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Abstract—This paper presents the evaluation of lossless-to-
lossy transforms, such as quaternion algebra based pairwise-
mirror-image (PMI) symmetric frequency responses (LP PMI
Q-PUFB) filter bank and convenient discrete wavelet transforms
used in industrial image compression standards: 5/3 (lossless
mode only) and 9/7 (lossy mode only). Generalized image com-
pression framework was developed, which main aim is to provide
equal conditions in the terms of quantization and entropy coding.
Rate distortion curves were obtained on the PSNR, DSIMM and
SSIM metrics, Bjøntegaard delta was computed. Experimental
results are provided for test images.

Index Terms—filter bank, quaternion, discrete wavelet trans-
form

I. INTRODUCTION

Filter banks are essential components of the signal process-
ing and have a wide variety of applications, including com-
pression, communication, denoising, and feature extraction [1],
[2]. In image processing, two-dimensional filter banks are
utilized to represent a given image sparsely. One-dimensional
filter banks are traditionally applied to vertical and horizontal
directions separately. Although this separable approach is
quite simple, the performance of the 2-D system is relying
on limited bandwidth of memory for representing interme-
diate results. Previously, we have developed filter banks in
an non-separable manner because of the demands for high-
performance image processing [3].

The two-dimensional discrete wavelet transform is versatile
image processing instrument. It is employed in several image-
compression standards (e.g. JPEG 2000) [4]. Whereas, the
separable lifting scheme exhibits the smallest number of
operations, and, on the contrary, require auxiliary memory to
represent intermediate results [5].

II. LINEAR PHASE OF QUATERNIONIC FILTER BANK

As shown in [6], quaternions are especially suited to the
parameterization of 4× 4 orthogonal matrices. Namely, every
matrix belonging to SO(4), can be represented as a product of
left and right unit quaternions P and Q (|P | = 1 and |Q| = 1)

∀
R∈SO(4)

∃
P,Q∈unit quat.

R = M+ (P ) · M− (Q) = M− (Q) ×

×M+ (P ) directly (contrary to Givens rotations) to preserve
their orthogonality in spite of quantization. A quaternionic
critically sampled linear phase (LP) with pairwise-mirror-
image (PMI) symmetric frequency responses paraunitary filter
bank (PMI LP PUFB) results from substitution (E(z) is
paraunitary polyphase transfer matrices of an analysis filter
bank) [6], [7], assuming M as channel number:

E(z) = GN−1GN−2 . . .G1E0, (1)

E0 = 1√
2
Φ0W diag

(
IM/2,JM/2

)
,

Gi =
1
2ΦiWΛ(z)W, i = 1, N − 1,

W =

[
IM/2 IM/2

IM/2 −IM/2

]
; ΛM (z) = diag

(
IM/2, z

−1IM/2

)
,

where N is order of the factorization; IM/2 and JM/2 denote
the M/2 ×M/2 identity and reversal matrices, respectively;
ΓM/2 is diagonal matrix which elements are defined as γmm =

= (−1)
m−1

, m = 1,M − 1.
A 4-channel PMI LP Q-PUFB realized according to the

fallows factorization of the matrices Φi and ΦN−1 [6]:

Φi = M+ (Pi) , (2)

ΦN−1 = M+ (Pi) · diag
(
JM/2 · ΓM/2, IM/2

)
. (3)

The matrices M+ (P ) and M− (Q) are left and right 4
by 4 multiplication matrices, accordingly: Qx = M+ (Q)x,
xQ = M− (Q)x; P = p1 + p2i + p3j + p4k and Q = q1 +
+ q2i+ q3j + q4k are unit quaternions, where the orthogonal
imaginary numbers obey the following multiplicative rules:
i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i,
ki = −ik = j.
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The corresponding factorization of the matrices Φi and
ΦN−1 for an 8-channel PMI LP Q-PUFB is shown below [7]:

Φi = diag
(
ΓM/2, IM/2

)
·
[
M− (Qi) 0M/2

0M/2 M− (Qi)

]
×

×
[
M+ (Pi) 0M/2

0M/2 M+ (Pi)

]
· diag

(
ΓM/2, IM/2

)
,

(4)

ΦN−1 = diag
(
ΓM/2, IM/2

)
·
[
M− (Qi) 0M/2

0M/2 M− (Qi)

]
×

×
[
M+ (Pi) 0M/2

0M/2 M+ (Pi)

]
· diag

(
ΓM/2, IM/2

)
,

(5)

where 0M/2 is zero matrix size of (M/2,M/2).

