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Abstract—The paper considers an applied problem related 

to the construction of efficient neural network technologies 

implemented in the traditional frameworks' standards. It is 

shown that the increase in efficiency is achieved due to the 

additional inclusion in the framework's structure of training 

algorithms based on the ideas of random search. Original 

implementations of such algorithms are proposed, with 

experimental confirmation of their effectiveness. It is shown that 

in this case not only the solutions' obtained quality increases, but 

it is also possible to extend the range of applied problems to be 

solved. 
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I. INTRODUCTION 

Today, neural network technologies are actively used to 
solve a wide range of applied problems. However, for their 
application, it is necessary to pre-configure (train) the neural 
network's architecture for the problem being solved. 

To obtain a high-quality solution, training requires large 
amounts of data and computational costs. At present, gradient 
descent algorithms are usually used for training. However, 
their fast convergence doesn't always guarantee an acceptable 
quality of the resulting solution. In addition, gradient descent 
algorithms are very sensitive to the objective function 
smoothness. Therefore, in recent years, the popularity of 
training algorithms based on random search has been growing. 

Random search algorithms are often used to improve an 
already obtained solution [1, 2]. They are also used in solving 
more complex problems, for example, to optimize the 
trainable neural network's architecture [3, 4, 5, 6, 7]. In 
addition, with a very limited training time, there are options 
when gradient algorithms are used to improve the training 
results by random search algorithms. [8]. However, it is not 
uncommon for random search algorithms to be used directly 
to train neural networks [9, 10, 11, 12]. 

It should be noted that the random search algorithms' 
implementation in modern frameworks is extremely rare. 
Their implementation is limited, as a rule, by genetic 
algorithms. Thus, the training neural networks' problem is still 
relevant. 

The paper proposes a variant of the framework's software 
implementation, in which original random search algorithms' 
implementations are used to train neural networks. 

II. PROBLEM FORMULATION 

A wide range of applied problems is solved using neural 
network technologies implemented in the form of 
frameworks. 

Today, there are a number of frameworks for solving 
machine learning problems. The most popular among them 
are MXNet, PyTorch, Tensorflow 2 and Caffe 2. 

1. MXNet is implemented in C++. It is a high-
performance, cross-platform framework and contains the 
following set of optimizers: AdaDelta, AdaGrad, ADAM, 
DCASGD, FTML, FTRL, LARS, LBSGD, NAG, Nadam, 
RMSProp, SGD, LAMB. The framework supports a wide 
class of neural network architectures. It is designed to train 
neural networks with a large number of configurable 
parameters on computers with high computational power. 

Among the shortcomings, one can note a not very 
convenient (compared to simpler frameworks) user interface 
and a restricted class of optimization algorithms. All of them 
are different modifications of gradient descent. At the same 
time, there is no support for random search methods. 

2. PyTorch is implemented in Python. The framework is 
cross-platform and supports training on video cards. It 
contains the following set of optimizers: Adadelta, Adagrad, 
Adam, AdamW, SparseAdam, Adamax, ASGD, LBFGS, 
NAdam, RAdam, RMSprop, Rprop, SGD. The framework 
supports a wide class of neural network architectures, has a 
native user-friendly interface in Python. 

Among the shortcomings are the following: due to the 
costs of the Python programming language, the performance 
of training process is not high enough. 

3. Tensorflow 2 implemented mostly in the language 
Python. Separate modules are implemented in the С++ 
(examples are modules for interaction with microcontrollers). 
This framework is cross-platform and has a simple user 
interface. It is the most common framework for solving 
applied problems. It contains the following set of optimizers: 
Adadelta, Adafactor, Adagrad, ADAM, AdamW, Adamax, 
FTRL, Nadam, RMSprop, SGD, differentialEvolution. It 
supports a wide class of neural network architectures and has 
a native user-friendly interface in Python. 

The disadvantages of the framework include insufficient 
high performance (costs of the Python programming 
language) and a restricted set of non-directional optimization 
algorithms. 

4. Caffe 2 is implemented in С++. It is a high-performance 
and cross-platform framework. It has the following set of 
optimizers: Adadelta, Adagrad, ADAM, FTRL, GFTRL, 
RMSprop, SGD, YellowFin. The framework lacks of support 
for recurrent neural networks. 

