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ON BÄCKLUND TRANSFORMATIONS FOR SOME SECOND-ORDER

NONLINEAR DIFFERENTIAL EQUATIONS

V. V. Tsegel’nik∗

We obtain second-order nonlinear differential equations (and the associated Bäcklund transformations)

with an arbitrary analytic function of the independent variable. These equations (which are not of Painlevé

type in general) under certain constraints imposed on an arbitrary analytic function can be reduced, in

particular, to the second, third or fourth Painlevé equation. We consider the properties of the Bäcklund

transformations for the second-order nonlinear differential equations generated by two systems of two

first-order nonlinear differential equations with quadratic nonlinearities in derivatives of the unknown

functions.
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1. Introduction

In review [1] (also see [2]), some important directions are outlined for studying the properties of

solutions of Painlevé-type nonlinear ordinary differential equations whose general solutions have no movable

singularities. These equations are usually called equations having the P -property of solutions or P -type

equations. Not aspiring to the completeness of presentation, we also note the ongoing research into various

properties of solutions of equations that are higher analogues of Painlevé-type equations [3]–[7], and studies

of Painlevé-type non-Abelian equations [9]–[13] initiated in [8].

The aim of this paper is to study analytic properties of solutions of the differential equations

w′′
α = 2w3

α + ϕwα + αϕ′ +
ϕ′′

2ϕ′ (2w
′
α − 2εw2

α − εϕ), (1)

w′′ =
w′2

w
− ϕ′

ϕ
w − 1

w
+

1

ϕ
(w2 + βϕ′) +

ε− β

ε

ϕ′′

ϕ
w, (2)

ϕww′′ = ϕw′2 − ϕ′ww′ + (α+ ϕ′ε− ε)w3 + (β + ϕ′σ − σ)w + ϕw4 − ϕ, (3)

2ww′′ = w′2 + 3w4 + 8ϕw3 + 4

(
ϕ2 + ε

(
ϕ′ + p+

q

2

))
w2 − q2, (4)

and the systems

y = −w + ϕ+
[w′ + (b− 1)ϕ′]2

2w2
, (5a)

w = −y + ϕ+
[y′ − bϕ′]2

2y2
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and

y +
M(z)(−2z +M(z))w

M(z)(−2z +M(z)) + 2z(2 + β + αε)w − (4 + 2αε)M(z)w
= 0, (6a)

w +
N(z)(−2z +N(z))y

N(z)(−2z +N(z)) + 2z(−2 + β − 2ε)y + (4 + 2αε)N(z)y
= 0. (6b)

In Eqs. (1)–(4), ϕ = ϕ(z) is an arbitrary analytic function of the independent variable z; b, α, and β

are arbitrary parameters; ε2 = σ2 = 1, q2 + 2β = 0, and p = −1 − 2ε − q/2. In system (6), M(z) =

zw′ + εzw2 + (αε+ 1)w + z and N(z) = zy′ − εzy2 − (αε+ 3)y + z.

2. Analysis of Eq. (1)

Equation (1) can be represented as a system of equations

wα = −wα−ε − ε
(2α− ε)ϕ′

2w′
α−ε + 2εw2

α−ε + εϕ
, (7a)

wα−ε = −wα + ε
(2α− ε)ϕ′

2w′
α − 2εw2

α − εϕ
(7b)

with the unknown functions wα, wα−ε of the independent variable z and with an arbitrary analytic function

ϕ(z) (ϕ′(z) �≡ 0). Under the condition

(2α− ε)ϕ′ �= 0, (8)

it follows from system (7) that

w′
α − εw2

α + w′
α−ε + εw2

α−ε = 0. (9)

Eliminating the unknown function wα from (9) under condition (8), we obtain the equation

w′′
α−ε = 2w3

α−ε + ϕwα−ε + (α− ε)ϕ′ +
ϕ′′

2ϕ′ (2w
′
α−ε + 2εw2

α+ε + εϕ). (10)

Theorem 1. Let wα = w(z, α, ε) be a solution of Eq. (1) with fixed values of α and ε2 = 1, and under

condition (8). Then the function wα−ε = w(z, α− ε) defined in (7b) is a solution of Eq. (10).

