
269

Compressing a convolution neural network based on

quantization

Dmitry Pertsau

Electronic Computing Machines

department

Belarusian State University of

Informatics and Radioelectronics

Minsk, Belarus

ORCID: 0000-0003-3830-378X

Marina Lukashevich

Post Doctoral Reseacher, Electronic

Computing Machines department

Belarusian State University of

Informatics and Radioelectronics

Minsk, Belarus

ORCID: 0000-0003-1255-5612

Dziana Kupryianava

PhD student, Electronic Computing

Machines department

Belarusian State University of

Informatics and Radioelectronics

Minsk, Belarus

ORCID: 0009-0007-8259-0655

Abstract—Modern deep neural network models contain a

large number of parameters and have a significant size. In this

paper we experimentally investigate approaches to compression

of convolutional neural network. The results showing the

efficiency of quantization of the model while maintaining high

accuracy are obtained.

Keywords—convolution neural network, quantization,

Quantization-Aware Training, Post-Training Static Quantization

I. INTRODUCTION

Overparameterized neural networks show significant
performance in computer vision (CV), natural language
processing (NLP), robotics and others domains (Fig. 1, 2). It
is very important to find the balance between model size and
inference time from one side and accuracy and generalization
from the other side. In our research we concentrated on
Convolution Neural Networks (CNN).

Fig. 1. Accuracy vs Number of Parameters for CNN architectures [1]

Fig. 2. Parameters vs Years for Transformers [2]

Compressing a deep neural network is an effective way to
improve the efficiency of logical inference. Compression
methods include the following approaches: parameter pruning
[3, 4], low-rank factorization [5-7], weight quantization [8, 9]
and knowledge distillation [10, 11]. Recently, quantization
has become an important and very active research area in the
efficient realization of computations related to neural
networks [12, 13]. Network quantization compresses the
network by reducing the number of bits per weight needed to
represent the deep network. After quantization, the network
can also demonstrate higher inference speed. The 32-bit
floating-point format is dominant for deep learning
applications, there is a gradual bias towards less accurate
formats (e.g., INT8, FLOAT16 and others). This is due to
many factors: storing a neural network model in a reduced-
fidelity format requires less storage space; the use of processor
blocks operating in integer arithmetic ensures higher
instruction throughput theoretically; higher memory
bandwidth and cache requirements are reached.

In the paper investigates the applicability of quantization
algorithms to integer form for a convolutional neural network
implementing handwritten digit recognition based on the
MNIST dataset. The following scenarios are analyzed:
quantization of the whole model to 8-bit integer format;
quantization of convolution layers to 8-bit integer format;
quantization of Dense layers to 8-bit integer format.

II. APPROACHES OF QUANTIZATION

The quantization process consists of converting the trained
neural network weights from 32-bit floating-point format to
an alternative format, usually in reduced precision. More
detailed description of the quantization process and its
influence on neural network training is given in [12, 13].

Broadly, there are two kinds of quantization: weight
quantization; weight and activation quantization.

The main difference is the following: whether the inverse
conversion to floating point format is performed when
applying the neural network model. In case of weight
quantization, training process is in floating point format,
quantization into integer format is performed when saving the
model. When loading the model, weights are restored to
floating point format. Further calculations are performed in
floating point format. In the case of weight and activation
quantization, training is also doing in floating point format,
then weights and activation are quantized and stored. There is
no backward conversion to floating point format when
working with such a model.

The most well-known frameworks working with
convolutional neural networks support 3 quantization models:

270

• Dynamic Quantization, where not only weights
convert to int8, but also converting the activations to
the same format before doing the computation.
Theoretically, the computations will used special
integer hardware blocks (like tensor blocks) for matrix
multiplication and convolution, resulting in faster
compute;

• Post-Training Static Quantization quantizes the
weights and activations of the model. It fuses
activations into preceding layers where possible and
requires calibration with a representative dataset to
determine optimal quantization parameters for
activations;

• Quantization-aware training (QAT), where all weights
and activations are “fake quantized” during both the
forward and backward passes of training: that is, float
values are rounded to mimic int8 values, but all
computations are still done with floating point
numbers.

