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Abstract—The paper presents a method for improving 

spatial resolution of first-order ambisonic audio. The method is 

based on time/frequency decomposition of the audio with 

subsequent extraction of a directed plane wave from each 

frequency component. The method develops the basic ideas of 

high angular resolution planewave expansion (HARPEX) and 

directional audio coding (DirAC) taking advantage of real-

valued sparse decomposition. Real-valued frequency 

components as opposed to complex-valued introduce simpler 

and more stable direction of arrival estimates, while sparse 

decomposition introduces an accurate and unified approach to 

describing sounds of different nature from transient to tonal 

sounds. 
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I. INTRODUCTION  

First-order ambisonics has become a popular and 
accessible way of capturing surround sounds. There are now 
many convenient handheld devices that provide four-channel 
ambisonic recording that can be played back in virtual reality 
applications through loudspeakers or headphones. However, 
quality of rendered audio highly depends on spatial resolution 
which is rather low for first-order ambisonics. There are 
parametric methods that produce improved spatial image [1,2] 
and have proven to be practically effective with remarkable 
results. The general parametric approach is to perform 
time/frequency decomposition of the audio and treat 
frequency components separately representing them as a 
combination of directional plane waves and/or undirected 
components. Direction of arrival (DOA) estimates constitute 
a sharp spatial image that can be encoded into higher-order 
ambisonics audio or alternative surround sound format – 
fig. 1. 

 

 

Fig. 1. Rendering ambisonic audio with improved spatial resolution 

The present work aims to further develop the approach by 
implementing some practical ideas concerning time/frequency 
representation and DOA. Traditionally, fast Fourier transform 
(FFT) is used for frequency representation of multichannel 
audio, which is true not only for parametric decoding methods, 
but also for other applications including noise reduction and 
dereverberation [3–6]. However, the complex-valued 
frequency domain is not always advantageous, and in 

particular we hypothesize that real-valued representations are 
more suited for determining DAO. As we will show in the 
paper real-valued modified discrete cosine transform (MDCT) 
seems more consistent from a certain point of view. It not only 
gives a more straightforward interpretation of a directional 
wave, but also makes the solution more stable because does 
not have unresolved areas which are specific to HARPEX.  

In addition to the transition to the real-valued domain, we 
develop the idea of using overcomplete bases of different 
lengths to represent frequencies. The reason for this is 
possibility of accurate processing of transients (very short 
components) and tones (long components). When using a 
linear transform with basis functions of equal length, it is 
impossible to extract all components with equal accuracy. 
Usually the choice is made in favor of tones, which leads to 
blurred transients and significant loss in spatial resolution. In 
order to perform time/frequency decomposition we use an 
optimization routine that reduces L1 norm and yields sparse 
representation. Subjective tests show a good potential of the 
proposed solution with a drawback of high computational 
cost. 

The paper is organized as follows: In sections II and III we 
give a HARPEX outline along with proposed solution in order 
to point out the difference between complex-valued FFT and 
real-valued MDCT transforms with respect to plane waves 
extraction. In section IV we present a sparse decomposition 
routine designed for time/frequency representation. In section 
V we describe experimental setup and subjective listening 
results. 

II. HARPEX OUTLINE 

HARPEX decomposes 4-channel ambisonic audio into 
overlapped frames which are transformed into frequency 
domain using FFT. This yields complex spectral bins of the 
form 𝑤𝑟 + 𝑖𝑤𝑖 , 𝑥𝑟 + 𝑖𝑥𝑖 , 𝑦𝑟 + 𝑖𝑦𝑖  and 𝑧𝑟 + 𝑖𝑧𝑖  for each 
correspondent channel denoted as 𝑊,𝑋, 𝑌, 𝑍 respectively. For 
simplicity, we consider only one bin, assuming that all bins 
are handled identically. These four complex values are 
decomposed into two real-valued vectors [𝑥1, 𝑦1 , 𝑧1]  and 
[𝑥2, 𝑦2, 𝑧2]  representing direction of arrival and complex 
amplitudes 𝑎1, 𝑎2 of the sound waves correspondent to these 
directions. This is given by the following matrix equation: 

 

() 

The solution of the system is given in the form: 
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Some bins fall into uncertainty when 𝑟2 − 𝑝𝑞 < 0 , 
however the amount of these bins is rather low. 

