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Abstract: Sol-gel technology has attracted attention in the fabrication of diverse luminescent materials
and thin film structures, with forms that range from powders to microcavities. The optical prop-
erties of sol-gel-derived structures depend on the sol composition, deposition, and heat treatment
conditions, as well as on the film thicknesses and other factors. Investigations on the upconversion
luminescence of lanthanides in film structures and materials are also ongoing. In this study, we
synthesized three different types of materials and film structures using the same sol, which corre-
sponded to a Ba0.76Er0.04Yb0.20TiO3 xerogel, as follows: (a) the target form, which used the explosive
compaction method for sol-gel-derived powder; (b) single-layer spin-on xerogel films annealed at
450 and 800 ◦C; and (c) microcavities with an undoped SiO2/BaTiO3 Bragg reflector surrounding a
Ba0.76Er0.04Yb0.20TiO3 active layer. The BaTiO3:(Er,Yb)/SiO2 microcavity exhibited an enhancement
of the upconversion luminescence when compared to the BaTiO3:(Er,Yb) double-layer film fabricated
directly on a crystalline silicon substrate. The reflection spectra of the BaTiO3:(Er, Yb)/SiO2 micro-
cavity annealed at 800 ◦C demonstrated a deviation of the maxima of the reflection within 15% for
temperature measurements ranging from 26 to 120 ◦C. From the analyses of the transmission and
reflection spectra, the optical band gap for the indirect optical transition in the single layer of the
BaTiO3:(Er,Yb) spin-on film annealed at 450 ◦C was estimated to be 3.82 eV, while that for the film
annealed at 800 ◦C was approximately 3.87 eV. The optical properties, upconversion luminescence,
and potential applications of the BaTiO3:(Er,Yb) sol-gel-derived materials and structures are discussed
in this paper.

Keywords: barium titanate; erbium; ytterbium; upconversion; luminescence; sol-gel; xerogel; micro-
cavity; powder; refractive index; optical band gap
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1. Introduction

Over the past several decades, there has been a growing interest in the development of
technologies for the fabrication of barium titanate targets and thin film structures [1]. High
dielectric constants, low dissipation factors, large electro-optical coefficients, high breakdown
voltages, and other attractive properties stimulate the application of diverse technologies for
the fabrication barium titanate powders, ceramic targets, and thin films [2–14]. The deposition
technologies for BaTiO3 in a vacuum, as well those for as sol-gel synthesis, were used to
fabricate thin film capacitors [4], electro-optical devices [5,6], optical IR filters [7], photonic
crystals [8,9], and microcavities [10,11]. In addition, the strong luminescence of lanthanides in
BaTiO3 host materials is currently being widely investigated, particularly, Stokes luminescence
under visible and UV light excitation [2,11] and upconversion photoluminescence (PL) excited
under IR range illumination [12–14].

Recently, we reported on the sol-gel synthesis and optical properties of BaTiO3/SiO2
Bragg reflectors and microcavities [10]. In this work, we have presented data on upcon-
version luminescence from a sol-gel derived BaTiO3 target doped with Er and Yb, i.e.,
a rare-earth-doped BaTiO3:(Er,Yb) material, and we continued our investigation of the
optical properties of BaTiO3/SiO2 microcavities annealed at temperatures ranging from
450 to 800 ◦C. We observed an enhancement of the upconversion luminescence in the
microcavities with BaTiO3:(Er,Yb) active layers, as well as the stable upconversion lumi-
nescence in the target material over the year and the significant changes in the amplitudes
of the reflection spectra of the BaTiO3/SiO2 microcavities annealed at 800 ◦C. From the
transmission and reflection spectra of the BaTiO3:(Er,Yb) layer, we determined the refractive
index, absorption index, optical band gap, and Urbach energy for the BaTiO3:(Er,Yb) films
annealed at 450 and 800 ◦C.

