
64

Neural network software technology trainable on

the random search and gradient descent principles

Vadim V. Matskevich

Department of Information and

Management Systems

Belarusian State University, Faculty of

Applied Mathematics and Informatics

Minsk, Belarus

matskevich1997@gmail.com

Xi Zhou

CETC LES Information System Co., Ltd

China

zhouxi_nju@126.com

Qing Bu

Les International (MSK) Information

Technology Co., Ltd

China

39020765@qq.com

Abstract—The paper considers an applied problem related

to the construction of efficient neural network technologies

implemented in the traditional frameworks' standards. It is

shown that the increase in efficiency is achieved due to the

additional inclusion in the framework's structure of training

algorithms based on the ideas of random search. Original

implementations of such algorithms are proposed, with

experimental confirmation of their effectiveness. It is shown that

in this case not only the solutions' obtained quality increases, but

it is also possible to extend the range of applied problems to be

solved.

Keywords— framework, neural network, training algorithms,

random search algorithms, annealing method

I. INTRODUCTION

Today, neural network technologies are actively used to
solve a wide range of applied problems. However, for their
application, it is necessary to pre-configure (train) the neural
network's architecture for the problem being solved.

To obtain a high-quality solution, training requires large
amounts of data and computational costs. At present, gradient
descent algorithms are usually used for training. However,
their fast convergence doesn't always guarantee an acceptable
quality of the resulting solution. In addition, gradient descent
algorithms are very sensitive to the objective function
smoothness. Therefore, in recent years, the popularity of
training algorithms based on random search has been growing.

Random search algorithms are often used to improve an
already obtained solution [1, 2]. They are also used in solving
more complex problems, for example, to optimize the
trainable neural network's architecture [3, 4, 5, 6, 7]. In
addition, with a very limited training time, there are options
when gradient algorithms are used to improve the training
results by random search algorithms. [8]. However, it is not
uncommon for random search algorithms to be used directly
to train neural networks [9, 10, 11, 12].

It should be noted that the random search algorithms'
implementation in modern frameworks is extremely rare.
Their implementation is limited, as a rule, by genetic
algorithms. Thus, the training neural networks' problem is still
relevant.

The paper proposes a variant of the framework's software
implementation, in which original random search algorithms'
implementations are used to train neural networks.

II. PROBLEM FORMULATION

A wide range of applied problems is solved using neural
network technologies implemented in the form of
frameworks.

Today, there are a number of frameworks for solving
machine learning problems. The most popular among them
are MXNet, PyTorch, Tensorflow 2 and Caffe 2.

1. MXNet is implemented in C++. It is a high-
performance, cross-platform framework and contains the
following set of optimizers: AdaDelta, AdaGrad, ADAM,
DCASGD, FTML, FTRL, LARS, LBSGD, NAG, Nadam,
RMSProp, SGD, LAMB. The framework supports a wide
class of neural network architectures. It is designed to train
neural networks with a large number of configurable
parameters on computers with high computational power.

Among the shortcomings, one can note a not very
convenient (compared to simpler frameworks) user interface
and a restricted class of optimization algorithms. All of them
are different modifications of gradient descent. At the same
time, there is no support for random search methods.

2. PyTorch is implemented in Python. The framework is
cross-platform and supports training on video cards. It
contains the following set of optimizers: Adadelta, Adagrad,
Adam, AdamW, SparseAdam, Adamax, ASGD, LBFGS,
NAdam, RAdam, RMSprop, Rprop, SGD. The framework
supports a wide class of neural network architectures, has a
native user-friendly interface in Python.

Among the shortcomings are the following: due to the
costs of the Python programming language, the performance
of training process is not high enough.

3. Tensorflow 2 implemented mostly in the language
Python. Separate modules are implemented in the С++
(examples are modules for interaction with microcontrollers).
This framework is cross-platform and has a simple user
interface. It is the most common framework for solving
applied problems. It contains the following set of optimizers:
Adadelta, Adafactor, Adagrad, ADAM, AdamW, Adamax,
FTRL, Nadam, RMSprop, SGD, differentialEvolution. It
supports a wide class of neural network architectures and has
a native user-friendly interface in Python.

The disadvantages of the framework include insufficient
high performance (costs of the Python programming
language) and a restricted set of non-directional optimization
algorithms.

4. Caffe 2 is implemented in С++. It is a high-performance
and cross-platform framework. It has the following set of
optimizers: Adadelta, Adagrad, ADAM, FTRL, GFTRL,
RMSprop, SGD, YellowFin. The framework lacks of support
for recurrent neural networks.