Theorem 2. Let wα−ε = w(z, α − ε) be a solution of Eq. (10) with fixed values of α and ε2 = 1,

and under condition (8). Then the function wα = w(z, α, ε) defined in (7a) is a solution of Eq. (1).

It is easy to see that Eq. (10) can be obtained from Eq. (1) by replacing ε → −ε, α → α − ε and

visa versa. This also holds for formulas (7a), (7b). Thus, formulas (7a), (7b) define the direct and inverse

Bäcklund transformations for Eq. (1).

Setting ϕ(z) = z, we obtain the second Painlevé equation from Eq. (1)

w′′
α = 2w3

α + zwα + α. (11)

Formulas (7a) and (7b) then take the form

wα = −wα−ε − ε
2α− ε

2w′
α−ε + 2εw2

α−ε + εz
, (12)

wα−ε = −wα + ε
2α− ε

2w′
α − 2εw2

α − εz
. (13)

In the case ε = 1, transformations (12), (13) for Eq. (11) were obtained in [14].
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It can be easily verified that all solution of the Riccati equation

2w′
α = 2εw2

α + εϕ (14)

are solutions of Eq. (1) with 2α = ε.

Example 1. Equation (14) with ε = −1, ϕ = −2(z2 + a) (with an arbitrary a), and wα = ya takes

the form

y′a + y2a = z2 + a (15)

and has a particular solution y1 = z at a = 1. Therefore, the general solution of Eq. (15) with a = 1 is

given by

y1 = z +
e−z2

C +
∫
e−z2 dz

,

where C is an arbitrary constant.

We consider the equation

y′a+2 + y2a+2 = z2 + a+ 2. (16)

It can be easily verified that if ya = y(z, a) is a solution of Eq. (15), then

ya+2 = y(z, a+ 2) = z +
a+ 1

z + ya
, a �= −1, (17)

is a solution of Eq. (16).

We also note that if ya = y(z, a) is a solution of Eq. (15), then the function ỹa = −iy(iz,−a),

i2 +1 = 0, is also a solution of Eq. (15). This property and relation (17) imply the integrability of Eq. (15)

in quadratures at a = 2k + 1, k ∈ Z.

Relation (17) can be represented as (ya+2 − z)(ya + z) = a + 1, and can be regarded as a discrete

analogue of Eq. (15).

We note that Eq. (1) is not a Painlevé-type equation in the case ϕ′′(z) �≡ 0.

3. Analysis of Eq. (2)

Equation (2) can be written as a system of first-order equations

ϕw′ = εϕ+ (1− εβ)ϕ′w − εyw2,

ϕy′ = −εϕ− (1 − εβ)ϕ′y + εy2w.
(18)

Eliminating the unknown function w from (18), we obtain an equation for y,

y′′ =
y′2

y
− ϕ′

ϕ
y′ − 1

y
+

1

ϕ

(
y2 + (β − 2ε)ϕ′)− ε− β

ε
· ϕ

′′

ϕ
y. (19)

Equation (19) is obtained from (2) using the transformation y = w, ε → −ε, β → β − 2ε and vise versa.

Thus, the formulas

y =
−εϕw′ + (ε− β)ϕ′w + ϕ

w2
, (20)

w =
εϕy′ + (ε− β)ϕ′y + ϕ

y2
(21)

define the direct and inverse Bäcklund transformations for Eq. (2).
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We consider two cases.

1. ϕ = c = const �= 0. Equation (2) then takes the form

ww′′ − w′2 − c−1w3 + 1 = 0

and has the first integral

w′2 − 2c−1w3 − 1 = Hw2, (22)

where H is an arbitrary constant. Equation (22) can be integrated in terms of elliptic functions [15].