2. Experimental
2.1. Film Structures on Silicon and Fused Silica

Three types of sol were prepared for the synthesis of sol-gel-derived film structures
and the target structure. For the synthesis of the barium titanate sol (sol I), titanium
isopropoxide (Ti(OC3H7)4) (97%, Sigma-Aldrich, Steinheim, Germany), barium acetate
(Ba(CH3COO)2) (ACS reagent 99%, Sigma-Aldrich, Steinheim, Germany), acetylacetone
(CH3COCH2COCH3) (analytical grade, AO Vekton, Saint Petersburg, Russia), and acetic
acid (CH3COOH) were used as the starting components. The amounts of titanium iso-
propoxide and barium acetate were chosen so that the Ti/Ba ratio corresponded to the
stoichiometric composition of the barium titanate in the films (i.e., Ti:Ba = 1:1). The mixture
was stirred for 1 h with an electromechanical stirrer until all components were completely
dissolved, resulting in a stable film-forming sol.

Sol II was prepared using the following procedure [10] for the synthesis of the
BaTiO3:(Er,Yb) xerogel, namely, Ba0.76Er0.04Yb0.20TiO3. Two solutions were prepared.
The solution using titanium isopropoxide (Ti(OC3H7)4) (97%, Sigma-Aldrich, Steinheim,
Germany) in acetylacetone (CH3COCH2COCH3) (analytical grade, AO Vekton, Saint Pe-
tersburg, Russia) was stirred until it cooled. Separately, barium acetate (Ba(CH3COO)2)
(ACS reagent 99%, Sigma-Aldrich, Steinheim, Germany) was dissolved in distilled water
and stirred until completely dissolved. Erbium acetate hydrate (Er(CH3COO)3·xH2O)
(99.9% trace metal basis, Sigma-Aldrich, Milwaukee, USA) was added to the barium ac-
etate solution and stirred until complete dissolution. Then, ytterbium acetate hydrate
(Yb(CH3COO)3·xH2O) (99.95% trace metal basis, Sigma-Aldrich, Milwaukee, WI, USA)
was added to the solution of barium and the erbium acetates and stirred until completely
dissolved. Acetic acid (CH3COOH) was added to the solution of Ba, Er, and the Yb acetates
and stirred for approximately 5 min. Finally, the solutions of titanium isopropoxide and Ba,
Er, and the Yb acetates were mixed and stirred for approximately 5 min. Ethanol (C2H5OH)
was then added to this solution, which was then further stirred for 1.5 h.

To obtain silica xerogel (SiO2), silica sol (sol III) was prepared. Concentrated nitric acid
(HNO3) (66%, reagent grade, Minimed, Bryansk, Russia) was added to an alcohol–water
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mixture (the volume ratio of distilled water and ethanol (C2H5OH) was approximately 1:6)
until the solution reached a pH of 1. Tetraethyl orthosilicate (Si(OC2H5)4) (≥99.0% (GC),
Sigma-Aldrich, Buchs, Switzerland) was added to this mixture and stirred, and the pH was
adjusted again to 1 by adding concentrated nitric acid. The final solution was stirred for half
an hour. The sol should be aged for at least 24 h in airtight conditions before deposition.

The sample representing a microcavity (BaTiO3:(Er,Yb)/SiO2 microcavity) was pre-
pared by deposition wherein the sols were spun on a monocrystalline silicon substrate.
After the deposition of sol I, it was dried at 200 ◦C for 10 min and annealed at 450 ◦C for
30 min. Then, sol III was deposited on the BaTiO3 xerogel layer and subjected to the same
heat treatment (drying at 200 ◦C for 10 min and annealing at 450 ◦C for 30 min) to form the
SiO2 xerogel film. Then, a double-xerogel layer, BaTiO3:(Er, Yb), referred to as the “active
cavity layer,” was formed from sol II by sequential deposition, followed by annealing at
450 ◦C for 30 min. Thus, the microcavity structure with an active layer of BaTiO3:(Er,Yb),
which was separated with the undoped SiO2/BaTiO3 Bragg reflectors, was fabricated, and
it included a lower Bragg reflector consisting of 4 pairs of undoped BaTiO3 and SiO2 layers,
a thicker (active) double-layer of BaTiO3:(Er,Yb), and an upper Bragg reflector, which also
consisted of 4 SiO2/BaTiO3 pairs of undoped layers (Figure 1a). The fabricated sample
with a microcavity was separated into two parts, and finally, one part with a microcavity
structure was additionally annealed at 800 ◦C for 30 min.
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Figure 1. (a) Scheme of the microcavity BaTiO3: (Er,Yb)/SiO2 structure and (b) its SEM image after
the heat treatment at 450 ◦C.

