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Abstract—Modern deep neural network models contain a 

large number of parameters and have a significant size. In this 

paper we experimentally investigate approaches to compression 

of convolutional neural network. The results showing the 

efficiency of quantization of the model while maintaining high 

accuracy are obtained. 
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I. INTRODUCTION 

Overparameterized neural networks show significant 
performance in computer vision (CV), natural language 
processing (NLP), robotics and others domains (Fig. 1, 2). It 
is very important to find the balance between model size and 
inference time from one side and accuracy and generalization 
from the other side. In our research we concentrated on 
Convolution Neural Networks (CNN). 

 

Fig. 1. Accuracy vs Number of Parameters for CNN architectures [1] 

 

Fig. 2. Parameters vs Years for Transformers [2] 

Compressing a deep neural network is an effective way to 
improve the efficiency of logical inference. Compression 
methods include the following approaches: parameter pruning 
[3, 4], low-rank factorization [5-7], weight quantization [8, 9] 
and knowledge distillation [10, 11]. Recently, quantization 
has become an important and very active research area in the 
efficient realization of computations related to neural 
networks [12, 13]. Network quantization compresses the 
network by reducing the number of bits per weight needed to 
represent the deep network. After quantization, the network 
can also demonstrate higher inference speed. The 32-bit 
floating-point format is dominant for deep learning 
applications, there is a gradual bias towards less accurate 
formats (e.g., INT8, FLOAT16 and others). This is due to 
many factors: storing a neural network model in a reduced-
fidelity format requires less storage space; the use of processor 
blocks operating in integer arithmetic ensures higher 
instruction throughput theoretically; higher memory 
bandwidth and cache requirements are reached. 

In the paper investigates the applicability of quantization 
algorithms to integer form for a convolutional neural network 
implementing handwritten digit recognition based on the 
MNIST dataset. The following scenarios are analyzed: 
quantization of the whole model to 8-bit integer format; 
quantization of convolution layers to 8-bit integer format; 
quantization of Dense layers to 8-bit integer format. 

II. APPROACHES OF QUANTIZATION 

The quantization process consists of converting the trained 
neural network weights from 32-bit floating-point format to 
an alternative format, usually in reduced precision. More 
detailed description of the quantization process and its 
influence on neural network training is given in [12, 13]. 

Broadly, there are two kinds of quantization: weight 
quantization; weight and activation quantization. 

The main difference is the following: whether the inverse 
conversion to floating point format is performed when 
applying the neural network model. In case of weight 
quantization, training process is in floating point format, 
quantization into integer format is performed when saving the 
model. When loading the model, weights are restored to 
floating point format. Further calculations are performed in 
floating point format. In the case of weight and activation 
quantization, training is also doing in floating point format, 
then weights and activation are quantized and stored. There is 
no backward conversion to floating point format when 
working with such a model. 

The most well-known frameworks working with 
convolutional neural networks support 3 quantization models: 
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• Dynamic Quantization, where not only weights 
convert to int8, but also converting the activations to 
the same format before doing the computation. 
Theoretically, the computations will used special 
integer hardware blocks (like tensor blocks) for matrix 
multiplication and convolution, resulting in faster 
compute; 

• Post-Training Static Quantization quantizes the 
weights and activations of the model. It fuses 
activations into preceding layers where possible and 
requires calibration with a representative dataset to 
determine optimal quantization parameters for 
activations; 

• Quantization-aware training (QAT), where all weights 
and activations are “fake quantized” during both the 
forward and backward passes of training: that is, float 
values are rounded to mimic int8 values, but all 
computations are still done with floating point 
numbers. 

III. EXPERIMENTS  

A. Datasets 

To set up the experiment, we used the MNIST dataset, 
consisting of 70 000 images, each of which has a resolution of 
28x28 pixels in grayscale. The whole set is divided into 3 
groups: 

• training set (70% of the total number of images, 48 999 
frames in total); 

• validation set (20%, 14 000 images); 

• test set (10%, 7 001 images). 

For results validation we also used CIFAR-10 dataset 
(60 000 image, each of which has a resolution of 32x32 pixels 
in color). 

B. Neural network architecture and parameters for training 

Default neural network architecture (model name is 
‘default’) is shown on Fig.3. There are 7 layers: 

• convolution layer, where 32 kernels of 3x3 elements 
are used, activation function is RELU; 

• max pooling with size 2x2; 

• convolution layer, where 64 kernels of 3x3 elements 
are used, activation function is ReLU; 

• max pooling with size 2x2; 

• flatten; 

• dropout layer with drop probability 0.5; 

• dense layer with SoftMax activation function. 

Training of the neural network was performed on a server 
with the following configuration: 

• Intel(R) Xeon(R) CPU @ 2.20GHz; 

• NVIDIA Tesla T4 / 15Gb. 

