
Prediction of protein-protein interaction with cosine
matrices

Anton A. Novikov
Faculty of Applied Mathematics

and Computer Science Belarusian
State University

Minsk, Republic of Belarus
newnovnav@gmail.com

Alexander V. Tuzikov
United Institute of Informatics
Problems National Academy of

Sciences of Belarus Minsk,
Republic of Belarus

tuzikov@newman.bas-net.by

Abstract—The protein-protein interaction prediction problem
is one of the unsolved fundamental problems of bioinformatics
and structural biology. A wide range of machine learning
approaches has been developed, relying on prediction of protein-
protein interaction interface. In this study we have tried a
different approach to the problem. It relies on prediction of
molecule centers displacement directions and their relative ro-
tation. We present a novel protein structure representation with
cosine matrices. These matrices can be considered as successors
of widely used distance maps. They have useful properties
such as rotation/shift invariance and self-correcting behavior.
We developed a fully convolutional neural network architecture,
which is able to predict dimer complexes (both homodimer and
heterodimer). The model allowed to achieve 51% of correct
predictions (59% for homodimers and 45% for heterodimers) for
a test set of 5,854 complexes and 10 angstrom RMSD threshold.

Index Terms—Protein-protein interaction, protein structure
representation, cosine matrix, fully convolutional neural network

I. INTRODUCTION

Proteins serve as the base of all known life and thus an
object of wide practical and theoretical interest. Working with
the protein molecules presents certain challenges. One of such
challenges is prediction of protein-protein interactions. While a
related problem of protein folding predicition has seen a recent
major breakthrough [1], protein interaction prediction has also
seen significant improvement in performance, although it is
still not solved [2].

A protein is a polymer consisting of amino acid residues
tied with peptide bonds. There are 20 amino acids which
are regularly encountered in natural proteins. To describe a
structure of a protein molecule four levels of the structure are
defined. The primary level is defined as a sequence of amino
acid residues which constitutes the protein. The secondary
level is defined as a backbone conformation and consist of α-
helices, β-sheets, unordered segments and other. The tertiery
level is defined as a full 3-D model of the molecule with both

the backbone and side-chains. The quaternary level is defined
as full 3-D model of a protein complex and thus makes sense
only for multimers.

Protein interaction prediction can be defined as quaternary
structure deduction from primary, secondary and/or tertiary
structure. Most popular approach is to predict interaction in-
terface using some machine learning algorithm. The interface
consists of pairs of interacting residues and can be represented
by a binary contact map. Residues are considered interacting
when distance between them is less than a chosen threshold
(that can lay in range of 6-12 angstroms). When the interface
is known, quaternary structure restoration can be treated as and
solved as an optimization problem. In many studies interface
prediction is the endpoint and no full quaternary structures are
built. It presents a problem, since in those researches different
metrics are used, and results can not be compared directly.

One method of this type is based on a representation of
protein structure known as a distance map [3], [4]. As the
definition suggests, distance maps are matrices consisting of
distances between backbone atoms (alpha carbon or beta
carbon) of the same molecule or two interacting molecules.
The first of them are called intra-chain maps, and the second
are called inter-chain maps. The main feature is that they
are translation and rotation invariant. Using non-invariant
representations, such as ordinary Cartesian coordinates, with
neural networks often leads to unwanted side effects. This
method takes an intra-chain distance map as input, combined
with an amino acid sequence or multiple sequence alignment
(MSA), and produces a binary contact map of the same
size as the output. Here, the input and output are processed
as multi-channel and binary image respectively. Processing
of the input data is performed using convolutional neural
networks (CNN), in particular, using fully convolutional neural
networks (FCN) [5]. An important feature of FCNs is that
they can handle input data of arbitrary size. This approach is
best suited for predicting homodimeric complexes. While a

Alexander V. Batyanovskii
United Institute of Informatics

Problems
National Academy of Sciences of

Belarus
Minsk, Republic of Belarus

alexanderSN@yandex.ru

258

homodimeric complex can be represented by a single distance
map, a heterodimeric complex requires a pair of maps of
different sizes, so they cannot be stacked together. To avoid
this shortcoming, the authors of [4] used only one of the two
distance maps in the input data, but this does not seem to be
a natural solution.