Two layers of BaTiO3:(Er, Yb) xerogel were sequentially fabricated on a similar silicon
substrate as the reference sample. After spinning, the first layer was annealed at 200 ◦C
for 10 min and then again at 450 ◦C for 30 min. After that, the second layer was fabricated
in the same way. Finally, this double-layer structure was annealed at 450 ◦C for five
hours and then again at 800 ◦C for 30 min; thus, the heat treatment and thickness of this
film corresponded to the heat treatment and thickness of the microcavity BaTiO3:(Er,Yb)
active layer.

Additionally, one layer of BaTiO3:(Er, Yb) xerogel was fabricated on fused silica
substrates by spinning and drying, followed by annealing at either 450 or 800 ◦C for 30 min
to analyze the influence of the heat treatment on the optical characteristics of a single
BaTiO3:(Er, Yb) xerogel layer.
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2.2. BaTiO3 Target

Because the expensive components contained Er and Yb, we used two types of pow-
der: a BaTiO3 xerogel powder undoped with lanthanides, prepared from sol I, and a
BaTiO3:(Er,Yb) xerogel powder prepared from sol II. The xerogel powders were annealed
at 1000 ◦C for 30 min in air. The target was compacted by pulses from a planar impact
wave generator with a detonation rate of ~4000 m/s. The developed explosive compaction
method produced a planar detonation front that allowed for mixing the upper layers to be
significantly reduced and the faceting of the formed target to be improved. A target form
with a diameter of 48 mm and a thickness of 4 mm was formed from the BaTiO3 xerogel
powders. Thus, the top part of the target (the front side) was enriched with Er and Yb,
whereas the bottom side was depleted with lanthanides.

2.3. Structural and Optical Studies

The morphologies of the obtained samples were studied using a Hitachi S-4800 scan-
ning electron microscope (SEM) (Hitachi, Tokyo, Japan) equipped with a Bruker Quantax
200 spectrometer (Bruker, Berlin, Germany) for the energy dispersive X-ray analyses (EDX).

Studies of the upconversion photoluminescence were carried out under continuous-
wave (CW) or pulsed optical excitation. A focused 980 nm laser beam of a 200 mW diode
module was used for the excitation of the upconversion PL (power density J ~10 W/cm2)
in the CW mode. The emission in the visible range was focused on the entrance slit of
a 0.6 m grating spectrometer equipped with 1200 gr/mm gratings, and the PL intensity
was measured using a R 9110 Hamamatsu photomultiplier tube that was sensitive in the
spectral range of 200–850 nm. The spectral resolution of the PL measurement system was
~0.6 nm. A lock-in-amplifier with mechanical chopping at a frequency of approximately
20 Hz was used for the signal recovery.

The time-resolved upconversion PL spectra were measured using an optical parametric
oscillator (OPO) (Newport, CA, USA) pumped with the third harmonic (355 nm) of a pulsed
Nd:YAG laser and tuned in the spectral range of 700 to 1600 nm. The OPO pulse duration
was 10 ns, the repetition rate was 10 Hz, and the average power was ~5 mW. Registration
of the upconversion PL in the visible range was carried out using an Acton 2300i (Princeton
instruments, Trenton, NJ, USA) grating spectrometer, an Si-based PMT (350–800 nm), and a
LeCroy digital oscilloscope (LeCroy, New York, NY, USA).

The spectra of the optical reflection and transmission of the prepared samples were
measured using a Cary-500 ScanUV-VIS-NIR spectrophotometer (Varian, Mulgrave, Aus-
tralia) and an MS122 spectrophotometer (PROSCAN Special Instruments, Minsk, Belarus).

The spectra of the reflection in the temperature range of 26–120 ◦C were measured
using an Ocean Optics USB2000+ spectrometer (Ocean Optics, Dunedin, FL, USA) equipped
with a fiber reflection probe and a halogen lamp. During the measurements, the samples
were placed horizontally on the heating table, and the sample surface temperatures were
monitored by a thermocouple.