Among the disadvantages are the limited classes of
training algorithms and neural network architectures. In
addition, the lack of support for recurrent neural networks
makes it impossible to use the framework for solving applied

https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.AdaDelta
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.AdaGrad
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.DCASGD
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.LARS
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.LBSGD
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.NAG
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.Nadam
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.RMSProp
https://mxnet.apache.org/versions/1.7/api/python/docs/api/optimizer/index.html#mxnet.optimizer.LAMB
https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html#torch.optim.Adadelta
https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html#torch.optim.Adagrad
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html#torch.optim.AdamW
https://pytorch.org/docs/stable/generated/torch.optim.Adamax.html#torch.optim.Adamax
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html#torch.optim.ASGD
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html#torch.optim.LBFGS
https://pytorch.org/docs/stable/generated/torch.optim.NAdam.html#torch.optim.NAdam
https://pytorch.org/docs/stable/generated/torch.optim.RAdam.html#torch.optim.RAdam
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html#torch.optim.RMSprop
https://pytorch.org/docs/stable/generated/torch.optim.Rprop.html#torch.optim.Rprop

65

problems with non-static data (text processing, speech
recognition and video sequence processing).

Thus, modern frameworks, for all their popularity, are
either limited by the set of training algorithms and support a
restricted class of neural networks, or they do not have high
performance.

III. FRAMEWORK ARCHITECTURE AND COMPOSITION

The software package [13] was developed in C++ using
the OpenMP and OpenCL libraries. This ensures its high
performance and cross-platform.

The framework consists of the following main modules:
libraries of training algorithms and neural network
architectures, configuration files with algorithm parameters,
modules for execution on various computing devices, and a
user interface.

The algorithms library contains a wide range of
optimization algorithms: gradient training algorithms (SGD,
MomGrad, ADAM, FTML), algorithms based on random
search (Slow annealing, batch annealing, genetic, batch
genetic) and hybrid training algorithms (greedy, batch
greedy).

The framework supports the following types of neural
networks: restricted Boltzmann machine of Gauss-Bernoulli
and Bernoulli-Bernoulli types, autoencoders, decomposition
of network layers from the above types, multilayer
perceptrons, convolution layers, pooling layers.

The framework can run on a limited number of CPU and
GPU threads (limitations can be adjusted). In addition, a
completely single-threaded execution mode is possible.

The user interface contains the following functionality:
loading (saving) a neural network from a hard disk,
constructing neural networks based on architectures base,
training neural networks, compressing and decompressing
bitmaps, classifying objects.

IV. FRAMEWORK USING FEATURES

The framework operates in seven main modes: loading
neural networks from hard disk, saving neural networks to
hard disk, constructing deep neural networks, setting
parameters and invoking the neural networks training process,
loading input data, compressing and recovering color bitmaps,
and classifying images.

The neural network is loaded from the hard disk by calling
the appropriate function. Its implementation is quite trivial and
does not require additional comments.

The neural network is saved to the hard disk when the user
calls the corresponding function. It should be noted that the
format of the saved network corresponds to the format when
the network is loaded from disk.

The loading of input data is presented in the framework is
rather limited. When developing the framework, only the rgb
format of input images was implemented, the user must
additionally specify the number of images and their resolution.

Compression and decompression of color bitmaps is
performed by calling the corresponding functions. They take
a deep neural network and input data as parameters.

The classification of images is done by calling the predict
function. It takes as parameters a deep neural network, input

data and information about their amount. This function returns
a numeric array - numbers of classes to which the input images
belong. It is assumed that the user knows which numbers
correspond to which classes.

The user can create a neural network by sequentially
connecting the layers of the network being designed. After
building the network, the framework checks the correctness of
the built architecture.

For training, the user, in addition to input data loading and
neural network designing, must set the training parameters.

For each network's layer, it is necessary to define: the time
allocated for training, the training algorithm, the need to
continue training or lack of layer's training, the amount of data
for the validation and training sets, and the need to take into
account the results on the validation set in the training stop
criterion.

After that, the user sets the general training settings: the
need to use the processor for training, forming and converting
input images, the number of processor and video cards threads
used. Other video card settings are calculated automatically,
but the user can change them manually.

After the settings, the user calls the neural network training
function, which automatically connects all the necessary
devices and modules for training, and also loads the training
algorithms parameters.