Another approach to predicting interaction is considered in
this study. It is well suited for both homodimers and het-
erodimers. In the general case, the configurations of proteins
in a dimer lie in a six-dimensional parameter space [6]. If one
molecule has a fixed position, then the position of the other
will be determined by rotation (3 parameters) and translation
(3 parameters). Alternatively, we define the position using
rotation (3 parameters), shear axis (2 parameters), and distance
(1 parameter). At the same time, the direction of rotation
and coupling is predicted, and the distance is reconstructed
taking into account the van der Waals radii. This reconstruction
is quite accurate, although it often results in an error of 1-
3 angstroms RMSD. To implement the described method, a
new representation was proposed, which also allows invariant
translation/rotation of protein structures for both monomers
and multimers.

II. REPRESENTATION BY COSINE MATRICES

Assume there are two directed polylines L′ and L′′ in a k-
dimensional Euclidian space. They consist of point sequences

(x′
0, x

′
1, ..., x

′
m), (x′′

0 , x
′′
1 , ..., x

′′
n)

and corresponding vectors

(l⃗′1, l⃗
′
2, ..., l⃗

′
m), (l⃗′′1 , l⃗

′′
2 , ..., l⃗

′′
n)

(where l⃗′i = x′
i − x′

i−1 and l⃗′′j = x′′
j − x′′

j−1 for i in range of
{1, ...,m} and j in range of {1, ..., n}).

We define a cosine matrix for the lines L′ and L′′ as an
m× n real matrix of the form:

cos(l⃗′1, l⃗
′′
1) cos(l⃗′1, l⃗

′′
2) cos(l⃗′1, l⃗

′′
n)

cos(l⃗′2, l⃗
′′
1) cos(l⃗′2, l⃗

′′
2) cos(l⃗′2, l⃗

′′
n)

. . .
cos(l⃗′m, l⃗′′1) cos(l⃗′m, l⃗′′2) cos(l⃗′m, l⃗′′n)

 (1)

Let us rewrite the cosine matrix in another form. We have
to normalize the vectors l⃗′i and l⃗′′j into e⃗′i = l⃗′i/|l⃗′i| and
e⃗′′j = l⃗′′j /|l⃗′′j | and choose a Cartesian frame of reference. With
the frame of reference, we write down the coordinates of the
vectors e⃗′i and e⃗′′j into row-matrices e′i and e′′j . These rows are
stacked in 3×m and 3× n matrices:

P1 = (e′1 e′2 · · · e′m) (2)

P2 = (e′′1 e′′2 · · · e′′n) (3)

Since cos(l⃗′i, l⃗
′′
j) =< e⃗′i, e⃗

′′
j >= (e′i)

Te′′j matrix (1) is
rewritten as:

(e′1)
Te′′2 (e′1)

Te′′2 (e′1)
Te′′n

(e′2)
Te′′2 (e′2)

Te′′2 (e′2)
Te′′n

. . .
(e′m)Te′′2 (e′m)Te′′2 (e′m)Te′′n

 =

= (e′1 e′2 · · · e′m)
T
(e′′1 e′′2 · · · e′′n) =

= PT
1 P2 (4)

Formula (4) is a more useful form of (1), since it allows
analysis of the cosine matrices with the linear algebra cal-
culations. Notations CP1,P2

and CP1,AP2
will be also used

for cosine matrices. Here A is an orthogonal rotation matrix.
The formula is used to encode protein complexes where both
components are already known, therefore matrices P1 and P2

are also known.
To fully represent the protein complexes with the matrices,

it is necessary to introduce two special cases of CP1,P2
.

A. Matrix CE

Assume there is only a single polyline. It is possible to build
a cosine matrix, simply by taking it twice. Therefore (4) takes
the form:

CE = PTP (5)

It is important to note that CE is essentially the Gram matrix
of the system (e⃗1, e⃗2, ..., e⃗n) and thus has the corresponding
properties.