2. ϕ = z. In this case, Eq. (2) can be reduced to

w′′ =
w′2

w
− w′

z
+

1

z
(w2 + β)− 1

w
(23)

and is a particular case of the third Painlevé equation

w′′ =
w′2

w
− w′

z
+

1

z
(αw2 + β) + γw3 +

δ

w
(24)

with the parameter values α, β, γ = 0, and δ = −1.

We can verify that Eq. (2) with ϕ = az + b, a �= 0 is also reducible to Eq. (23) using a scale transfor-

mation of the unknown function and the independent variable.

Formulas (20), (21) at ϕ = z were obtained in [16].

Theorem 3. Equation (2) with either ϕ = c = const �= 0 or ϕ = az + b (a �= 0) is a Painlevé type

equation.

Comparing Eq. (2) with the list of equations in [17], we conclude that it is not a P -type equation

if ϕ′′(z) �≡ 0.

4. Analysis of Eq. (3)

The system of equations

ϕw′ − εϕw2 − (αε− 1)w − σϕ =
εσ(σβ + αε− 2)w

yw − εσ
, (25)

ϕy′ + εϕy2 + (αε− 1)y + σϕ =
−εσ(σβ + αε− 2)y

yw − εσ
(26)

under the condition σβ+αε−2 �= 0 is equivalent to Eq. (3). Eliminating the function w from (25) and (26)

under the condition σβ + αε− 2 �= 0, we obtain an equation for y,

ϕyy′′ = ϕy′2 − ϕ′yy′ + (α− ϕ′ε− ε)y3 + (β − ϕ′σ − σ)y + ϕy4 − ϕ. (27)

Equation (27) can be obtained from (3) using the transformation w = y, ε → −ε, α → α − 2ε, σ → −σ,

and β → β − 2σ and vise versa. Thus, the following theorems hold.

Theorem 4. Let w = w(z, α, β, ε, σ) be a solution of Eq. (3) with fixed values of the parameters α,

β, ε2 = 1, and σ2 = 1. Then, under the condition σβ + αε− 2 �= 0, the function

y =
εσ

w
+

εσ(σβ + αε− 2)

ϕw′ − εϕw2 − (αε− 1)w − σϕ
(28)

is a solution of Eq. (27).
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Theorem 5. Let y = y(z, α, β, ε, σ) be a solution of Eq. (27) with fixed values of the parameters α,

β, ε2 = 1, σ2 = 1 such that σβ + αε− 2 �= 0. Then the function

w =
εσ

y
− εσ(σβ + αε− 2)

ϕy′ + εϕy2 + (αε− 1)y + σϕ
(29)

is a solution of Eq. (3).

Thus, relations (28), (29) define the direct and inverse Bäcklund transformations of Eq. (3).

We consider two cases.

1. ϕ = c = const �= 0. In this case, Eq. (3) takes the form

cww′′ = cw′2 + (α− ε)w3 + (β − σ)w + cw4 − c. (30)

This equation is of Painlevé type and can be integrated in terms of elliptic functions [15]. Equation (27)

becomes

cyy′′ = cy′2 + (α− ε)y3 + (β − σ)y + cy4 − c (31)

and coincides with Eq. (30) up to notation.

Thus, under the conditions of Theorem 4, formula (28) with ϕ = c = const �= 0 defines a Bäcklund

autotransformation for Eq. (30).

2. ϕ = z. Equation (3) then takes the form

zww′′ = zw′2 − ww′ + αw3 + βw + zw4 − z. (32)

Equation (32) is a particular case of the third Painlevé equation (24) with the parameters α, β, γ = 1,

and δ = −1. In this case, Eq. (27) can be represented as

zyy′′ = zy′2 − yy′ + (α− 2ε)y3 + (β − 2σ)y + zy4 − z. (33)

As mentioned above, Eq. (33) can be obtained from (32) using the transformation w = y, α → α − 2ε,

and β → β − 2σ, while Eq. (32) can be obtained from (33) using the transformation y = w, ε → −ε,

α → α − 2ε, σ → −σ, and β → β − 2σ. Thus, under the conditions of Theorem 4, the new solution of

Eq. (24) with the parameters (α− 2ε, β − 2σ, 1,−1), ε2 = σ2 = 1 can be obtained from solution (24) with

the parameters (α, β, 1,−1) using transformation (28) (where ϕ = z).

