толщины пластины; α – угол конусного отверстия при односторонней обработке (сверху); *Z* – толщина пластины.

вид снизу

Рис. 8. Вид отверстий под электронным микроскопом в кремниевой пластине толщиной 400 мкм после двусторонней лазерной обработки в режиме I.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

При лазерной микрообработке отверстий стенки отверстия, как правило, имеют наклон, а отверстие получается конусным. Исходя из условий лазерной микрообработки, параметров излучения, фокуса объектива, скорости обработки, угол наклона стенки отверстия может находиться в пределе 2–10 градусов.

Для получения отверстий с равными диаметрами с обеих сторон пластины возможна двусторонняя лазерная обработка, когда отверстия формируются поочередно с обеих сторон пластины на одной оси. На рис. 7 изображена схема профиля («песочные часы») отверстия, сформированного двусторонней лазерной обработкой.

На рис. 8 представлены фотографии отверстий в кремниевых пластинах толщиной 400 мкм после двусторонней лазерной обработки в режиме I. Для формирования отверстий в этом режиме использованы следующие параметры:

- скорость (V), мм/с - 0,2;

- количество проходов по контуру (*N*) - 30;

- количество вложенных контуров (n) - 5;

– шаг между контурами (D), мм – 0,005;

– диаметр основного контура (d), мм – 0,05;

– энергия лазерного импульса (E), мкДж – 10;

 частота следования лазерных импульсов, кГц – 10.

Время формирования отверстия составило 100 с.

Для формирования отверстий диаметром 400 мкм в кремниевой пластине толщиной 400 мкм при односторонней лазерной обработке в режиме II выбраны следующие параметры:

- скорость перемещения стола, мм/с - 1,5;

- количество проходов стола по контуру - 22;

- количество вложенных контуров - 1;

– шаг между контурами, мм – 0;

– диаметр основного контура, мм – 0,3;

- энергия лазерного импульса, мкДж - 10;

 частота следования лазерных импульсов, кГц – 250;

 диаметр окружности, формируемой сканером, мм – 0,1;

 количество векторов на окружности, формируемой сканером – 80;

- задержка в точке на векторе окружности (сканер), мс -1.

Время формирования отверстия составило 15 с.

Таким образом, эффективность лазерной микрообработки зависит от выбора параметров лазерного излучения, способа лазерной обработки, скорости и точности перемещения лазерного луча относительно обрабатываемого материала. Чем короче длина волны и меньше реальная угловая расходимость, тем больше возможностей сфокусировать излучение И обеспечить минимально возможный размер зоны воздействия.

выводы

Коротковолновое излучение лучше поглощается материалами, используемыми в микроэлектронике, поэтому использование его при лазерной микрообработке предпочтительно. Чем короче длительность импульса излучения, тем меньшее тепловое и деформационное влияние он оказывает на материал вне зоны облучения.

Качество производительность И отверстий формирования В кремниевых пластинах с использованием гальваносканера существенно выше. Это связано с возможностью работы на больших скоростях движения луча, что обеспечивает оптимальный коэффициент перекрытия лазерных импульсов при максимальной частоте ИХ следования И эффективное шлаков. Однако удаление получение отверстий качественных с использованием гальваносканера зависит от его точностных и динамических характеристик.

Получение отверстий диаметром менее 30 мкм при глубине обработки более 200 мкм без использования гальваносканера проблематично в связи с экранировкой излучения стенками отверстия и образующимися на них шлаками. Недостаток плотности мощности В зоне воздействия излучения не позволяет эффективно испарять материал и создавать нужное для удаления шлаков давление паров. При этом энергия излучения расходуется не на испарение, а на нагрев и плавление материала в зоне обработки.

Использование установке в лазерной ЭМ-4452-1 обработки сочетания высокоскоростных перемещений лазерного луча системой гальваносканера и точного позиционирования заготовок обрабатываемого материала позволяет повысить эффективность лазерной микрообработки и расширить функциональные возможности оборудования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ЛИТЕРАТУРА

- 1. Karnakis, D.M., High power single-shot laser ablation of silicon with nanosecond 355 nm, *Appl. Surf. Sci.*, 2006, vol. 252, no. 22, p. 7823.
- Pantsar, H., Herfurth, H., Heinemann, S. and Laakso, P., Laser microvia drilling and ablation of silicon using 355 nm pico and nanosecond pulses, *Proc. ICALEO*® 2008 Congress, Laser Microprocessing Conf., Paper M507, p. 287.
- Петухов, И.Б., Ретюхин, Г.Е., Ланин, В.Л., Прецизионная лазерная обработка структур для сборки модулей 2,5 и 3,0D интеграции, Материалы МНПК «Современные информационные и электронные технологии», Одесса, 24–28 мая 2021, с. 41.
- Г., 4. Ретюхин, Школык, С., Ланин, B.. установка Многофункциональная лазерной изделий обработки материалов И микроэлектроники, Производство электроники, 2018, № 1, c. 98.

Summary

The process of laser formation of microholes in semiconductor substrates using an EM-4452-1 laser processing unit with a pulse repetition rate of a picosecond laser from 10 to 300 kHz at a radiation energy of up to 10 μ J was investigated. The combination of high-speed movements of the laser beam by the galvanoscanner system and precise positioning of the processed material increases the efficiency of laser microprocessing and expands the functionality of the equipment.

Keywords: laser radiation, holes, semiconductor substrates, microprocessing