B. Matrix Cυ

Assume there are a polyline and a unitary vector υ⃗. We
can use vector sequence (l⃗′1, l⃗

′
2, ..., l⃗

′
m) and sequence of size n

(υ⃗, ..., υ⃗) to build a cosine matrix Cυ of size m× n.
Basic properties of cosine matrices:
1) All values of a cosine matrix lay in range [−1, 1].
2) CE main diagonal consists of ones.
3) Transposing cosine matrices is done as follows:

CT
P1,P2

= CP2,P1
(6)

CT
P1,AP2

= CP2,ATP1
= CP2,A−1P1

(7)

CT
E = CE (8)

4) rank(CE) = rank(P). The polyline dimensionality
equals to the rank of the cosine matrix.

5) All cosine matrices are independent on the Cartesian
frame of reference choice.

6) The same isometric transformation applied to the both
polylines do not change their cosine matrices.

III. PROTEIN REPRESENTATION WITH COSINE MATRICES

Cosine matrices are formally defined for abstract polylines.
In context of protein structure representation, we use alpha
carbon atoms as sequences of points. These atoms are mostly
enough to represent tertiary structure, thereof a range of
software exists [7] to restore full proteins from alpha carbons.
When two molecules consisting of m and n residues are used
one CP1,P2 of size (m− 1)× (n− 1) is produced. This fact
affects the amino sequence encoding for the neural network
input.

Each of three classes of matrices is utilized differently. CE

matrices are used for single molecules encoding. They can be

259

used for the protein folding prediction. As it has been previ-
ously said, for the protein interactions we represent complexes
by defining rotations and the bonding axes. Matrix CP1,P2 is
utilized for the rotation encoding and the bonding axis can be
easily represented with Cυ matrix. More specifically, the axis
is represented with m× n Cυ1

against the first molecule and
m×n CT

υ2
against the second. Therefore, quaternary structures

of dimer complexes can be represented with 3 matrices, which
are in some sense 3-channel pseudo-images.

A. Textures on the cosine matrices

Fig. 1. Secondary structures to textures mapping.

In the context of neural networks, it is better to think of the
cosine matrix as a grayscale image rather than a mathematical
matrix. Because the secondary structures of proteins are quite
regular, they create regular and distinct textures in the image.
Here we list the most common textures and their meaning.

• The ”Parallel Rods” texture appears where two spirals
overlap. The inclination and color of these stripes depend
on the angle between the spirals. If the spirals are parallel,
then the rods are parallel to the main diagonal; if the
spirals are antiparallel, then the rods are parallel to the
minor diagonal.

• Solid texture appears in areas where two sheets overlap.
The color of these areas depends on the angle between the
sheets. When they are parallel, the color is white (values

around 1), when the sheets are anti-parallel, the color is
black (values around -1).

• The “wave” texture appears where the sheet and spiral
overlap.

• When an area consists of many small solid, ”banded”
and ”wavy” rectangles, it usually means that the area is
an overlap of an unordered segment with something

All this means is that cosine matrices encode secondary and
tertiary structure as image texture. We will later show that the
coordinates of alpha carbons (in some reference frame) can be
extracted from cosine matrices using ordinary linear algebra
operations.

IV. MATRICES DECODING

There are several algorithms we use to decode cosine
matrices and get back protein structures from them. Most
important ones are extracting polyline from CE , decoding
column-vector υ from Cυ with known P , extracting rotation
matrix A from CP1,AP2

with P1 and P2 known and decoding
both P1 and P2 from CP1,P2 .

These algorithms are suitable not only for the exact cosine
matrices defined above, but also for their approximations and
noisy cases due to the self-correctness property of cosine
matrices. This is important because neural networks are ap-
proximators by design and usually do not make absolutely
accurate predictions. When an imprecise matrix is decoded,
it can also be converted to an accurate matrix with decoded
polylines.