If ϕ = az + b, a �= 0, Eq. (3) reduces to (24) with γ = 1 and δ = −1 by a scale transformation of

the unknown function and the independent variable. System of equations (25), (26) in the case ϕ = z was

obtained in [18].

Theorem 6. Equation (3) in the case ϕ = c = const �= 0 or ϕ = az + b (a �= 0) is a Painlevé-type

equation.

The comparison of Eq. (3) with the list of equations in [17] shows that it is not a P -type equation

if ϕ′′(z) �≡ 0.
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5. Analysis of Eq. (4)

We consider the system of differential equations

w′ = q + 2εϕw + εw2 + 2εwu,

u′ = p− 2εϕu− εu2 − 2εwu,
(34)

which is equivalent to Eq. (4) with respect to w. Eliminating the unknown function w from (34), we obtain

an equation for u,

2uu′′ = u′2 + 3u4 + 8ϕu3 + 4

(
ϕ2 + ε

(
ϕ′ + q +

p

2

))
u2 − p2. (35)

Theorem 7. Let w = w(z, p, q, ε) be a solution of Eq. (4) with fixed values of p, q, and ε2 = 1. Then

the function

u = (w′ − q − 2εϕw − εw2)(2εw)−1 (36)

is a solution of Eq. (35).

Theorem 8. Let u = u(z, p, q, ε) be a solution of Eq. (35) with fixed values of p, q, and ε2 = 1. Then

the function

w = −(u′ − p+ 2εϕu+ εu2)(2εu)−1 (37)

is a solution of Eq. (4).

It is easy to see that Eq. (35) can be obtained from (4) using the transformations w = u, ε → −ε,

p → q, and q → p. Thus, relations (36), (37) define the (direct and inverse) Bäcklund transformations

for Eq. (4).

We consider two cases.

1. ϕ(z) = z. Equation (4) is the fourth Painlevé equation [17]

2ww′′ = w′2 + 3w4 + 8zw3 + 4(z2 − α)w2 + 2β, (38)

whose general solution has no movable singularities. Relations (36) and (37) at ϕ = z are given in [14], [19].

If ϕ(z) = az + b, where a and b are constants and a(a− 1) �= 0, then, using the scale transformations

w = λy and az + b = μτ , Eq. (4) can be reduced to Eq. (38) with the parameters α and β depending

on a [20].

2. ϕ(z) = c = const. In this case, Eqs. (4), (35) take the respective form

2ww′′ = w′2 + 3w4 + 8c2w3 + 4

(
c2 + ε

(
p+

q

2

))
w2 − q2, (39)

2uu′′ = u′2 + 3u4 + 8c2u3 + 4

(
c2 − ε

(
q +

p

2

))
u2 − p2. (40)

Equation (40) can be obtained from (39) using the transformation u → w, ε → −ε, q → p, and p → q.

Equations (39) and (40) can be integrated in terms of elliptic functions [15].

Thus, the formulas

u =
w′ − q − 2εcw − εw2

2εw
, (41)

w =
−(u′ − p+ 2εcu+ εu2)

2εu
(42)

define the (direct and inverse) Bäcklund transformations for Eq. (39), which is integrable in terms of elliptic

functions.
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The comparison of Eq. (4) with the list of equations in [17] shows that it is not of P -type if ϕ′′(z) �≡ 0.

It is easy to verify that all solutions of the Riccati equation

w′ = q + 2εϕw + εw2 (43)

are also solutions of Eq. (4) with

β = −2(1 + αε)2. (44)

By virtue of (44), Eq. (43) implies that (at ϕ = z) all solutions of the equation

w′ = w2 + 2zw− 2(1 + α) (45)

are also solutions of Eq. (38) if β + 2(1 + α)2 = 0, and all solutions of the equation

w′ = −w2 − 2zw + 2(α− 1) (46)

are also solutions of Eq. (38) if β + 2(α− 1)2 = 0.