III. EXPERIMENTS

A. Datasets

To set up the experiment, we used the MNIST dataset,
consisting of 70 000 images, each of which has a resolution of
28x28 pixels in grayscale. The whole set is divided into 3
groups:

• training set (70% of the total number of images, 48 999
frames in total);

• validation set (20%, 14 000 images);

• test set (10%, 7 001 images).

For results validation we also used CIFAR-10 dataset
(60 000 image, each of which has a resolution of 32x32 pixels
in color).

B. Neural network architecture and parameters for training

Default neural network architecture (model name is
‘default’) is shown on Fig.3. There are 7 layers:

• convolution layer, where 32 kernels of 3x3 elements
are used, activation function is RELU;

• max pooling with size 2x2;

• convolution layer, where 64 kernels of 3x3 elements
are used, activation function is ReLU;

• max pooling with size 2x2;

• flatten;

• dropout layer with drop probability 0.5;

• dense layer with SoftMax activation function.

Training of the neural network was performed on a server
with the following configuration:

• Intel(R) Xeon(R) CPU @ 2.20GHz;

• NVIDIA Tesla T4 / 15Gb.

Parameters for training:

• epoch count – 15;

• batch size – 128;

• loss function – categorical cross entropy.

Training and validation loss and accuracy for default
model are shown on Fig.4. Accuracy is 98,9%. Confusion
matrix is shown on Fig.5.

In our experiments we used the next technological stack:
Python, TensorFlow, Keras, TensorFlow Lite, TensorFlow
Model Optimization Toolkit.

C. Experiment 1. Neural network architecture with whole

model quantization

For ‘default’ model we performed quantization and after
that realized training process. The final model names ‘quant’.
In this case quantization performed using QAT approach.

For trained ‘default’ model we performed quantization and
after that realized retrain process using the same data. The
final model names ‘quant_weights’. In this case quantization
performed using Post-Training Static Quantization.

The obtained training results are shown in Table 1:

• without preloading the weight coefficients, a
significant drop in recognition accuracy is observed
(up to 83.43%);

• in the model with weight coefficients loading there
appears an additional first layer - quantization layer;

• total volume of parameters increases for
‘quant_weights’ version.

Fig. 3. CNN architecture

271

Fig. 4. Training and validation loss and accuracy for ‘default’ model

Fig. 5. Confusion matrix for ‘default’ and ‘quant_weights’ models (MNIST dataset)

D. Experiment 2. Neural network architecture with Dense

layers quantization

For trained ‘default’ model we performed quantization
only for dense layers and after that realized retrain process
using the same data. The final model names ‘quant_dense’.
Quantization performed using Post-Training Static
Quantization approach.

E. Experiment 3. Neural network architecture with Conv2d

layers qantization

For trained ‘default’ model we performed quantization
only for convolution layers and after that realized retrain
process using the same data. The final model names
‘quant_conv2d’. Quantization performed using Post-Training
Static Quantization approach too.

We performed validation for experimental results using
CIFAR-10 dataset (confusion matrix is on Fig.6, accuracy and
model parameters are in Table 2). The results correlate with
previously obtained results.

TABLE I. MODELS TEST RESULTS (MNIST DATASET)

Model name Accuracy
Parameters

Total Trainable
Non-

trainable

default_model 98.69%
34826

(136.0 KB)
34826

(136.0 KB)
0

(0 Byte)

quant 83.43%
34826

(136.0 KB)

34826

(136.0 KB)

0

(0 Byte)

quant_weights 98.95%
35036

(136.9 KB)
34826

(136.0 KB)
210

(840 Byte)

quant_dense 98.85%
34832

(136.1 KB)

34826

(136.0 KB)

6

(24 Byte)

quant_conv2d 98.77%
35028

(136.8 KB)

34826

(136.0 KB)

202

(808 Byte)

After quantization, the effect of model compression (size
reduction) was observed for ‘quant_weight’ model. The final
volume size was 0.245 MB (250.9 KB).

The volume size of ‘default’ was 0.956 MB (978.9KB).

