
SOFTWARE FOR REGISTERS STRUCTURE
HDL-DESCRIPTION GENERATION WITH AMBA

PROTOCOLS SUPPORT

Burko L., Kaiky M., Tushinskaya E.
Department of Informatics, Belarusian State University of Informatics and Radioelectronics

Minsk, Republic of Belarus
E-mail: {burkoliana, kaikymykhailo}@gmail.com, tushkan@fksis.by

This work discusses a software tool for automatically building and checking registry structures with programmatic
access using AMBA protocols. A specialized tool has been developed for constructing an HDL description of register
structures and a verification environment with the generation of test sequences for testing them.

Introduction

In the modern system-on-chip (SoC) design
stack, software-accessible registers for accessing pe-
ripheral devices and hardware accelerators play an
important role. Modern SoCs have dozens of hard-
ware accelerators in their composition, which are ac-
cessed using various interfaces. An example of such
interfaces is the AMBA (Advanced Microcontroller
Bus Architecture) family of protocols proposed by
ARM and including the following interfaces: AXI3,
AXI4, AHB, APB, ASB. Despite this wide variety
of interfaces, the model of register memory that is
accessed is unchanged and is a set of numbered cells.
Due to the necessity of designing various register
models for hardware accelerators, an approach to au-
tomatically generate such structures was proposed.
In addition to generating register structures, the is-
sue of verifying the resulting HDL descriptions using
the SystemVerilog is also considered.

I. Structure of Software-accessible
Registers Hardware Implementation

In the general case, hardware implementations
of software-accessible registers consist two funda-
mental components: an interface controller (for ex-
ample, AXI4-Stream) and the memory itself. A
memory block can be implemented in various ways,
for example based on registers or SRAM cells. The
implementation of a memory block depends on the
requirements specified by the developers, such as
read/write latency, the need to reset the value of
cells after read/write operations, etc. In this paper,
the authors propose a universal structure for describ-
ing an interface controller and a memory block for
implementing a software-accessible unit. The pro-
posed HDL-description consists of a reconfigurable
interface controller, which allows, at the design stage,
to select an implementable interface for communi-
cation with the host controller. The memory block
is connected to the interface controller using a na-
tive interface (always remains unchanged), with the
following signals: en, we, addr, wdata, rdata. Using
this design approach, we can replace only the inter-
face part without making significant adjustments to
the memory structure.

Interface
Controller

Memory
Unit

...

0x00
0x04
0x08

0xFC
0xF8
0xF4

Native
Interface

AXI3

UART

SPI

AXI4

ABH

APB

Host-Ctrl
Interface

Hardware
Accelerator

Figure 1 – Software-accessible Registers Structure

II. Generating Memory Structures

It was proposed to obtain an HDL description
of memory structures using the developed generator.
This generator operates based on a set of constraints
for memory requirements, and the generator out-
put is an HDL description in SystemVerilog for the
memory unit. Constraints and requirements for a
memory unit are specified in the following format:

‘define RST_TYPE sync
‘define RST_LEV 1
‘define MEM_TYPE DFF
‘define DFF_SYNC rising_edge
‘define MEM_HOST_WLATENCY 2
‘define MEM_HOST_RLATENCY 1
‘define MEM_HW_WLATENCY 1
‘define MEM_HW_RLATENCY 0
‘define status // 32 // W/R // R // 32’h12

When such a description is transmitted to the
generator, a memory will be generated based on
D-flip-flops featuring synchronous high-level reset,
write/read latency for the host controller - 2/1 sys-
tem clock cycles, for a hardware accelerator - 1/0,
and will contain one A 32-bit register named status.
The access mode for the host controller is read and
write, the access mode for the hardware is read only,
the value at initialization/reset is 12 in hexadecimal.