By the substitution w = −2(α+1)v−1 and (α �= −1) [21], Eq. (45) can be transformed to the equation

v′ = −v2 − 2zv + 2(α+ 1). (47)

The comparison of (46) and (47) shows that a solution w = wα (α �= −1) of Eq. (45) generates a solution

wα+2 = −2(α+ 1)w−1
α of Eq. (46) with α1 = α + 2, and vise versa. Setting w = −ya − z and 2α + 1 = a

in Eq. (45), we obtain Eq. (15) for ya.

6. Analysis of systems (5), (6)

6.1. Solutions of system (5) satisfy one of the two conditions: either

[w′ + (b − 1)ϕ′]y + [y′ − bϕ′]w = 0, (48)

or

[w′ + (b − 1)ϕ′]y − [y′ − bϕ′]w = 0. (49)

System (5) under condition (48) is equivalent with respect to y (y′ − bϕ′ �= 0) to the equation

2yy′′ = y′2 + 4y3 − 2ϕy2 + 2bϕ′′y − b2ϕ′2, (50)

and is equivalent with respect to w (w′ + (b − 1)ϕ′ �= 0) to the equation

2ww′′ = w′2 + 4w3 − 2ϕw2 − 2(b− 1)ϕ′′w − (b− 1)ϕ′2. (51)

Theorem 9. Let yb = y(z, b) �≡ 0 be a solution of Eq. (50) with a fixed value of the parameter b.

Then the function w defined by relation (5b) is a solution of Eq. (51).

It is easy to see that Eq. (51) can be obtained from (50) by the substitution y = w, b → 1− b.

Theorem 10. Let wb−1 = w(z, b−1) �≡ 0 be a solution of Eq. (51) at a fixed value of the parameter b.

Then the function y defined in (5a) is a solution of Eq. (50).
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System (5) under condition (49) is equivalent with respect to y (y′ − bϕ′ �= 0) to the equation

2yy′′ = 3y′2 − 4bϕ′y′ + 2ϕy2 + 2bϕ′′y + b2ϕ′2, (52)

and is equivalent with respect to w (w′ + (b − 1)ϕ′ �= 0) to the equation

2ww′′ = 3w′2 + 4(b− 1)ϕ′w′ + 2ϕw2 − 2(b− 1)ϕ′′w + (1 − b)2ϕ′2. (53)

Theorem 11. Let yb = y(z, b) �≡ 0 be a solution of Eq. (52) at a fixed value of the parameter b. Then

the function w defined in (5b) is a solution of Eq. (53).

Theorem 12. Let wb−1 = w(z, b−1) �≡ 0 be a solution of Eq. (53) at a fixed value of the parameter b.

Then the function y defined in (5a) is a solution of Eq. (52).

Equations (53) can be obtained from (52) by the substitution y = w, b → 1− b.

Thus, formulas (5a) and (5b) define the (direct and inverse) Bäcklund transformations for Eq. (50) on

one hand and the (direct and inverse) Bäcklund transformations for Eq. (52) on the other hand.

Let ϕ(z) = c = const. Then Eqs. (50) and (52) take the respective form

2yy′′ = y′2 + 4y3 − 2cy2, (54)

2yy′′ = 3y′2 + 2cy2. (55)

Equation (52) has the first integral

y′2 − 2y3 + 2cy2 = Hy, (56)

where H is an arbitrary constant. Equation (56) can be integrated in terms of elliptic functions [15].

By the substitution

y = p−2(z), (57)

Eq. (55) can be reduced to the linear equation p′′ = −(c/2)p. Thus, we have proved the following theorem.

Theorem 13. Equations. (50) and (52) with ϕ(z) = c = const are P -type equations.

We note that Eq. (50) with ϕ(z) = z is equation XXXIV from the list in [17].

Theorem 14. Equation (52) with either b = 0 or ϕ(z) = z is a Painlevé-type equation.

Proof. If we set b = 0 in Eq. (52), then it can be reduced to the Airy equation p′′ = −(ϕ/2)p by

transformation (57).