The X-ray diffraction (XRD) studies of the target were carried out with a DRON-3
diffractometer (Burevestnik, Leningrad, USSR) using monochromatic Cu Ka radiation with
an exposition of 2 s per 0.04◦ step at room temperature.

The Raman spectra were recorded using a SOL Instruments Confotec NR500 3D
scanning laser Raman spectrometer (SOL Instruments, Minsk, Belarus) with a 473 nm laser
diode as the source.

3. Results and Discussion

Figure 1 illustrates the scheme of the fabricated BaTiO3:(Er,Yb)/SiO2 microcavity
and its SEM image after annealing at 450 ◦C. The image shows a microcavity with an
overall thickness of approximately 1.4 µm and a BaTiO3:(Er,Yb) active layer thickness of
approximately 150 nm.
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Table 1 displays the EDX data of the BaTiO3:(Er,Yb) target prepared from the same sol
(sol II) as the cavity layer. The data were collected from the lanthanide-enriched front side
of the target.

Table 1. Chemical composition of the lanthanide-enriched front side of the target determined from
the EDX-analysis data averaged from five points of the target’s surface.

Element Concentration, at. % Standard Deviation, at. %

O 55.6 0.6
Ti 19.0 0.8
Ba 16.6 0.8
C 5.4 0.6

Yb 2.8 0.2
Er 0.6 0.1

According to the EDX studies of the BaTiO3:(Er,Yb) target, the average total concentra-
tion of Er and Yb was 3.4 at. % with the ratio Er:Yb ≈ 1:5 and standard deviations of 0.1 at.
% for the Er and 0.2 at. % for the Yb.

The XRD spectrum of the BaTiO3 (Er:Yb)/BaTiO3 target (Figure 2a) consisted of both
the lines related to the BaTiO3 and additional lines that could be attributed to the phase
“A”. The numbers represent the perovskite BaTiO3 lines’ hkl indices while the letter “A“
stands for the lines’ “A” phases. It could be seen that the crystalline structure of the
target was a cubic perovskite lattice with a cell parameter of approximately 4.009 Å. The
absence of splitting of the 200 reflections into tetragonal 002/200 reflections supported our
assumptions about the cubic structure of the BaTiO3. The phase marked “A” on the X-ray
diffraction pattern could be attributed to the Er2O3, along with the cubic structure of the
Fm3m (225) space group, similar to the results for rare earth oxide thin films [15], though
their cell parameters are somewhat smaller than those in this paper.
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Figure 2. XRD and Raman spectroscopic characterizations of the BaTiO3 (Er:Yb)/BaTiO3 target:
(a) XRD angular spectrum; and (b) Raman spectra from the front (red line) and bottom (black line)
sides of the target.

The Raman spectra recorded from both sides of the target revealed the characteristic
lines at 260, 293, 521, and 725 cm−1 (Figure 2b), corresponding to the three major vibration
modes of crystalline BaTiO3 (A(TO), E(TO-LO), and (A + E)(LO)) [16]. The spectra recorded
from the front side enriched with the lanthanides showed an additional set of lines in
the range of 1900–3000 cm−1, which was associated with the photoluminescence of the
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trivalent Er ions excited by the 473 nm laser line. The obtained spectra confirmed both the
BaTiO3 crystalline phase and the presence of trivalent erbium ions in the target.

Being excited at 980 nm the front side of the target exhibited bright orange room-
temperature upconversion PL, with the main bands at 410, 523, 546, and 658 nm (Figure 3a,b),
which were related to the 2H9/2→ 4I15/2, 2H11/2→ 4I15/2, 4S3/2→ 4I15/2, and 4F9/2→ 4I15/2
transitions in the Er3+ ions, respectively. These upconversion luminescence bands were also
observed in the diverse matrices doped with erbium and ytterbium, e.g., CaIn2O4, CaGd2
(WO4)4, and LixNa1-xCaLa0.5 (MoO4)3 [17–19].
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Figure 3. Upconversion PL spectra of the BaTiO3 (Er:Yb)/BaTiO3 target: (a) room-temperature up-
conversion PL spectrum under the excitation wavelength of 980 nm; (b) energy level diagram of the 
upconversion PL excitation, where GSA refers to the ground state absorption and ET refers to the 
energy transfer, colored arrows denote radiative transitions between the energy levels of Er3+ ions; 
and (c) PLE spectra for the PL wavelength of 550 nm for the BaTiO3 (Er:Yb)/BaTiO3 target (red line 