121

III. Verification of Software-accessible
Registers Structure

To verify the generated structure, together with
the interface controller, a series of test benches are
recommended, simulating register sccess through
a specified protocol (for example, AXI4-Lite or
UART). For this purpose, “automatic tasks" were de-
veloped in the SystemVerilog language. Generation
of addresses and data during read/write operations
is carried out using root cases and the random func-
tion. Test sets are supplied to the block of software-
accessible registers in such a way as to cover all
possible modes of access to registers (read/write
from the host controller and hardware accelerator)
and cover all switching of the address decoder in the
memory unit. After passing the verification stage,
only when coverage of switching in the decoder and
operating modes is achieved can a conclusion be
made about the functional correctness of the gener-
ated structure.

An example of such a design for a write opera-
tion using the AXI4-Lite protocol (fig. 2):

task automatic axi_write;
input [S_AXI_ADDR_WIDTH - 1 : 0] addr;
input [S_AXI_DATA_WIDTH - 1 : 0] data;
begin

s_axi_wdata = data;
s_axi_awaddr = addr;
s_axi_awvalid = 1;
s_axi_wvalid = 1;
s_axi_wstrb = 4’b1111;
wait(s_axi_awready && s_axi_wready);

@(posedge s_axi_aclk) #1;
s_axi_wstrb = 4’b0000;
s_axi_awvalid = 0;
s_axi_wvalid = 0;

end
endtask

S_AXI_ACLK

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_AWLEN 3

S_AXI_WVALID

S_AXI_WREADY

S_AXI_WDATA

S_AXI_WLAST

S_AXI_BVALID

Figure 2 – AXI4-Lite Write Sequence

Read operation using the AXI4-Lite protocol
(fig. 3):

task automatic enforce_axi_read;
input [S_AXI_ADDR_WIDTH - 1 : 0] addr;
input [S_AXI_DATA_WIDTH - 1 : 0] expected_data;
begin

s_axi_araddr = addr;
s_axi_arvalid = 1;
s_axi_rready = 1;
wait(s_axi_arready);
wait(s_axi_rvalid);
if (s_axi_rdata != expected_data) begin

$display("Error: Mismatch in AXI4
read at %x:", addr,"expected %x,
received %x",expected_data, s_axi_rdata);

end
@(posedge s_axi_aclk) #1;
s_axi_arvalid = 0;
s_axi_rready = 0;

end
endtask

S_AXI_ACLK

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_ARLEN 3

S_AXI_RVALID

S_AXI_RDATA

S_AXI_RLAST

Figure 3 – AXI4-Lite Read Sequence

IV. Conclusion

A generator of HDL descriptions was devel-
oped for the structures of software-accessible reg-
isters with support for an arbitrary memory unit
structure and various interface controllers (UART,
SPI, AXI4-Lite). The generator receives as input a
file with restrictions and parameters of the register
memory model, and generates an HDL description
of the implementation of a memory unit and a set
of test sequences in the SystemVerilog.

1. Advanced Microcontroller Bus Architecture (AMBA),
ARM Computing [Electronic resource] – Mode of access:
https://developer.arm.com/Architectures/AMBA. –
Date of access: 11.10.2023.

2. Design and Performance Analysis of 32 × 32
Memory Array SRAM for Low-Power Applica-
tions, Xue, Xingsi and Sai Kumar, Department
of Electrical Engineering, Linköping Univer-
sity, 2022 [Electronic resource] – Mode of ac-
cess: https://www.researchgate.net/publication/
368381578_Design_and_Performance_Analysis_of_32_
32_Memory_Array_SRAM_for_Low-Power_Applications.
– Date of access: 15.10.2023.

122

https://developer.arm.com/Architectures/AMBA
https://www.researchgate.net/publication/368381578_Design_and_Performance_Analysis_of_32_32_Memory_Array_SRAM_for_Low-Power_Applications
https://www.researchgate.net/publication/368381578_Design_and_Performance_Analysis_of_32_32_Memory_Array_SRAM_for_Low-Power_Applications
https://www.researchgate.net/publication/368381578_Design_and_Performance_Analysis_of_32_32_Memory_Array_SRAM_for_Low-Power_Applications

	Kaiky M., Ivaniuk A.Random Number Generation on Reconfigurable Ring Oscillator