The algorithms are based on the fact that the distance
between neighboring alpha carbon atoms is constant and equal
to 3.8 angstroms. We also included a bumping algorithm that is
used to determine the distance between interacting molecules.
We use the following notation:

• TX = (XXT)−1X
• [X]2 – is element-wise matrix square
• sqrt(X) – is element-wise matrix square root
• diag(v) – is diagonal matrix with elements of vector v

on the main diagonal

A. Extracting alpha carbons positions from CE

Since the matrices CE are Gram matrices, extracting a
polyline is finding a vector realization. Here we assume that
P is a full-rank matrix and all eigenvalues of CE are distinct.
This is true for all protein molecules in the data set. Suppose
we have a matrix C̃E , which is not necessarily an exact cosine
matrix and may be noisy or the result of a neural network. In
such cases, a reliable algorithm for obtaining coordinates is as
follows:

1. Let ĈE ← 1
2 (C̃

T
E + C̃E) (symmetrisation)

2. Compute V = (v1 v2 · · · vk) ∈ Rn×k matrix of
eigenvectors and eigenvalues λ1, λ2, ..., λk > 0
3. Let P̂ ← diag(±

√
λ1,±

√
λ2, ...,±

√
λk)V

T

4. Let P be P̂ with all column-vectors normalized
5. Multiply P with length constant d and compute the
cumulative sum along rows

260

The result is a alpha carbon polyline in which the first atom
is at the zero point.

B. Extracting vector υ from Cυ

If matrix P is known then vector v encoding is quite
simple:

1. Let Υ← (PPT)−1PCυ = TPCυ

2. Compute the sum of Υ along rows into column-vector υ̃
3. Let υ̂ be normalization of υ̃
The vector ṽ is the result. Note that (XTX)−1XTY

specifies multivariate linear regression in explicit form (least
squares). Therefore, this algorithm is essentially just linear
regression.

C. Extracting A from CP1,AP2 with known P1 and P2

If the tertiary structures of both interacting molecules are
known, then it is easy to construct the matrices P1 and
P2. When the rotation is predicted, it results in the ma-
trix CP1,AP2

, where A is the orthogonal rotation matrix.
The matrix A can be extracted using the following algo-
rithm:

1. Let Ã← TP1
CP1,AP2

TT
P2

2. Compute singular value decomposition (SVD) of Ã:
Ã = UDV T, there D = diag(σ1, σ2, ..., σk) and U and V
are orthogonal
3. Let D̂ ← diag(sign(σ1), sign(σ2), ..., sign(σk))
4. Let Â← UD̂V T, Â is now orthogonal

The result is matrix Â.
This is a general algorithm that is most often used for

heterodimers. For homodimers P1 = P2 = P and the matrix
A is symmetric with the eigenvalues (1,−1,−1), and so the
algorithm can be easily modified to ensure that the resulting
estimate Â has the required properties. This can be done
by symmetrisation of Â and using eigenvalues/eigenvectors
instead of SVD. We also note that the first step of the algorithm
is essentially linear regression applied twice.

D. Extracting P1 and P2 from CP1,P2

It is possible to extract both P1 and P2 only from
CP1,P2

. There are two methods for this: one is exact and
the other is approximate. This approximation is more com-
putationally efficient, but with modern computing power it
does not make much difference. Here is the exact algo-
rithm:

1. Let X1 be matrix of CP1,P2
CT

P1,P2
eigenvectors and X2

be matrix of CT
P1,P2

CP1,P2
eigenvectors

2. Let Y1 ← XT
1 CP1,P2

and Y2 ← (CP1,P2
X2)

T

3. Let Z1 ← TY2
CP1,P2

TT
Y1

4. Let Z2 be matrix of Y1Y
T
1 eigenvectors

5. Let Z3 ← ZT
2 Z1Y2

6. Sum T[Z3]2 along rows into a column-vector s
7. Let P̂1 be diag(sqrt(s))Z3 with normalized column-
vectors
8. Let P̂2 be TP̂1

CP1,P2
with normalized column-vectors

The result is a pair of matrices P̂1 and P̂2.

All four described algorithms have the property of self-
correction. It is based on SVD robustness and linear regres-
sion. We tested these algorithms with white noise of various
distributions and amplitudes and saw the stability of the cosine
matrices.