Among the disadvantages are the limited classes of 
training algorithms and neural network architectures. In 
addition, the lack of support for recurrent neural networks 
makes it impossible to use the framework for solving applied 
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https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.LARS
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.LBSGD
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problems with non-static data (text processing, speech 
recognition and video sequence processing). 

Thus, modern frameworks, for all their popularity, are 
either limited by the set of training algorithms and support a 
restricted class of neural networks, or they do not have high 
performance. 

III. FRAMEWORK ARCHITECTURE AND COMPOSITION 

The software package [13] was developed in C++ using 
the OpenMP and OpenCL libraries. This ensures its high 
performance and cross-platform. 

The framework consists of the following main modules: 
libraries of training algorithms and neural network 
architectures, configuration files with algorithm parameters, 
modules for execution on various computing devices, and a 
user interface. 

The algorithms library contains a wide range of 
optimization algorithms: gradient training algorithms (SGD, 
MomGrad, ADAM, FTML), algorithms based on random 
search (Slow annealing, batch annealing, genetic, batch 
genetic) and hybrid training algorithms (greedy, batch 
greedy). 

The framework supports the following types of neural 
networks: restricted Boltzmann machine of Gauss-Bernoulli 
and Bernoulli-Bernoulli types, autoencoders, decomposition 
of network layers from the above types, multilayer 
perceptrons, convolution layers, pooling layers. 

The framework can run on a limited number of CPU and 
GPU threads (limitations can be adjusted). In addition, a 
completely single-threaded execution mode is possible. 

The user interface contains the following functionality: 
loading (saving) a neural network from a hard disk, 
constructing neural networks based on architectures base, 
training neural networks, compressing and decompressing 
bitmaps, classifying objects. 

IV. FRAMEWORK USING FEATURES 

The framework operates in seven main modes: loading 
neural networks from hard disk, saving neural networks to 
hard disk, constructing deep neural networks, setting 
parameters and invoking the neural networks training process, 
loading input data, compressing and recovering color bitmaps, 
and classifying images. 

The neural network is loaded from the hard disk by calling 
the appropriate function. Its implementation is quite trivial and 
does not require additional comments. 

The neural network is saved to the hard disk when the user 
calls the corresponding function. It should be noted that the 
format of the saved network corresponds to the format when 
the network is loaded from disk. 

The loading of input data is presented in the framework is 
rather limited. When developing the framework, only the rgb 
format of input images was implemented, the user must 
additionally specify the number of images and their resolution. 

Compression and decompression of color bitmaps is 
performed by calling the corresponding functions. They take 
a deep neural network and input data as parameters. 

The classification of images is done by calling the predict 
function. It takes as parameters a deep neural network, input 

data and information about their amount. This function returns 
a numeric array - numbers of classes to which the input images 
belong. It is assumed that the user knows which numbers 
correspond to which classes. 

The user can create a neural network by sequentially 
connecting the layers of the network being designed. After 
building the network, the framework checks the correctness of 
the built architecture. 

For training, the user, in addition to input data loading and 
neural network designing, must set the training parameters. 

For each network's layer, it is necessary to define: the time 
allocated for training, the training algorithm, the need to 
continue training or lack of layer's training, the amount of data 
for the validation and training sets, and the need to take into 
account the results on the validation set in the training stop 
criterion. 

After that, the user sets the general training settings: the 
need to use the processor for training, forming and converting 
input images, the number of processor and video cards threads 
used. Other video card settings are calculated automatically, 
but the user can change them manually. 

After the settings, the user calls the neural network training 
function, which automatically connects all the necessary 
devices and modules for training, and also loads the training 
algorithms parameters. 

At the end of training, the neural network is saved to the 
hard drive of the computer.. 

V. NEURAL NETWORS HYBRID TRAINING ALGORITHM 

Random search algorithms are characterized by a large 
solution search space. This leads to the need (to achieve an 
acceptable solution) to perform a large number of iterations. 
Gradient-type algorithms, in turn, due to the strict transition 
rule, overly limit the search space and thus may potentially 
miss the optimal solution. 

The idea of building a hybrid algorithm is to expand the 
search space compared to directed methods and reduce the 
search space compared to random search methods. The 
developed algorithm consists of the following steps: 

Preliminary step. Initialization (randomly) of the initial 
solution x0 and f(x0) calculation. 