272

Fig. 6. Confusion matrix for default model (CIFAR-10 dataset)

TABLE II. MODELS TEST RESULTS (CIFAR-10 DATASETS)

Model name Accuracy
Parameters

Total Trainable
Non-

trainable

default_model 61.38%
42442

(165.8 KB)
42442

(165.8 KB)
0

(0 Byte)

quant 10.06%
42652

(166.6 KB)

42442

(165.8 KB)

210

(840 Byte)

quant_weights 64.63%
42652

(166.6 KB)

42442

(165.8 KB)

210

(840 Byte)

quant_dense 65.03%
42448

(165.8 KB)
42442

(165.8 KB)
6

(24 Byte)

quant_conv2d 65.95%
42644

(166.6 KB)

42442

(165.8 KB)

202

(808 Byte)

At the same time, Tables 1 and 2 show that compressing
the model does not affect its accuracy. And in the case of
quantization of only convolutional layer one can get some
increase of accuracy. This effect can be explained not by high
complexity of the data set and requires additional research.

IV. CONCLUSION

In this paper, a quantization-based approach to
convolutional neural network compression was considered. A
simple network architecture was examined and experimental
research on quantization of both the whole network and
separate convolutional and fully connected layers was carried
out. The experiments showed the effectiveness of this

approach for reducing the model size of the neural network
while preserving the required level of accuracy.

REFERENCES

[1] Mingxing Tan, and Quoc V. Le, “Efficientnet: Improving accuracy and
efficiency through automl and model scaling”, 2019a. URL
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-
and.html

[2] Victor Sanh, “Smaller, faster, cheaper, lighter: Introducing distilbert, a
distilled version of bert”, 2019. URL
https://medium.com/huggingface/distilbert-8cf3380435b5.

[3] Song Han, Jeff Pool, John Tran, William J. Dally, “Learning both
weights and connections for efficient neural network”, NIPS'15:
Proceedings of the 28th International Conference on Neural
Information Processing Systems, Vol.1, 2015, P. 1135–1143, DOI:
10.5555/2969239.2969366.

[4] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang,
William J. Dally, “Exploring the granularity of sparsity in
convolutional neural networks”, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017, P. 13-
20, DOI: 10.1109/CVPRW.2017.241.

[5] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of deep neural
network acoustic models with singular value decomposition”,
Interspeech, 2013, P. 2365-2369.

[6] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, Rob
Fergus, “Exploiting linear structure within convolutional networks for
efficient evaluation”, NIPS'14: Proceedings of the 27th International
Conference on Neural Information Processing Systems, Vol.1, 2014,
P. 1269-1277, DOI: 10.5555/2968826.2968968.

[7] Ross Girshick, “Fast R-CNN”, ICCV '15: Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), 2015,
P. 1440-1448, DOI: 10.1109/ICCV.2015.169.

[8] Jiaxiang Wu; Cong Leng; Yuhang Wang; Qinghao Hu; Jian Cheng,
“Quantized convolutional neural networks for mobile devices”,
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, PP. 4820–4828, DOI: 10.1109/CVPR.2016.521.

[9] Ron Banner, Yury Nahshan, Daniel Soudry, “Post training 4-bit
quantization of convolutional networks for rapid-deployment”,
NIPS'19: Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 2019, Article 714, PP. 7950-7958,
DOI: 10.5555/3454287.3455001.

[10] Cristian Buciluǎ, Rich Caruana, Alexandru Niculescu-Mizil, “Model
compression”, KDD '06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2006, P. 535-541, DOI: 10.1145/1150402.1150464.

[11] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the knowledge
in a neural network”, 2015, arXiv preprint, arXiv: 1503.02531.

[12] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W.
Mahoney, Kurt Keutzer, “A Survey of Quantization Methods for
Efficient Neural Network Inference”, 2021, arXiv preprint, arXiv:
2103.13630.

[13] Binyi Wu, Bernd Waschneck, Christian Georg Mayr, “Convolutional
Neural Networks Quantization with Attention”, 2022, arXiv preprint,
arXiv: 2209.15317.