Parameters for training: 

• epoch count – 15; 

• batch size – 128; 

• loss function – categorical cross entropy. 

Training and validation loss and accuracy for default 
model are shown on Fig.4. Accuracy is 98,9%. Confusion 
matrix is shown on Fig.5. 

In our experiments we used the next technological stack: 
Python, TensorFlow, Keras, TensorFlow Lite, TensorFlow 
Model Optimization Toolkit. 

C. Experiment 1. Neural network architecture with whole 

model quantization 

For ‘default’ model we performed quantization and after 
that realized training process. The final model names ‘quant’. 
In this case quantization performed using QAT approach. 

For trained ‘default’ model we performed quantization and 
after that realized retrain process using the same data. The 
final model names ‘quant_weights’. In this case quantization 
performed using Post-Training Static Quantization. 

The obtained training results are shown in Table 1: 

• without preloading the weight coefficients, a 
significant drop in recognition accuracy is observed 
(up to 83.43%); 

• in the model with weight coefficients loading there 
appears an additional first layer - quantization layer; 

• total volume of parameters increases for 
‘quant_weights’ version. 

 

 

Fig. 3. CNN architecture 
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Fig. 4. Training and validation loss and accuracy for ‘default’ model 

 
 

Fig. 5. Confusion matrix for ‘default’ and ‘quant_weights’ models (MNIST dataset) 

 

D. Experiment 2. Neural network architecture with Dense 

layers quantization 

For trained ‘default’ model we performed quantization 
only for dense layers and after that realized retrain process 
using the same data. The final model names ‘quant_dense’. 
Quantization performed using Post-Training Static 
Quantization approach. 

E. Experiment 3. Neural network architecture with Conv2d 

layers qantization 

For trained ‘default’ model we performed quantization 
only for convolution layers and after that realized retrain 
process using the same data. The final model names 
‘quant_conv2d’. Quantization performed using Post-Training 
Static Quantization approach too. 

We performed validation for experimental results using 
CIFAR-10 dataset (confusion matrix is on Fig.6, accuracy and 
model parameters are in Table 2). The results correlate with 
previously obtained results. 

TABLE I.  MODELS TEST RESULTS (MNIST DATASET) 

Model name Accuracy 
Parameters 

Total Trainable 
Non-

trainable 

default_model 98.69% 
34826 

(136.0 KB) 
34826 

(136.0 KB) 
0 

(0 Byte) 

quant 83.43% 
34826 

(136.0 KB) 

34826 

(136.0 KB) 

0 

(0 Byte) 

quant_weights 98.95% 
35036 

(136.9 KB) 
34826 

(136.0 KB) 
210 

(840 Byte) 

quant_dense 98.85% 
34832 

(136.1 KB) 

34826 

(136.0 KB) 

6 

(24 Byte) 

quant_conv2d 98.77% 
35028 

(136.8 KB) 

34826 

(136.0 KB) 

202 

(808 Byte) 

After quantization, the effect of model compression (size 
reduction) was observed for ‘quant_weight’ model. The final 
volume size was 0.245 MB (250.9 KB). 

The volume size of ‘default’ was 0.956 MB (978.9KB).  
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Fig. 6. Confusion matrix for default model (CIFAR-10 dataset) 

TABLE II.  MODELS TEST RESULTS (CIFAR-10 DATASETS) 

Model name Accuracy 
Parameters 

Total Trainable 
Non-

trainable 

default_model 61.38% 
42442 

(165.8 KB) 
42442 

(165.8 KB) 
0 

(0 Byte) 

quant 10.06% 
42652 

(166.6 KB) 

42442 

(165.8 KB) 

210 

(840 Byte) 

quant_weights 64.63% 
42652 

(166.6 KB) 

42442 

(165.8 KB) 

210 

(840 Byte) 

quant_dense 65.03% 
42448 

(165.8 KB) 
42442 

(165.8 KB) 
6 

(24 Byte) 

quant_conv2d 65.95% 
42644 

(166.6 KB) 

42442 

(165.8 KB) 

202 

(808 Byte) 

At the same time, Tables 1 and 2 show that compressing 
the model does not affect its accuracy. And in the case of 
quantization of only convolutional layer one can get some 
increase of accuracy. This effect can be explained not by high 
complexity of the data set and requires additional research. 

IV. CONCLUSION 

In this paper, a quantization-based approach to 
convolutional neural network compression was considered. A 
simple network architecture was examined and experimental 
research on quantization of both the whole network and 
separate convolutional and fully connected layers was carried 
out. The experiments showed the effectiveness of this 

approach for reducing the model size of the neural network 
while preserving the required level of accuracy. 
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