At the end of training, the neural network is saved to the
hard drive of the computer..

V. NEURAL NETWORS HYBRID TRAINING ALGORITHM

Random search algorithms are characterized by a large
solution search space. This leads to the need (to achieve an
acceptable solution) to perform a large number of iterations.
Gradient-type algorithms, in turn, due to the strict transition
rule, overly limit the search space and thus may potentially
miss the optimal solution.

The idea of building a hybrid algorithm is to expand the
search space compared to directed methods and reduce the
search space compared to random search methods. The
developed algorithm consists of the following steps:

Preliminary step. Initialization (randomly) of the initial
solution x0 and f(x0) calculation.

General k-th iteration.

Step 1. Генерация случайного решения y на основе
текущего решения х и вычисление f(y). Данный шаг
полностью аналогичен генерации в алгоритме на основе
метода отжига.

Step 2. Current solution х is replaced to y, if () ()f x f y

Step 3. Checking stop criteria. If for N successive perfect
iterations (N is algorithm's parameter) there were not
transitions to a new solution, then the algorithm ends.
Otherwise, the transition to the next iteration is performed.

With a help of procedure for a random solution generation
it is possible to tune the size of the solution space. When
generating a wide vicinity of the current solution, it is possible
to generate almost any solution in several iterations. Given an
ε-vicinity of the current solution, the algorithm degenerates
into a simple gradient method.

66

Thus, the described algorithm is a kind of compromise
between the solution quality and speed.

This algorithm does not guarantee the achievement of an
optimal solution. If the generation of new solutions in a small
vicinity doesn't lead to an acceptable solution, then it makes
no sense to apply the algorithm. As the vicinity expands, the
convergence slows down significantly, and it is preferable to
use the annealing algorithm to ensure that the optimal solution
is reached. Narrowing the vicinity does not make sense,
because this further limits the search space for a solution.

VI. SCALABLE MODIFICATION OF RANDOM SEARCH

ALGORITHMS

To solve the scalability problem, the following
modification of random search algorithms (batch annealing,
batch genetic, batch greedy) is proposed. In this case,
scalability means the amount of computations independence
from the amount of input data.

At the initialization of initial solution stage, the training
dataset is duplicated Q times, where Q is algorithm's
parameter. After that, an elements random permutation is
performed within each original dataset's copy. Dataset's
duplication and permutation of elements within the copies
increase the dataset's fragments diversity, which improves the
training quality in general. The dataset increased in this way
is divided into QM fragments, where M is algorithm's
parameter. It is assumed that the training dataset is divided
into fragments without a remainder. The parameter M is
selected in such a way that the dataset is divided into big data
fragments.

Splitting into small fragments leads to low accuracy of the
objective function estimation on the entire training set and
poor training quality. On the other hand, splitting the dataset
into too large fragments requires an excessively large number
of iterations and calculations to ensure convergence.

At the initialization stage, the objective function value is
accurately calculated on the entire training set. To do this, all
fragments of the training dataset are fed into the network being
trained one by one and the objective function values of are
calculated. The calculated values for each fragment are stored,
summed up - this is the exact objective function value
multiplied by Q.

At each iteration of this algorithm, value is optimized on
one of the fragments of the training set. At the first iteration,
the objective function value for the first fragment is
calculated. Every K iterations, a cyclic change of training
dataset's fragment is performed, where K is algorithm's
parameter.

At each iteration, the objective function value multiplied
by Q is estimated on the entire training set. To do this, its
estimate is calculated from the sum of the old values for all its
fragments. The new value of the objective function is defined
as the subtraction from old estimate the old value for the
current fragment and add the objective function value on this
fragment for the new solution.

Thus, the procedure described above completely solves the
problem of training algorithm scaling. As in the case of
gradient algorithms, the size of the training dataset fragment
at each iteration is a constant that does not depend on the size
of the network being trained. This provides a linear increase
in the training complexity with the network size growth.

VII. EXPERIMENTAL RESULTS

For the experiments, the STL-10 dataset was used [14, 15].
For experiments, 8x, 16x, and 32x compressions were chosen.
For all degrees of compression, the images were divided into
fragments of 4 by 4 pixels. Each separate fragment is
compressed by a separate restricted Gauss-Bernoulli
Boltzmann machine. The following architectures were used
for compression: for 8x 48-48, for 16x 48-24, for 32x 48-24
48-24. For 32-fold compression, the second layer was a
restricted Bernoulli-Bernoulli type Boltzmann machine.