General k-th iteration. 

Step 1. Генерация случайного решения y на основе 
текущего решения х и вычисление f(y). Данный шаг 
полностью аналогичен генерации в алгоритме на основе 
метода отжига. 

Step 2. Current solution х is replaced to y, if ( ) ( )f x f y  

Step 3. Checking stop criteria. If for N successive perfect 
iterations (N is algorithm's parameter) there were not 
transitions to a new solution, then the algorithm ends. 
Otherwise, the transition to the next iteration is performed. 

With a help of procedure for a random solution generation 
it is possible to tune the size of the solution space. When 
generating a wide vicinity of the current solution, it is possible 
to generate almost any solution in several iterations. Given an 
ε-vicinity of the current solution, the algorithm degenerates 
into a simple gradient method. 
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Thus, the described algorithm is a kind of compromise 
between the solution quality and speed. 

This algorithm does not guarantee the achievement of an 
optimal solution. If the generation of new solutions in a small 
vicinity doesn't lead to an acceptable solution, then it makes 
no sense to apply the algorithm. As the vicinity expands, the 
convergence slows down significantly, and it is preferable to 
use the annealing algorithm to ensure that the optimal solution 
is reached. Narrowing the vicinity does not make sense, 
because this further limits the search space for a solution. 

VI. SCALABLE MODIFICATION OF RANDOM SEARCH 

ALGORITHMS 

To solve the scalability problem, the following 
modification of random search algorithms (batch annealing, 
batch genetic, batch greedy) is proposed. In this case, 
scalability means the amount of computations independence  
from the amount of input data. 

At the initialization of initial solution stage, the training 
dataset is duplicated Q times, where Q is algorithm's 
parameter. After that, an elements random permutation is 
performed within each original dataset's copy. Dataset's 
duplication and permutation of elements within the copies 
increase the dataset's fragments diversity, which improves the 
training quality in general. The dataset increased in this way 
is divided into QM fragments, where M is algorithm's 
parameter. It is assumed that the training dataset is divided 
into fragments without a remainder. The parameter M is 
selected in such a way that the dataset is divided into big data 
fragments.  

Splitting into small fragments leads to low accuracy of the 
objective function estimation on the entire training set and 
poor training quality. On the other hand, splitting the dataset 
into too large fragments requires an excessively large number 
of iterations and calculations to ensure convergence. 

At the initialization stage, the objective function value is 
accurately calculated on the entire training set. To do this, all 
fragments of the training dataset are fed into the network being 
trained one by one and the objective function values of are 
calculated. The calculated values for each fragment are stored, 
summed up - this is the exact objective function value 
multiplied by Q. 

At each iteration of this algorithm, value is optimized on 
one of the fragments of the training set. At the first iteration, 
the objective function value for the first fragment is 
calculated. Every K iterations, a cyclic change of training 
dataset's fragment is performed, where K is algorithm's 
parameter.  

At each iteration, the objective function value multiplied 
by Q is estimated on the entire training set. To do this, its 
estimate is calculated from the sum of the old values for all its 
fragments. The new value of the objective function is defined 
as the subtraction from old estimate the old value for the 
current fragment and add the objective function value on this 
fragment for the new solution. 

Thus, the procedure described above completely solves the 
problem of training algorithm scaling. As in the case of 
gradient algorithms, the size of the training dataset fragment 
at each iteration is a constant that does not depend on the size 
of the network being trained. This provides a linear increase 
in the training complexity with the network size growth. 

VII. EXPERIMENTAL RESULTS 

For the experiments, the STL-10 dataset was used [14, 15]. 
For experiments, 8x, 16x, and 32x compressions were chosen. 
For all degrees of compression, the images were divided into 
fragments of 4 by 4 pixels. Each separate fragment is 
compressed by a separate restricted Gauss-Bernoulli 
Boltzmann machine. The following architectures were used 
for compression: for 8x 48-48, for 16x 48-24, for 32x 48-24 
48-24. For 32-fold compression, the second layer was a 
restricted Bernoulli-Bernoulli type Boltzmann machine. 

To test the effectiveness of the developed framework, the 
most popular optimization algorithms were taken: adaptive 
moment method (ADAM) [16] and following the moving 
leader method (FTML) [17]. 