A. Non-separable LP PMI Q-PUFB

The direct implementation of multidimensional filter bank
compatible with existing image standards is essential task [8].
Two-dimensional separable transform of image signal when
the analysis PMI LP PUFB matrix E(z) is applied to a 2-
D input signal xn,n in horizontal and vertical directions, the
output yn,n is expressed as:

yn,n = E(z) · xn,n ·E(z)T = GN−1(z) · . . . ·G1(z) ·E0×
×xn,n ·ET

0 ·GT
1 (z) · . . . ·GT

N−1(z).

Based on the [3], [9] 2-D non-separable transformation
result yn,n can be represented as vector:

yn2,1 = Ë(z)xn·n,1 = G̈N−1(z) · . . . · G̈1(z)Ë0xn2,1,

Ë0 = 1
2 · Φ̈0 · Ẅ ·D

(
diag

(
IM/2,JM/2

))
×

×P ·D
(
diag

(
IM/2,JM/2

))
·P,

(6)

Gi(z) =
1
4 · Φ̈i · Ẅ · Λ̈(z) · Ẅ;

Ẅ = D (W) ·P ·D (W) ·P,

Λ̈(z) = D (Λ(z)) ·P ·D (Λ(z)) ·P.

where D (W) denotes the matrix with n transform matrices
Wn,n on the main diagonal, i.e. D (W) = In⊗Wn,n, where
⊗ is Kronecker product; upper double dots ¨ denotes the
2D transformation matrix size n2 × n2; P is the permutation
matrix.

The corresponding two dimensional analogues of the matri-
ces Φi (4) and ΦN−1 (5) for 8-channel analysis PMI LP Q-
PUBF is shown below:

Φ̈i = S̈2 · M̈+ (Qi) ·P · M̈+ (Qi)×
×P · M̈+ (Pi) ·P · M̈+ (Pi) ·P · S̈2,

Φ̈N−1 = S̈3 · M̈− (QN−1) ·P · M̈+ (QN−1) ·P×
× M̈− (PN−1) ·P · M̈+ (PN−1) ·P · S̈2,

M̈±
d (P ) = D

(
diag

(
M± (P ) ,M± (P )

))
,

S̈2 = D (S2) ·P ·D (S2) ·P;

S2 = diag
(
ΓM/2, IM/2

)
,

S̈3 = D (S3) ·P ·D (S3) ·P;

S3 = diag
(
JM/2, IM/2

)
.

(7)

Polyphase representation of E(z) after applying (7) imple-
ments 2-D non-separable PMI LP Q-PUFB, further denoted
by the shorter abbreviation 2-D NSQ-PUFB.

III. GENERALIZED IMAGE COMPRESSION MODEL

Fig. 1. Simplified image compression model

For experimental research in rate-distortion performance,
generalized transform-based image compression model is re-
quired to evaluate performance of discussed transforms [10].
Evaluation model steps (data flow is depicted on fig. 1):

1) Test 8-bit image xi,j used as input of image coder.
For test used grayscale images from USC-SIPI Image
Database 1: Lena, Barbara, Pepper (resolution 512×512
pixels).

2) Preprocessing of the image xi,j size of i × j pixels on
the analysis stage 2-D NSQ-PUFB, is conversion 8× 8
blocks to vectors (6).

1http://sipi.usc.edu/database/
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Fig. 2. Example of zigzag-reordering for 4× 4 block

3) Generalized decorrelation transform yi,j = Θ(xi,j):
• Q-PUFB. The tile xi,j comes to the first 2-D phase,

which execute 1-D transform Θ along rows i matrix
x with 8-channel Q-PUFB. Next, second 1-D phase
Θ transform the columns of the j matrix with
8-channel Q-PUFB.

• DWT97, DWT53. The tile xi,j processed with 2-D
transform, which consists two 1-D horizontal and
vertical, applied by Θ to rows i and columns j
of x. Subbands (LL, LH, HL, HH) after DWT are
processed input images again until number of total
subbands is equal 64 [11].

• 2-D NSQ-PUFB. 1-D vectors size of 64 × 1 from
step 2 pass directly to 2-D NSQ-PUFB, which
returns 2-D image yi,j after 1 pass.

4) Postprocessing of image yi,j at the analysis stage is
deinterleave of coefficients and formatting subband im-
ages y(n,m).

5) Optimal bit allocation T (M,M) in subbands y(n,m),
whose purpose is to minimize the variance of the sig-
nal recovery error σ2

r with a limit on the shared bit
resource [12].

bk = b+
1

2
log2

ϵkσ
2
Vk∏64

k=0(ϵkσ
2
Vk
)

1
64

, (8)

where ϵk = 1
12 , Vk(n) is subband coefficients (k =

= 1, 64), bk denotes predicted bit-budget for subband
Vk(n), σ2

Vk
is dispersion of Vk(n), b – total bit budget

for all 64 subbands Vk(n), k = 1, . . . , 64.
6) Splitting image yi,j for 64 subimages z(M,M) with

i
M × j

M pixels.
7) Subband quantization z(M,M) using bit budget

T (M,M): ẑ(n,m) = Q(T (n,m), z(n,m)), where Q(·)
is Lloyd-Max quantizer.