Equation (52) with ϕ(z) = z takes the form

2yy′′ = 3y′2 − 4by′ + 2zy2 + b2. (58)

Let b �= 0. By the substitution y → by−1, we transform Eq. (58) to the equation

2yy′′ = y′2 − 4y2y′ − y4 − 2zy2. (59)

Along with Eq. (59), we consider the more general equation

2vv′′ = v′2 − 4v2v′ − v4 + 2F (z)v2 − δ, (60)

where F (z) is an arbitrary analytic function and δ is a parameter. Equation (60) coincides with Eq. (59)

with F (z) = −z and δ = 0 up to notation. It is shown in [22] (where the transformation from [17] is used,

see p. 454 in [17]) that Eq. (60) is an equation of P -type. Namely, the general solution of Eq. (60) is

a rational function of the integration constants. The Theorem is proved.
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Remark 1. Equation (60) with δ = 1 is canonical equation XXVII from the list in [17]. The Bäcklund

transformation for Eq. (60) in the case F (z) = 2(z2+α), δ = −2β (where α and β are arbitrary parameters)

was obtained in [23].

Corollary 1. Equation (50) with ϕ′′(z) �≡ 0 and Eq. (52) with b �= 0 and ϕ′′(z) �≡ 0 are not Painlevé-

type equations.

In the case ϕ(z) = z, system (5) was given in [22].

6.2. In considering system (6) we disregard the case

M(z)(−2z +M(z)) �≡ 0, (61)

N(z)(−2z +N(z)) �≡ 0 (62)

with

α+ 2ε = β = 0 (63)

because the equations of system (6) under conditions (61)–(63) degenerate to y + w = 0.

Eliminating the unknown function y from system (6), we conclude that the function w satisfies the

following family of differential equations:

• either Eq. (32), i.e., the third Painlevé equation (24) in the case γ = −δ = 1,

• or the equation

P (z, w,w′, w′′, ε, α, β) = 0, (64)

where

P (z, w,w′, w′′, ε, α, β) = z4w8 + 2αz3w7 + 2z2(α(α + 6) + 1)w6 +

+ 2z(βz2 + 6ε+ α(α2 + 5αε+ 10))w5 +

+ (−2z4 − 4βεz2 + α4 + 22α2 + 8α(α2 + 3)ε+ 9)w4 −
− 2z(αz2 + β(α2 + 5αε+ 4))w3 + 2z2(β2 + αε+ 1)w2 − 2βz3w + z4 +

+ z(z3w′4 + 2wz2(2wz + α)εw′3 +

+ 2z(3z2w4 + (α− 4ε)zw3 − (2αε+ 1)w3 + βzw − z2)w′2 +

+ 2w(2εz3w5 + (2ε− 4)z2w4 − (7αz + z(α2 + 4)ε)w3 +

+ (4βεz2 + α2 + 5αε+ 4)w2 − z(2εz2 + β − αβε)w −
− z2(αε+ 2)w′′w − αεz2)w′ − 2zw2(z(α+ 2ε)w2 +

+ (α2 + 3αε+ 2)w − βz)w′′),

• or the equation

Q(z, w,w′, ε, α, β) = 0, (65)

where

Q(z, w,w′, ε, α, β) = (αε+ 2){[zw′ + εzw2 + (αε+ 1)w]2 + z2} −
− 2βz[zw′ + εzw2 + (αε+ 1)w].
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Eliminating the unknown function w from system (6), we conclude that the function y satisfies the

following family of differential equations:

• either

zyy′′ = zy′2 − yy′ + (α+ 4ε)y3 + βy + zy4 − z, (66)

• or

P (z, y, y′, y′′,−ε, α+ 4ε, β) = 0, (67)

• or

Q(z, y, y′,−ε, α+ 4ε, β) = 0. (68)

It is easy to verify that relation (6a) can be obtained from (6b) using the scheme y → w, w → y,

ε → −ε, α → α + 4ε, and β = β, and vise versa. By virtue of this, following the same scheme, we can

obtain Eq. (66) from Eq. (32), Eq. (67) from Eq. (64), and Eq. (68) from Eq. (65).