E. Bumping algorithm

A simple iterative algorithm is used to find the distances
between molecules. The first shift is sought at which the
van der Waals radii of alpha carbon atoms will not be
violated (this radius is 1.7 angstroms). The algorithm is as
follows:

1. Fix the position of one of the molecules and move the
second to align their geometric centers
2. Calculate all the distances between the chains, if all of
them are not less than 3.4 angstroms and 90% of them not
less than 3.6 angstrom, then the algorithm stops
3. Shift the second molecule by 0.1 angstroms in the
direction of the bond and proceed to step 2.

The result is assumed to be the final quaternary structure
prediction.

V. NEURAL NETWORK ARCHITECTURE

Two convolutional neural networks were built. The first of
them is an autoencoder and consists of an encoder and a
decoder. Both the encoder and decoder are fully convolutional
1D and 2D networks. The encoder takes an amino acid
sequence as input and creates an intermediate 256-mer code
from it. The outer product of the code is then performed with
itself and the result is sent to the decoder. This block creates
a single grayscale image. The network was trained to predict
CE and hence the protein folding.

Fig. 2. First stage neural network scheme.

The second neural network is also an autoencoder. It reuses
the already trained blocks from the previous step, but intro-
duces two new blocks: a recorder and a reformer (both also

261

FCN). The recoder takes the intermediate code and the amino
acid sequence of the protein molecule and recodes them into
another intermediate code. When two interacting molecules
act independently, their new codes are converted by the outer
product into a single code. The reformer then converts the
code into 3 codes, each of which is then processed by the
decoder and thus produces a 3-channel image corresponding
to CP1,P2 , Cυ1 and CT

υ2
matrices. This predicts the desired

quaternary structure.

Fig. 3. Second stage neural network scheme.

The reason for this dual architecture is that the dataset of
individual protein structures is much larger than the dataset of
dimeric complexes. The idea is to obtain an intermediate code
containing general information about the tertiary structure of a
protein and then use it to predict interactions. Once the code
is generated, a second round of training is performed on a
smaller set of dimer data. Therefore, it is possible to predict
the quaternary structure based on the primary structure. Known
tertiary structures do not participate in the input data of neural
networks, but they are used to obtain the matrices P1 and P2

and use them in decoding CP1,AP2
.

VI. TRAINING AND RESULTS

A. First stage training

For training at the first stage, a training set of 309,505
molecules and a test set of 77,419 molecules were used. All
molecules were at least 65 residues in size. The network
was trained for 80 epochs and a loss function based on the
Structural Similarity Index Score (SSIM) [8] was used. It is
differentiable and easy to interpret and is therefore well suited
for this task.

For each training step, a protein was selected from the data
set and a random contiguous segment of 65 residues was cut
from it. Based on them, the 40× 64 binary code of the amino
acid sequence and the true tertiary structure of the 64×64 CE

matrix were built. The binary code was fed to the input and the
matrix 64× 64 C̃E was obtained at the output. A comparison
of CE and C̃E as grayscale images was then performed to
obtain the training loss.

Fig. 4. First stage training (fold).

B. Second stage training

For training at the second stage, a training set of 23,344
complexes and a test set of 5,854 complexes were used. For
each of them, both components had a size of at least 65
residues. The network was trained for 100 epochs.

For each training step, a dimeric protein complex was
selected from the data set, the binding direction of the proteins
(the axis connecting the geometric centers of the molecules)
was calculated, and a random contiguous segment of 65
residues was cut from each protein. Based on them, two 40×64
binary codes and 3 matrices for encoding the quaternary
structure were constructed: 64 × 64 true CP1,P2

matrix and
Cυ1

, CT
υ2

of the same size (actually υ2 = −υ1). A pair of
binary codes was used as input and the output was 3×64×64
prediction (C̃P1,P2 , C̃υ1 , C̃