III. PROPOSED SOLUTION 

In the proposed solution we use MDCT instead of FFT. 
MDCT gives real-valued bins 𝑤𝑟 , 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟  for each 
correspondent channel which immediately simplifies the 
system. The values are decomposed into a real-valued vector 
[𝑥1, 𝑦1 , 𝑧1]  and omnidirectional component with real 
amplitudes 𝑎1, 𝑎2 respectively: 

 

() 

 
() 

 () 

The solution in the present form is incomplete, because it 
loses sign of the direction when 𝑤𝑟 is negative. In order to fix 
that instead of [𝑥1, 𝑦1, 𝑧1]  we use vector [𝑥̅1, 𝑦̅1, 𝑧1̅]  that 
considers sign of 𝑤𝑟  and correspondent sign-aware 
amplitudes 𝑎̅1 and 𝑎̅2: 

 () 

 () 

 () 

Thus solution become pretty straightforward and much 
more simple compared to complex frequency domain.  
HARPEX extracts two plane waves for each frequency bin 
and here we have only one plane wave and an omnidirectional 
component – fig.2.  

The question is, however, what decomposition is better 
from perceptual perspective. On the one hand, if we split each 
frequency bin into two waves we can expect a more accurate 
result. However, we must take into account that in the real-
valued case we have twice as many frequency samples. We 

must also take into account that the spatial separation of two 
tones of the same frequency is a very difficult task for the 
auditory system, since they are rather perceived as a single 
tone. So, theoretically, one would not expect a noticeable 
difference between the methods. 

According to the impression we had during subjective 
auditions the strongest point of the real-valued decomposition 
is stability. Because the extracted plane wave is always one-
sided, the spatial jitter is reduced. It requires less or even no 
smoothing of direction vectors or panning weights at decoding 
stage that yields a sharper audio image. However, it should be 
taken into account that these impressions are obtained on 
limited sound material and require more detailed elaboration. 

IV. SPARSE MDCT DECOMPOSITION 

A. Motivation 

A linear time-frequency transform whether FFT or DCT 
with fixed frame length cannot give an accurate 
decomposition for both tonal and transient components. These 
two extremes suffer from blurring in the frequency image. 
Considering that we perform sparse audio decomposition 
using a combination of MDCT bases of different lengths. 
Compared to a fixed linear transform this approach is able to 
give a good localization for tones and transient impulses – 
fig. 3. 

  

  

FFT (HARPEX) sparse MDCT decomposition 

Fig. 2. Time-frequency decompositions 

B. Sparse representation combining different time-

frequency resolutions 

For representing 𝑥  in real-valued frequency domain we 
use union of MDCT bases 𝛣 each with different length: 
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complex-valued frequency 
components (HARPEX) 

real-valued frequency components 

Fig. 2.  Sound wave expansions 
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where MDCT𝑁  stands for a set of MDCT reconstruction 
functions of length N. Representation in each particular basis 
we will call layer, meaning that the signal is decomposed into 
separate layers that have different time-frequency 
characteristics. 

Decomposing of the audio comes to the following 
optimization problem, where  𝑥  is reconstructed providing 
the lowest possible L1 norm of representation  𝑋: 

arg min{‖𝑋‖1  |𝑥 = 𝑋𝛣} 

where 1-norm ‖𝑋‖1 = ∑ |𝑋𝑖|𝑖  is the sum of absolute values. 

There are many known approaches to this problem 
minimizing L1 norm including  

• matching pursuit; 

• gradient methods; 

• greedy algorithms; 

• linear programing. 

The most appropriate of all the methods we tried so far is 
the gradient descent method. The motivation behind this is 
that on the one hand, the dimensionality of the problem is very 
large, which does not allow us to use sophisticated calculus 
such as second derivatives or matrix inversions. On the other 
hand, a critical part of the solution is ability to suppress 
distortions caused by aliasing in process of decompositions. 
Gradient descent method makes it easy to add cost functions 
in order to achieve aliasing control. The drawback is a modest 
performance caused by slow convergence of the solver. 
However, at the present stage of research, we aim to maximize 
spatial resolution while leaving aside performance issues. 

C. Sparse representation solver 

We built our experimental gradient descent solver by 
analogy to neural network training in machine learning. It 
works by iteratively approaching the solution by stepping 
towards the direction of the decreasing cost function. The cost 
function is constituted from three terms: reconstruction loss, 
1-norm loss and aliasing loss – fig.4. 

Sparsity of the representation is achieved due to 1-norm 
loss which should be big enough in order to make optimization 
process faster, but at the same time there is no way to get 
perfect reconstruction for non-zero 1-norm loss. In order to 
overcome this we parametrize contribution of the loss with 
parameter  𝛼 that starts from a big value that decreases at each 
iteration, eventually reaching zero. 