To test the effectiveness of the developed framework, the
most popular optimization algorithms were taken: adaptive
moment method (ADAM) [16] and following the moving
leader method (FTML) [17].

To evaluate the compression efficiency, the most common
quality functionals were chosen MSE (mean squared error),
PSNR (peak signal-to-noise ratio), PSNR-HVS (PSNR with
human visual system), SSIM (structure similarity image
measure).

The experiments were carried out on the Lubuntu 20.04
operating system using an nvidia rtx 3070 video card (see
Table I, II, III).

TABLE I. COMPRESSION RESULTS FOR 3 BITS PER PIXEL

Training

algorithm

Quality function

MSE PSNR PSNR_HVS SSIM
Training

time, h

ADAM 272 23.9 24.1 0.746 10.0

FTML 254 24.2 24.4 0.756 10.0

annealing 262 24.0 24.1 0.733 30.0

batch

annelaing
254 24.1 24.3 0.733 30.0

genetic 322 23.1 23.3 0.698 30.0

batch
genetic

315 23.2 23.4 0.692 15.0

greedy 306 23.4 23.6 0.723 10.0

batch

greedy
271 23.9 24.1 0.737 10.0

TABLE II. COMPRESSION RESULTS FOR 1.5 BITS PER PIXEL

Training

algorithm

Quality function

MSE PSNR PSNR_HVS SSIM
Training

time, h

ADAM 433 21.9 22.1 0.663 4.00

FTML 397 22.3 22.5 0.673 4.00

annealing 390 22.3 22.5 0.669 22.0

batch

annelaing
384 22.4 22.6 0.671 22.0

genetic 452 21.7 21.9 0.638 18.0

batch

genetic
413 22.1 22.2 0.644 12.0

greedy 415 22.1 22.3 0.661 10.0

batch
greedy

385 22.4 22.5 0.671 10.0

67

TABLE III. COMPRESSION RESULTS FOR 0.75 BITS PER PIXEL

Training

algorithm

Quality function

MSE PSNR PSNR_HVS SSIM
Training

time, h

ADAM 836 19.0 19.2 0.502 6.00

FTML 756 19.4 19.5 0.509 6.00

annealing 640 20.2 20.3 0.551 25.0

batch

annelaing
632 20.2 20.4 0.557 28.0

genetic 697 19.8 20.0 0.525 21.0

batch
genetic

718 19.7 19.9 0.524 11.5

greedy 707 19.7 19.9 0.524 11.5

batch
greedy

692 19.8 19.9 0.534 13.0

From the experimental results, it can be noted that at low
compression ratios, the most efficient random search
algorithms are approximately equal in obtained solution
quality, but more than 4 times slower than it. Scalable
modification of all random search algorithms either
significantly reduces training time or improves the quality of
the resulting solution.

The theoretical guarantee of the convergence of the
annealing method to the optimal solution allowed the
algorithms built on its basis to achieve the highest quality of
the obtained solution (among the presented algorithms).
However, it was also the slowest.

At high compression ratios (32 times and higher), random
search algorithms are significantly superior to gradient
algorithms in terms of the solution obtained quality. At the
same time, the quality of the solution obtained by the hybrid
algorithm is lower than that of random search algorithms, but
significantly higher than that of gradient algorithms. The
hybrid training algorithm turned out to be 2.5 times faster than
random search algorithms. This result shows that it is a full of
value compromise between the high obtained solution quality
and the high training speed.

VIII. CONCLUSION

The paper presents a framework in which algorithms based
on random search are used to train neural networks.

Due to the use of the OpenCL and OpenMP libraries in the
framework development, its high performance and cross-
platform were ensured. This naturally expands the
possibilities of its application for training neural networks.

It has been experimentally shown that the training
algorithms implemented in the framework based on random
search provide a higher quality of the obtained solution. The
framework also implements gradient training algorithms for
the case of extreme time limitations for training.

Thus, the framework proposed in the work expands the
range of existing analogues and has a great development
prospect in the future.

It was used to train a neural network classifier when
building a system for detecting non-weather changes in the
landscape. Due to the presence of random search algorithms

for neural networks training, a high efficiency of the system
was obtained.

REFERENCES

[1] Rehman, S., Nuha, H. H., Al Shaikhi, A., Akbar, S. & Mohandes, M.
Improving Performance of Recurrent Neural Networks Using
Simulated Annealing for Vertical Wind Speed Estimation. Energy
Engineering Vol.120, No.4, 2023. pp. 775–789. DOI:
10.32604/ee.2023.026185.