To evaluate the compression efficiency, the most common 
quality functionals were chosen MSE (mean squared error), 
PSNR (peak signal-to-noise ratio), PSNR-HVS (PSNR with 
human visual system), SSIM (structure similarity image 
measure). 

The experiments were carried out on the Lubuntu 20.04 
operating system using an nvidia rtx 3070 video card (see 
Table I, II, III). 

TABLE I.  COMPRESSION RESULTS FOR 3 BITS PER PIXEL 

Training 

algorithm 

Quality function 

MSE PSNR PSNR_HVS SSIM 
Training 

time, h 

ADAM 272 23.9 24.1 0.746 10.0 

FTML 254 24.2 24.4 0.756 10.0 

annealing 262 24.0 24.1 0.733 30.0 

batch 

annelaing 
254 24.1 24.3 0.733 30.0 

genetic 322 23.1 23.3 0.698 30.0 

batch 
genetic 

315 23.2 23.4 0.692 15.0 

greedy 306 23.4 23.6 0.723 10.0 

batch 

greedy 
271 23.9 24.1 0.737 10.0 

TABLE II.  COMPRESSION RESULTS FOR 1.5 BITS PER PIXEL 

Training 

algorithm 

Quality function 

MSE PSNR PSNR_HVS SSIM 
Training 

time, h 

ADAM 433 21.9 22.1 0.663 4.00 

FTML 397 22.3 22.5 0.673 4.00 

annealing 390 22.3 22.5 0.669 22.0 

batch 

annelaing 
384 22.4 22.6 0.671 22.0 

genetic 452 21.7 21.9 0.638 18.0 

batch 

genetic 
413 22.1 22.2 0.644 12.0 

greedy 415 22.1 22.3 0.661 10.0 

batch 
greedy 

385 22.4 22.5 0.671 10.0 
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TABLE III.  COMPRESSION RESULTS FOR 0.75 BITS PER PIXEL 

Training 

algorithm 

Quality function 

MSE PSNR PSNR_HVS SSIM 
Training 

time, h 

ADAM 836 19.0 19.2 0.502 6.00 

FTML 756 19.4 19.5 0.509 6.00 

annealing 640 20.2 20.3 0.551 25.0 

batch 

annelaing 
632 20.2 20.4 0.557 28.0 

genetic 697 19.8 20.0 0.525 21.0 

batch 
genetic 

718 19.7 19.9 0.524 11.5 

greedy 707 19.7 19.9 0.524 11.5 

batch 
greedy 

692 19.8 19.9 0.534 13.0 

From the experimental results, it can be noted that at low 
compression ratios, the most efficient random search 
algorithms are approximately equal in obtained solution 
quality, but more than 4 times slower than it. Scalable 
modification of all random search algorithms either 
significantly reduces training time or improves the quality of 
the resulting solution. 

The theoretical guarantee of the convergence of the 
annealing method to the optimal solution allowed the 
algorithms built on its basis to achieve the highest quality of 
the obtained solution (among the presented algorithms). 
However, it was also the slowest. 

At high compression ratios (32 times and higher), random 
search algorithms are significantly superior to gradient 
algorithms in terms of the solution obtained quality. At the 
same time, the quality of the solution obtained by the hybrid 
algorithm is lower than that of random search algorithms, but 
significantly higher than that of gradient algorithms. The 
hybrid training algorithm turned out to be 2.5 times faster than 
random search algorithms. This result shows that it is a full of 
value compromise between the high obtained solution quality 
and the high training speed. 

VIII. CONCLUSION 

The paper presents a framework in which algorithms based 
on random search are used to train neural networks. 

Due to the use of the OpenCL and OpenMP libraries in the 
framework development, its high performance and cross-
platform were ensured. This naturally expands the 
possibilities of its application for training neural networks. 

It has been experimentally shown that the training 
algorithms implemented in the framework based on random 
search provide a higher quality of the obtained solution. The 
framework also implements gradient training algorithms for 
the case of extreme time limitations for training. 

Thus, the framework proposed in the work expands the 
range of existing analogues and has a great development 
prospect in the future. 

It was used to train a neural network classifier when 
building a system for detecting non-weather changes in the 
landscape. Due to the presence of random search algorithms 

for neural networks training, a high efficiency of the system 
was obtained. 
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