Figure 3. Upconversion PL spectra of the BaTiO3 (Er:Yb)/BaTiO3 target: (a) room-temperature
upconversion PL spectrum under the excitation wavelength of 980 nm; (b) energy level diagram of
the upconversion PL excitation, where GSA refers to the ground state absorption and ET refers to the
energy transfer, colored arrows denote radiative transitions between the energy levels of Er3+ ions;
and (c) PLE spectra for the PL wavelength of 550 nm for the BaTiO3 (Er:Yb)/BaTiO3 target (red line
with circles) and for a sample of BaTiO3 with ~3.8 at. % of Er without sensitized Yb ions (black line
with circles), respectively.

The upconversion PL intensity was stable and efficient during storage of the target in
room-temperature conditions for one year. The PL intensity was approximately six times
higher compared to the previously fabricated BaTiO3 target doped with ~3.8 at. % of Er
without sensitized Yb ions, as described in [20]. Figure 3c shows the PL excitation (PLE)
spectrum of the BaTiO3:(Er,Yb) target. We assumed that the relatively broad PLE spectrum
within the range of excitation wavelengths 935–980 nm corresponded to a high absorption
cross-section of Yb3+ ions [21], and that it was a result of the Stark splitting of the Yb3+

energy levels in the fabricated BaTiO3:(Er,Yb) target.
An enhancement of the upconversion PL was observed in the BaTiO3: (Er,Yb)/SiO2 micro-

cavity structure in comparison with that in the BaTiO3:(Er,Yb) film (Figure 4). The upconversion
PL from the BaTiO3:(Er,Yb) layer surrounded with the SiO2/BaTiO3 Bragg reflectors was ap-
proximately 40 times higher than that of the BaTiO3:(Er,Yb) layer of approximately the same
thickness that was subjected to the same heating method. This result confirmed the earlier
reports on the enhanced PL of lanthanides from microcavities prepared using vacuum deposi-
tion [22], electrochemistry [23], or the sol-gel method [11,24,25]. The inset of Figure 4 represents
the upconversion PL spectrum of the microcavity annealed at 450 ◦C. The microcavity structure
annealed at 450 ◦C was 360 times weaker compared with the microcavity structure annealed
at 800 ◦C. In contrast to the microcavity structure, no upconversion PL in the BaTiO3:(Er, Yb)
double layer on the silicon annealed at 450 ◦C was observed (not shown).
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Figure 4. Room-temperature upconversion PL spectra of the BaTiO3:(Er,Yb)/SiO2 microcavity (black 
curve) and the double-layer BaTiO3:(Er,Yb) structure (red curve) on a silicon substrate after an-
nealing at 800 °C. the inset depicts the spectrum of the upconversion PL of the microcavity (blue 
curve) after annealing at 450 °C. 

Figure 5a,b shows the reflection spectra of the microcavities recorded at different 
temperatures. Unlike the microcavity fabricated at 450 °C on a fused silica substrate (re-
ported earlier) [10], the high temperature annealing of the microcavity at 800 °C revealed 
two results. First, the shift in the cavity mode was not as pronounced after annealing the 
microcavity at a lower temperature, namely, 450 °C [10]. Second, there was a significant 
deviation in the reflection maxima, e.g., at 512 nm, of the microcavity annealed at 800 °C. 
The corresponding reflection values changed within 15% in the temperature range of 
measurements from 25 to 120 °C (Figure 5с). 

Figure 4. Room-temperature upconversion PL spectra of the BaTiO3:(Er,Yb)/SiO2 microcavity (black
curve) and the double-layer BaTiO3:(Er,Yb) structure (red curve) on a silicon substrate after annealing
at 800 ◦C. the inset depicts the spectrum of the upconversion PL of the microcavity (blue curve) after
annealing at 450 ◦C.