[2] Ying Yan, Wenting Zhang, Yongzhi Liu, Zhixuan Li Simulated
annealing algorithm optimized GRU neural network for urban rainfall-
inundation prediction. Journal of Hydroinformatics Vol.25, No.4,
2023: pp. 1358–1379. DOI: 10.2166/hydro.2023.006.

[3] Kuo, C. L., Kuruoglu, E. E. & Chan, W. K. V. Neural network structure
optimization by simulated annealing. Entropy, Vol.24, No.3, 2022. pp.
348–365. DOI: 10.3390/e24030348.

[4] Tsai, C.W., Hsia, C.H., Yang, S.J., Liu, S.J., & Fang, Z.Y. Optimizing
hyperparameters of deep learning in predicting bus passengers based
on simulated annealing. Applied Soft Computing, Vol.88, No.3, 2020.
pp.106068–106076. DOI: 10.1016/j.asoc.2020.106068.

[5] Deng, W., Liu, H., Xu, J., Zhao, H. & Song, Y. An improved quantum-
inspired differential evolution algorithm for deep belief network. IEEE
Transactions on Instrumentation and Measurement, Vol.69, No.10,
2020. pp. 7319–7327. DOI: 10.1109/TIM.2020.2983233.

[6] Hamdia, K.M., Zhuang, X. & Rabczuk, T. An efficient optimization
approach for designing machine learning models based on genetic
algorithm. Neural Computing & Applications. Vol.33, 2021. pp. 1923–
1933. DOI: 10.1007/s00521-020-05035-x.

[7] Al Haromainy, M. M., Prasetya, D. A. & Sari, A. P. Improving
Performance of RNN-Based Models With Genetic Algorithm
Optimization For Time Series Data. TIERS Information Technology
Journal, Vol.4, No.1, 2023. pp. 16–24. DOI: 10.38043/tiers.v4i1.4326.

[8] Liu, Y., Cuiqing J., Cuiping L., Zhao W., Wanliu Ch. Increasing the
Accuracy of Soil Nutrient Prediction by Improving Genetic Algorithm
Backpropagation Neural Networks, Symmetry Vol.15, No.1, 2023. pp.
151–165. DOI: 10.3390/sym15010151.

[9] He, F., Ye, Q. A Bearing Fault Diagnosis Method Based on Wavelet
Packet Transform and Convolutional Neural Network Optimized by
Simulated Annealing Algorithm. Sensors, Vol.22, 2022. pp. 1410–
1426. DOI: 10.3390/s22041410.

[10] Osegi, E. N. & Jumbo, E. F. Comparative analysis of credit card fraud
detection in Simulated Annealing trained Artificial Neural Network
and Hierarchical Temporal Memory. Machine Learning with
Applications, Vol.6, 2021. pp. 100080–100089.

[11] Chakravorty S. & Nagarur N. N. Simulated Annealing Based Artificial
Neural Network For Real Time Dispatching, 34th Annual SEMI
Advanced Semiconductor Manufacturing Conference (ASMC), 2023.
pp. 1–6. DOI: 10.1109/ASMC57536.2023.10121138.

[12] Gao Y., Liu L., Chen M. & Tian L. Mechanical properties analysis of
cell surface based on genetic simulated annealing optimization neural
network. Proceedings of International Conference on Internet of
Things and Machine Learning (IoTML), 2022. pp. 316–324. DOI:
10.1117/12.2673514.

[13] Krasnoproshin, V. V. & Matskevich, V. V. Neural network software
technology trainable on the random search principles, Research Papers
Collection “Open Semantic Technologies for Intelligent Systems”,
Vol. 7, 2023. pp. 133–140

[14] STL-10 dataset. – link:
academictorrents.com/details/a799a2845ac29a66c07cf74e2a2838b6c
5698a6a – Access date : 25.02.2023.

[15] STL-10 dataset description. – link: stanford.edu/~acoates//stl10/ –
Access date : 24.02.2023.

[16] Kingma, D. P. & Ba J.L. Adam: A Method for Stochastic Optimization,
Proc. of the 3rd Intern. Conf. on Learning Representations (ICLR),
2015. pp. 1–15.

[17] Zheng Sh. & Kwok J. T. Follow the moving leader in deep learning,
Proc. of the 34-th International Conference on Machine Learning,
2017. Vol. 70, 2017. pp. 4110–4119.