The presence of the term z4w′4 and of one of the coefficients −z3(2ε+ 2)ww′ at w′′ in Eq. (64) does

not allow representing it as

w′′ = L(z, w)w′2 + S(z, w)w′ + T (z, w), (69)

where L, S, and T are rational functions of w with the coefficients analytic in z. According to [17] (see p.

437 in [17]), the necessary condition for the absence of movable critical points in the general solution of the

equation

w′′ = R(z, w,w′), (70)

(where R is a rational function of w and w′ with coefficients analytic in z), i.e., the validity of the Painlevé

property, is the representation of (70) in form (69). Thus, Eq. (64) is not of Painlevé type. This can be

easily verified, for instance, at α = −2ε and β �= 0. Namely, at these values of the parameters, Eq. (64)

does not satisfy the Painlevé test [24] and (according to [25]) does not have entire transcendental solutions

(because of the presence of a single dominating term z4w8) and polynomial solutions other than w = 0.

Thus, the following theorems hold.

Theorem 15. Let w = w(z, α, β) be a solution of Eq. (32) with fixed values of the parameters α, β,

and ε2 = 1 such that M(z)(−2z+M(z)) �≡ 0 and |α+ 2ε|+ |β| �= 0. Then the function y defined in (6a) is

a solution of Eq. (64).

Theorem 16. Let y = y(z, α, β, ε) be a solution of Eq. (64) with fixed values of the parameters α, β,

and ε2 = 1 such that N(z)(−2z+N(z)) �≡ 0 and |α+ 2ε|+ |β| �= 0. Then the function w defined in (6b) is

a solution of Eq. (32).

Consequently, under the conditions of Theorems 15 and 16, relations (6a) and (6b) with fixed values of

α, β, and ε2 = 1 establish a one-to-one correspondence (i.e., define the direct and inverse Bäcklund transfor-

mations) between solutions of the third Painlevé equation (24) with the respective parameters (α, β, 1,−1)

and (α + 4ε, β, 1,−1). On the other hand, formulas (6a), (6b) establish the one-to-one correspondence

between solutions of Eqs. (64) and (67) at fixed values of α, β, and ε2 = 1.

Because the left-hand side of Eq. (65) with σβ = αε+ 2 �= 0 and σ2 = 1 is a full square, this equation

is equivalent to the equation

zw′ + εzw2 + (αε+ 1)w − σz = 0, (71)

all of whose solutions are also solutions of Eq. (24) with σβ − αε− 2 = 0 [14].

System (6) was given in [26].
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7. Conclusions

In this paper, we have studied some analytic properties of solutions of second-order nonlinear differential

equations of a special form with an arbitrary analytic function. We obtain the (direct and inverse) Bäcklund

transformations for each of presented equations. For the presented equations (except one), we prove the

existence of one-parameter families of solutions generated by solutions of the Riccati equations with an

arbitrary analytic function. The considered equations (which are not equations of Painlevé type in general)

under certain constraints on the analytic function can be reduced, in particular, to the second, third (the

cases γ = 0, α = −δ = 1, and γ = −δ = 1), or fourth Painlevé equations.

We have discussed the properties of the Bäcklund transformation of the second-order nonlinear differen-

tial equations generated by two systems of two first-order nonlinear equations with quadratic nonlinearities

in the derivatives of unknown functions.

An important question is associated with the finiteness or infiniteness of the transformation groups

admitted by the considered equations. In our opinion, answering requires performing the following studies.

• Find additional symmetries for solutions (if any) of the presented equations with an arbitrary

function ϕ (such symmetries do exist for Painlevé equations) or other Bäcklund transformations,

as is the case for Eq. (24) with γ = 1 and δ = −1 or for Eq. (38) (see [23]).

• Study the behavior of movable singularities of solutions of the presented equations;

• Find (if possible) exact solutions of each equation and try to replicate them using the Bäcklund

transformations.
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