The aliasing cost function is based on the extraction of 
distortions that appear in layers with longer basis functions. 
The following principle is pursued: layers with shorter basis 
functions should not increase the sampling energy of layers 
with longer basis functions. 

V. EXPERIMENTS 

A. Experimental setup 

Audio rendering for listening tests was organized as 
follows – fig.5. First we upmixed first-order ambisonic audio 
to seventh-order ambisonics using the following steps: 1) 
sparse decomposition in MDCT domain; 2) determining 
direction of arrival; 3) encoding to seventh-order ambisonics. 
Upmixed audio was decoded into binaural audio using 
SPARTA binaural decoder [7]. 

 

Fig. 5. Experimetal audio rendering with improved spatial reslutions 

For sparse decomposition we used five decomposition 
layers with MDCT sizes 32, 128, 256 1024, 2048 with sine 
window. In order to speed up optimization routine we used no 
oversampling in each layer, though it can further improve 
decomposition quality. The solver performed 2000 iterations 
producing five decomposition layers containing from shortest 
transients to long tonal components – Fig.6. 

 

MDCT layers before  
sparse optimization 

MDCT layers after  
sparse optimization 

Fig. 6.  Sparse decomposition after 2000 iterations 

B. Audio samples 

For close analysis and listening tests we used four audio 
samples recorded with first-order ambisonic devices: 
1) foreshore [8]; 2) heavy trucks [8]; 3) elevator [8]; 
4) orchestral piece [9]. Samples 1–3 were recorded with Rode 
NT-SF1 microphone and sample 4 with Calrec Soundfield 
MkIV. 

C. Visual analysis 

Encoded seventh-order ambisonic audio was compared to 
original visually using EnergyVisualizer plugin from IEM 
Plug-in Suite created by staff and students of the Institute of 
Electronic Music and Acoustics [10]. According to sound 
field visualizations the upmixed audio evidently has a much 
higher spatial resolution – fig.7. 

We found that the spatial visual image is stable and responds 
to even subtle changes in the position of the sound sources. 

 

Fig. 4. Designed gradient descent solver 
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D. Listening tests 

We summarize subjective perception of spatial resolution 
of the decoded audio samples in Table I. In order to highlight 
the contribution of each part of the proposed method, we 
provide estimates for different decoding setups: 1) decoding 
from first-order ambisonics without upmixing; 2) decoding 
from seventh-order upmix obtained by using ordinary linear 
MDCT with length 2048; 3)  decoding from seventh-order 
upmix obtained using sparse MDCT with five decomposition 
layers and no aliasing cost function; 4) decoding from 
seventh-order upmix obtained using sparse MDCT with five 
decomposition layers and aliasing cost function. Listening 
was carried out in headphones. 

TABLE I.  SUBJECTIVE SPATIAL RESOLUTION (MOS) 

 Sample  

Decoding setup 1 2 3 4 

1 First-order 3.9 4.0 3.8 3.9 

2 
Seventh-order upmix  

linear MDCT2048 
4.2 4.2 4.0 4.3 

3 

Seventh-order upmix 
sparse MDCT,  

no aliasing cost function 

4.5 4.4 4.3 3.5 

4 

Seventh-order upmix 
sparse MDCT  

with aliasing cost function 
4.6 4.4 4.7 4.6 

E. Discussion 

Though there is an evident improvement in subjective 
spatial resolution of audio images it should be taken into 
account that there are limitations of the tests in number of 
audio samples and listening equipment. Using just 
headphones may be somewhat inaccurate since decoder uses 
built-in head-related transfer functions that may not suit well 
to a particular listener. Regarding audible artifacts, the test is 
more reliable and indicates that implemented time/frequency 
decomposition solver provides sparse representation with 
reasonably good quality. The aliasing cost function makes a 
significant contribution into perception of some particular 

sounds as can be clearly seen in sample 4 (orchestral piece) 
processed with and without aliasing cost function. 

A noticeable improvement in spatial resolution is achieved 
by the sparse representation, as can be seen by comparing 
modes 2 and 3. In our opinion, this is achieved mainly by 
separate spatial localization of clear transient sounds, which 
are quite clearly perceived in the decoded sound image. 

VI. CONCLUSION 

The method presented in the paper improves spatial 
resolution of the first-order ambisonic audio. The method 
benefits from real-valued sparse time-frequency 
decomposition and provides a more sharp spatial image. The 
practical results indicate applicability of the method for 
upmixing audio up to seventh-order ambisonics. The 
disadvantage of the method is a high computational cost, but 
it is still suitable for applications that do not require real time 
upmixing. 
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Upmixed seventh-order 
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Fig. 7.  Sound field visualization of the source and upmixed ambisonics  

 