8) Merging subband images ẑ(M,M) i
M , j

M
into ŷi,j .

9) Preprocessing of image ŷi,j at synthesis stage is equal
inverse step 4, i.e. represent values in 2-D interleave

10) Inverse decorrelation transform x̂i,j = Θ̂(ŷi,j):
Q-PUFB, 2-D NSQ-PUFB, DWT97, DWT53.

11) Postprocessing of image x̂i,j at synthesis stage of 2-D
NSQ-PUFB is equal to transforming vectors size of 64×
1 to 8× 8 blocks.

12) Recovered image x̂i,j .
13) Zig-zag reordering: transforming matrix

z(M,M)i/M,i/M to vector zz(M,M)ij/2M,1, example
of process depicted on fig. 2.

14) Run-length encoding of vectors zz(M,M)ij/2M,1:
R(M,M) = RLE(zz(M,M)), principle depicted on
fig. 3.

Fig. 3. Example of RLE-encoding

15) Huffman coding of vectors R(M,M)
16) Estimation of minimal valuable bits ε required for code-

book Hd(M,M) and Hs(M,M).
17) Complete bit-stream required suitable to decompression.

IV. DESIGN EXAMPLE AND EXPERIMENTAL RESULTS

Using proposed model in sec. III of image compression
pipeline, performance of following transform were evaluated
in lossy scenario: 2-D NSQ-PUFB (N = 3), 1-D Q-PUFB
(N = 3), DWT97, DWT53. Magnitude, phase and impulse
responses of 1-D Q-PUFB depicted on fig. 4. Magnitude
response of 2-D NSQ-PUFB and quatenions coefficients
presented at fig. 5, results of rate distortion ratio for test
images ”Lena”, ”Barbara” and ”Pepper” presented in tables III.
Distortion estimated in PSNR, SSIM and DSSIM metrics. All
filter bank coefficients are presented in table I

TABLE I
COEFFICIENTS OF 1-D Q-PUFB (N = 3, CG = 9.34 DB) AND

2-D NSQ-PUFB (N = 3, CG2D = 17.097 DB)

Filter
bank q Re(q) Imi(q) Imj(q) Imk(q)

1-
D

Q
-P

U
FB

P0 −0.79244 −0.10529 0.55207 0.23697
P1 −0.11637 0.97260 0.19568 −0.04706
P2 −0.65744 −0.47760 −0.01551 0.58259
Q0 0.92594 −0.01690 −0.37728 0.00270
Q1 −0.99551 0.06544 −0.01812 −0.06587
Q2 −0.42846 0.05721 −0.89764 0.08594

2-
D

N
SQ

-P
U

FB

P0 −0.772903 0.514833 0.365746 0.061629
P1 −0.013821 −0.845056 −0.000859 −0.534499
P2 0.796620 0.600623 0.066466 0.015173
Q0 −0.812960 −0.494552 −0.288823 0.105334
Q1 0.921013 −0.015909 −0.386573 −0.045197
Q2 −0.017809 0.689550 −0.668783 −0.277367

Comparison of different image and video compression stan-
dards require equal bit-budget, which is hard or not even
possible to implement. Spline approximation of rate-distortion
curves [13], called Bjøntegaard delta, can be utilized for
comparison of objective reconstruction quality (used PSNR
and SSIM) on different bit-rates.

Analysis of objective results shows that best transform
in given conditions is separable 1D Q-PUFB in terms of
PSNR and SSIM for different bpp. Then, in descending order
of quality of reconstruction: DWT97, 2-D NSQ-PUFB and
DWT53. This is expected behavior in poor performance of
lossless DWT53, but DWT97 is only lossy transform by design.

Comparison by metric ∆PSNR in the table II shown that 2-
D NSQ-PUFB worser by approx. 1.66 dB than 1D Q-PUFB
and 1.08 dB worser than DWT97, close results by ∆SIMM
shows that 2-D NSQ-PUFB worser by approx. 0.035 than 1D
Q-PUFB and approx. 0.025 worser than DWT97.
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TABLE II
COMPARISON OF BJØNTEGAARD ∆PSNR

Transform A Transform B Test
Image

∆PSNR
[dB] ∆SSIM

2-D
NSQ-PUFB

1-D Q-PUFB Barbara -2.0106 -0.0484
DWT97 Barbara -1.4574 -0.0436
DWT53 Barbara 2.2846 0.0147