T
υ2
). Then a comparison was made

between (CP1,P2
, Cυ1

, CT
υ2
) and (C̃P1,P2

, C̃υ1
, C̃T

υ2
) as RGB

images to obtain training loss.
This network tends to overfit. The reason for this is most

likely a general lack of data. Both training and test sets were
evaluated. To do this, complete complexes were taken, their
second molecule was randomly rotated, and then complete
amino acid codes of sizes 40 × (m − 1), 40 × (n − 1) and
two true matrices were constructed P1 and P2 (their sizes are
3×(m−1) and 3×(n−1)). Then the prediction was performed
(C̃P1,AP2 , C̃υ1 , C̃

T
υ2
) and extracted Â, υ̂1, υ̂2 consistent with

each other. The output of the neural network was decoded
with known P1 and P2. The predicted rotation and bumping

262

Fig. 5. Second stage training (interaction).

algorithm were then applied. A comparison was made between
the predicted and true (unrotated) quaternary structures using
the RMSD calculated for the second molecule (the first one
was still fixed). The prediction was considered correct if the
RMSD was less than 10 angstroms. For the test set, an overall
performance of 51% correct predictions was achieved (59%
for homodimers and 45% for heterodimers). For the training
set, performance was 67% (70% for homodimers and 64%
for heterodimers). It seems possible to increase the result by
5-8%, since previously a performance of 64% had already
been achieved on the predecessor of the described network,
but that network was not suitable for predicting heterodimers
and required a CE matrix as input data.

VII. CONCLUSION

Using the described approach, a result close to modern
performance [2] was obtained. It seems that it is limited by
the amount of data available, but as already said that there
are opportunities for its improvement. In our opinion, the
introduced cosine matrices are well suited for representing
protein molecules and can find their place in bioinformat-
ics.They can be useful as an input/output representation and
for visualization. Together with SSIM, they can also be used
for structural comparisons of molecules.

CODE AVAILABILITY

Source code of the neural network and the algorithms
implementation are available on GitHub with a link:
https://github.com/SwampHiker/COSMAP/

REFERENCES

[1] J. Jumper, et al. ”Highly accurate protein structure prediction with
AlphaFold,” Nature, 2021. doi: 10.1038/s41586-021-03819-2.

[2] J. Durairaj, D. de Ridder, A. van Dijk, ”Beyond sequence: Structure-
based machine learning,” Computational and Structural Biotechnology
Journal, vol. 21, 630-643, doi:10.1016/j.csbj.2022.12.039, 29 Dec. 2022.

[3] A. Hadarovich, A. Kalinouski, A. Tuzikov, ”Deep Learning Approach
with Rotate-Shift Invariant Input to Predict Protein Homodimer Struc-
ture”, in Bioinformatics Research and Applications: 16th International
Symposium, ISBRA 2020, Moscow, Russia, December 1–4, 2020, Z.
Cai, I. Mandoiu, G. Narasimhan, P. Skums, X. Guo., Eds. Lecture Notes
in Computer Science, vol 12304. Springer, Cham. doi: 10.1007/978-3-
030-57821-3 27, 2020.

[4] Z. Guo, J. Liu, J. Skolnick, J. Cheng, ”Prediction of inter-chain dis-
tance maps of protein complexes with 2D attention-based deep neural
networks,” Nat Commun 13, art. 6963, 2022. doi: 10.1038/s41467-022-
34600-2.

[5] J. Long, E. Shelhamer, T. Darrell, ”Fully Convolutional Net-
works for Semantic Segmentation,” arXiv:1411.4038v2, 2015. doi:
10.48550/arXiv.1411.4038.

[6] T. Vreven, H. Hwang, Z. Weng, ”Integrating atom-based and residue-
based scoring functions for protein-protein docking,” Protein science: a
publication of the Protein Society, vol. 20(9), pp. 1576–1586, 2011. doi:
10.1002/pro.687.

[7] A. Badaczewska-Dawid, A. Kolinski, S. Kmiecik, ”Computational re-
construction of atomistic protein structures from coarse-grained models”,
Computational and Structural Biotechnology Journal, vol. 18, pp. 162-
176, 2020. doi: 10.1016/j.csbj.2019.12.007.

[8] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, ”Image quality assess-
ment: from error visibility to structural similarity,” in IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004, doi:
10.1109/TIP.2003.819861.

263