Figure 5a,b shows the reflection spectra of the microcavities recorded at different
temperatures. Unlike the microcavity fabricated at 450 ◦C on a fused silica substrate
(reported earlier) [10], the high temperature annealing of the microcavity at 800 ◦C revealed
two results. First, the shift in the cavity mode was not as pronounced after annealing the
microcavity at a lower temperature, namely, 450 ◦C [10]. Second, there was a significant
deviation in the reflection maxima, e.g., at 512 nm, of the microcavity annealed at 800 ◦C.
The corresponding reflection values changed within 15% in the temperature range of
measurements from 25 to 120 ◦C (Figure 5c).
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Figure 5. (a) Reflection spectra of the BaTiO3:(Er,Yb)/SiO2 microcavity annealed at 450 °C, measured 
in the temperature range of 26–130 °C during heating (solid lines), followed by cooling (dashed 
lines), while the inset shows a selected enlarged region of these spectra. (b) Reflection spectra of the 
same microcavity after annealing at 800 °C, measured at different temperatures during heating 
(solid lines), followed by cooling (dashed lines), while the inset shows a selected enlarged region of 
these spectra. (c) Reflection data for the chosen wavelengths for the sample annealed at 800 °C for 
one cycle of heating (circles with solid lines), followed by cooling (triangles with dashed lines). 

The prepared target appeared to be useful for potential applications as an IR laser 
radiation visualizer and for the production of BaTiO3 film structures by sputtering in a 
vacuum. The effect of sample temperature on the amplitude of the reflection spectrum, as 
well as an intense upconversion luminescence for structures treated at 800 °C, and the 
previously noted shift of the cavity mode for the less-dense xerogel structures treated at 
450 °C [10] encourage further research into the characteristics of barium titanate struc-
tures doped with lanthanides for optical adsorption and for use as temperature sensors 
and remote monitoring systems [26–28]. 
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ured and calculated data satisfied the criterion 𝜒 ≪ 1. The thickness of the single-layer 
film annealed at 450 °C was 99 nm and that of the film annealed at 800 °C was 65 nm. The 
higher annealing temperature led to a decrease in the BaTiO3:(Er,Yb) film thickness that 
was typical for sol-gel derived films and particularly for BaTiO3:(Er,Yb) films, and that for 
the undoped BaTiO3 films was confirmed by means of SEM in [9,10]. The decrease in the 
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Figure 5. (a) Reflection spectra of the BaTiO3:(Er,Yb)/SiO2 microcavity annealed at 450 ◦C, measured
in the temperature range of 26–130 ◦C during heating (solid lines), followed by cooling (dashed lines),
while the inset shows a selected enlarged region of these spectra. (b) Reflection spectra of the same
microcavity after annealing at 800 ◦C, measured at different temperatures during heating (solid lines),
followed by cooling (dashed lines), while the inset shows a selected enlarged region of these spectra.
(c) Reflection data for the chosen wavelengths for the sample annealed at 800 ◦C for one cycle of
heating (circles with solid lines), followed by cooling (triangles with dashed lines).

The prepared target appeared to be useful for potential applications as an IR laser
radiation visualizer and for the production of BaTiO3 film structures by sputtering in a
vacuum. The effect of sample temperature on the amplitude of the reflection spectrum,
as well as an intense upconversion luminescence for structures treated at 800 ◦C, and the
previously noted shift of the cavity mode for the less-dense xerogel structures treated at
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450 ◦C [10] encourage further research into the characteristics of barium titanate structures
doped with lanthanides for optical adsorption and for use as temperature sensors and
remote monitoring systems [26–28].

Further, on the basis of the measured reflections and transmission spectra of the single-
layer BaTiO3:(Er,Yb) films annealed either at 450 or 800 ◦C on a plane-parallel dielectric
substrate of finite thickness, we calculated the complex refractive index N = n − ik of
the BaTiO3:(Er,Yb) by optimizing the parameters of the Lagrange–Chebyshev polynomial
fit (for the details of solving the inverse spectrometry problem, see [29]). The following
physical values for these two single-layer BaTiO3:(Er,Yb) films annealed at 450 or 800 ◦C
were determined from the reflections and transmission spectra: n, k, Eg, and Eu, where n
is the real part of the refractive index of the film, k is the imaginary part of the refractive
index or absorption index, Eg is the optical band gap, and Eu is the Urbach energy.