2-D
NSQ-PUFB

1-D Q-PUFB Lena -1.6471 -0.0278
DWT97 Lena -1.0272 -0.0185
DWT53 Lena 2.8304 0.0169

2-D
NSQ-PUFB

1-D Q-PUFB Pepper -1.3173 -0.0284
DWT97 Pepper -0.7737 -0.0116
DWT53 Pepper 2.2482 0.0346

1-D
Q-PUFB

DWT97 Barbara 0.4801 0.0079
DWT53 Barbara 4.2144 0.0710

1-D
Q-PUFB

DWT97 Lena 0.5825 0.0107
DWT53 Lena 4.5593 0.0491

1-D
Q-PUFB

DWT97 Pepper 0.5348 0.0177
DWT53 Pepper 3.6257 0.0652

(a)

(b)

(c)

(a) – Magnitude response; (b) – Phase response; (c) – Impulse
response.

Fig. 4. 8-channel (8× 24) Q-PUFB

(a) (b)

(c) (d)

(e) (f)

(g) (h)

a – Channel (1, 1); b – Channel (2, 2); c – Channel (3, 3);
d – Channel (4, 4); e – Channel (5, 5); f – Channel (6, 6);

g – Channel (7, 7); h – Channel (8, 8)

Fig. 5. Magnitude response of 2-D NSQ-PUFB

V. CONCLUSION

Rate-distortion estimated against PSNR, SSIM and DSSIM
metrics, baseline image compression model is developed. Ac-
cording subjective comparison of recovered reference images
for bpp: ≈ 0.25; ≈ 0.5; ≈ 1.0 shows no artifacts: Gibbs effect,
undulating false circuits. The high frequency components, i.e.
small details are well preserved.

In result 2-D NSQ-PUFB shows imperceptible different
results in metrics SSIM by comparison with 1D Q-PUFB
and DWT97, but doesn’t require auxiliary memory for in-
termediate results, which is important for high-performance
VLSI and domain computing accelerators. Moreover, Q-PUFB
integer implementations is compatible for both modes lossy
and lossless, in comparison with lossless DWT53 and lossy
DWT97 [9], [14].
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TABLE III
RECOVERY RESULT FOR TEST IMAGES USING 2-D NSQ-PUFB

Image bpp Ratio PSNR
[dB]

SSIM DSSIM

Lena 0.1359 58.867 28.507 0.48227 0.25887
0.16852 47.473 29.493 0.54393 0.22803
0.20068 39.864 30.415 0.58312 0.20844
0.20068 39.864 30.415 0.58312 0.20844
0.22469 35.604 30.9 0.6076 0.1962
0.27552 29.036 31.71 0.64746 0.17627
0.35336 22.64 32.937 0.6976 0.1512
0.40285 19.859 33.656 0.72128 0.13936
0.43849 18.244 34.126 0.74066 0.12967
0.51085 15.66 34.983 0.77183 0.11409
0.62896 12.719 36.104 0.8083 0.095851
0.74537 10.733 37.264 0.83577 0.082115
0.85159 9.3942 38.286 0.85926 0.070371
0.95735 8.3564 38.985 0.87757 0.061216

Barbara 0.082378 97.113 22.502 0.32509 0.33745
0.11069 72.273 23.087 0.38603 0.30699
0.14339 55.79 23.881 0.46341 0.2683
0.18731 42.709 24.838 0.552 0.224
0.26566 30.114 26.594 0.65399 0.17301
0.31247 25.603 27.331 0.68942 0.15529
0.36421 21.965 27.886 0.71366 0.14317
0.44207 18.097 28.845 0.74811 0.12594
0.5705 14.023 30.334 0.79548 0.10226
0.59274 13.497 30.742 0.80477 0.097616
0.71256 11.227 32.043 0.83787 0.081063
0.77372 10.34 32.737 0.84905 0.075474
0.90195 8.8697 34.019 0.873 0.063498
1.0863 7.3647 35.608 0.89745 0.051275

Pepper 0.1441 55.515 23.583 0.51836 0.24082
0.17546 45.594 24.822 0.55421 0.2229
0.21805 36.689 26.002 0.59807 0.20096
0.27251 29.357 27.166 0.64628 0.17686
0.30153 26.531 27.692 0.66972 0.16514
0.3322 24.082 28.212 0.68646 0.15677
0.37968 21.07 28.685 0.69799 0.151
0.44316 18.052 29.373 0.71967 0.14017
0.53728 14.89 30.598 0.76032 0.11984
0.61963 12.911 31.468 0.7823 0.10885
0.69893 11.446 32.266 0.79951 0.10024
0.79842 10.02 33.07 0.81921 0.090395
0.88818 9.0071 33.854 0.83536 0.082322
1.0495 7.6227 35.204 0.86489 0.067554
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