The obtained solution of the inverse spectrophotometry problem provided the results
presented in Figures 6–8. Figure 6 depicts the reflection and transmission spectra of the
single-layer BaTiO3:(Er,Yb) films deposited on the fused silica substrates and annealed at
450 or 800 ◦C. The triangles and circles represent the experimental points, and the solid
lines are the calculated spectra. Figure 7 shows the calculated spectra of the refractive index
n (Figure 7a) and the absorption index k (Figure 7b) for a single-layer BaTiO3:(Er,Yb) film
annealed at 450 and 800 ◦C. The discrepancy χ between the measured and calculated data
satisfied the criterion χ2 � 1. The thickness of the single-layer film annealed at 450 ◦C was
99 nm and that of the film annealed at 800 ◦C was 65 nm. The higher annealing temperature
led to a decrease in the BaTiO3:(Er,Yb) film thickness that was typical for sol-gel derived
films and particularly for BaTiO3:(Er,Yb) films, and that for the undoped BaTiO3 films was
confirmed by means of SEM in [9,10]. The decrease in the film thickness meant an increase
in the film density ρ, which could lead to a larger refractive index, in accordance with the
Lorentz–Lorenz formula

(
n2 − 1

)
/
(
n2 + 1

)
∼ ρ [30].
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Figure 7. (a) Spectra of the refractive index 𝑛 and (b) the absorption index 𝑘 for the two BaTiO3: 
(Er,Yb) films annealed at 450 and 800 °C. 

Then we calculated the absorption coefficient 𝛼(λ) using the following formula: 

Figure 6. (a) Reflection and (b) transmission spectra of the single-layer BaTiO3:(Er,Yb) films de-
posited on fused silica substrates annealed at 450 and 800 ◦C. The triangles and circles represent the
experimental data of the transmission (Te) and reflection (Re), and the solid lines are the calculated
transmission (Tt) and reflection (Rt) spectra.
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Figure 7. (a) Spectra of the refractive index 𝑛 and (b) the absorption index 𝑘 for the two BaTiO3: 
(Er,Yb) films annealed at 450 and 800 °C. 

Then we calculated the absorption coefficient 𝛼(λ) using the following formula: 

Figure 7. (a) Spectra of the refractive index n and (b) the absorption index k for the two BaTiO3:
(Er,Yb) films annealed at 450 and 800 ◦C.
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Figure 8. Estimation of the optical band gap and the Urbach energy for the indirect transitions in the
BaTiO3:(Er,Yb) films annealed at 450 and 800 ◦C.

The higher reflectivity in the spectral region from 400 to 800 nm (Figure 6a) corre-
sponded to the relatively low absorption (Figure 7b) that resulted in the lower transmittance
(Figure 6b) for the film annealed at 800 ◦C in comparison with that of the film annealed at
450 ◦C.

In Figure 7b, in the UV range, the maximum of k(λ) for the film annealed at 800 ◦C
was two times higher than that for the film annealed at 450 ◦C, while in the visible range,
the maximum of k(λ) was two times lower than that for the film annealed at 450 ◦C. The
increase in the refractive index n (Figure 7a) with the increase in the annealing temperature
of the film resulted in significant increases in their reflectivity R (Figure 6a). Large losses of
light energy due to the reflection and small losses due to the absorption (Figure 7b) led to
decreases in the transmittance T in the visible and near-IR regions with the increase in the
annealing temperature. In fact, BaTiO3 is known to be an appealing host of lanthanides for
the UV excitation of visible luminescence [11], as well as an appealing transparent coating
for UV filters and solar cells for the prevention of thermalization.

Then we calculated the absorption coefficient α(λ) using the following formula:

α(λ) =
4πk(λ)
λ10−7 , (1)
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and the Tauc extrapolation [31] is used as follows:

[α(λ)E]m = B
(
E− Eg

)
, (2)

to determine the optical band gaps of the BaTiO3: (Er,Yb) films.
In Formula (2), B is a constant, E = 1240 λ−1 is the photon energy in eV, and the

wavelength λ is taken in nm. The intersection of the linear range of the dependence
[α(λ)E]m with the E axis yields the estimated value of Eg. The estimation of the optical
band gap is given in Figure 8 by assuming the indirect optical transition (m = 0.5). We
concluded that Eg = 3.82 eV for the film annealed at 450 ◦C, while it was approximately
3.87 eV for the film annealed at 800 ◦C.

The Urbach energy is determined by analyzing the plot of ln (α(E)), as shown in the
inset of Figure 8. In this case, the following function:

f (E) = ln
(

α
(

1240E−1
g

)
exp

((
E− Eg

)
E−1

u

))
, (3)

is linear and must pass through the corresponding points of the function ln(α(E)).
An analysis of the absorption spectra shown in Figure 7b by using Formula (3) allowed

us to estimate Eu = 0.21 eV and 0.16 eV for the films annealed at 450 ◦C and 800 ◦C,
respectively. The lower Urbach energy for the higher annealing temperature could be
explained by a decrease in the crystal lattice disorder in the nanocrystalline BaTiO3 film. In
fact, the Urbach tail states, which provide information about various disorders related to
the random distribution of both intrinsic atoms and impurities [32–34], should decrease
with an increase in the annealing temperature because the contribution of the amorphous
phase becomes smaller. This fact was also proved by the increase in absorption in the high
energy region, as shown in Figures 7 and 8.

The estimated optical band gaps for our samples were comparable to the data for
the undoped 300-nm-thick BaTiO3 films with a grain size of approximately 95 nm that
were produced using pulsed laser deposition and had an optical band gap of 3.77 eV [34].
The difference in the optical band gap measured for thin films generated in the present
work as well as in Ref. [34] and for the solution-grown crystals of BaTiO3 (3.38 and 3.27 eV,
respectively, for two directions of the light polarization [35]) could be explained by con-
sidering the quantum confinement for charge carriers in low-dimensional BaTiO3 films
and nanocrystalline structures [36,37]. According to Suzuki and Kijima [37], the band gap
of BaTiO3 was estimated to be at a constant value of approximately 3.2 eV for the BaTiO3
particles larger than 15 nm, which is in agreement with the data reported by Wemple [33]
for a BaTiO3 crystal, and Eg gradually increased as the particle sizes smaller than 11.5 nm
decreased, and it was approximately 0.25 eV larger than that of the bulk BaTiO3.

The observed enhancement of the upconversion luminescence in the film annealed at
800 ◦C could be explained by thermal annealing of the nonradiative centers, which control
the population of the excited states of trivalent erbium. The most probable candidates are
the intrinsic defect states in the band gap of the barium titanate matrix, which are detectable
as the Urbach tail states in the absorption spectra (Figure 8), and the hydroxyl groups,
which are known to be responsible for the quenching of the erbium luminescence in oxide
matrices [38]. The higher annealing temperature resulted in the lower efficiencies of both
quenching processes in the investigated samples.

4. Conclusions

Colloidal solutions for the synthesis of BaTiO3 xerogel doped with Er and Yb
(Ba0.76Er0.04Yb0.20TiO3) were used for the fabrication of a sol-gel-derived target using
the explosive compaction method and a spin-on deposited multilayer microcavity struc-
ture (BaTiO3:(Er,Yb)/SiO2 microcavity), demonstrating the strong room-temperature
upconversion photoluminescence of trivalent erbium ions. The BaTiO3:(Er,Yb)/SiO2
microcavity exhibited a significant increase in upconversion photoluminescence when
compared to the BaTiO3:(Er,Yb) double-layer that was fabricated directly on silicon. The
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enhanced upconversion photoluminescence was also observed in the microcavity struc-
ture annealed at 800 ◦C. The reflection spectra of the BaTiO3:(Er, Yb)/SiO2 microcavity
annealed at 800 ◦C demonstrated a deviation in the maxima of the reflection spectra
within 15% for the temperature range of 26–120 ◦C. From the analysis of the transmis-
sion and reflection spectra, we determined that, for the single layer of BaTiO3:(Er,Yb)
spin-on film annealed at 450 ◦C, the optical band gap for indirect electron transitions
was Eg = 3.82 eV, while for the film annealed at 800 ◦C, it was equal to Eg = 3.87 eV.
The results obtained demonstrate new possibilities for tuning the optical properties and
efficiencies of the upconversion luminescence of rare-earth-doped sol-gel materials and
structures for photonic applications.
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