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Abstract—The paper presents a method for selecting 

essential input features when predicting the geomagnetic Dst 

index, based on iterative selection of features with the highest 

correlation with respect to the target variable and exclusion of 

features with high cross-correlation. The models were trained 

on data from October 1997 to 2017. The criterion for the 

quality of the forecast using selected features was the root-

mean squared error of the Dst index forecast based on the 

selected set of features on independent data (2018-2022). 
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I. INTRODUCTION 

The study of the states of the Earth's magnetosphere and 
their prediction are of significant interest from both 
fundamental and practical points of view. 

Clarification of the role of various physical processes in 
the formation of geomagnetic disturbances remains one of 
the key tasks in the physics of solar-terrestrial connections to 
this day. On the other hand, geomagnetic disturbances, or, as 
they are more often called in the media, magnetic storms, 
disrupt radio communications and can negatively affect the 
operation of power lines, railway automation and pipelines 
caused by geo-induced currents – GIC [1]. 

The intensity of geomagnetic disturbances is described 
by the so-called geomagnetic indices, among which one of 
the most widely used is the Dst (Disturbance storm-time) 
index - storm variation [2]. The history of the appearance of 
this index, its sources and characteristic features are 
described in our previous work devoted to optimizing 
methods for predicting it using machine learning (ML) 
methods using time series (TS) containing data on the state 
of the Earth’s magnetosphere, interplanetary magnetic field 
(IMF) and solar wind (SW) [3]. 

As has been known for quite some time, the main sources 
of geomagnetic disturbances are coronal mass ejections and 
high-speed SW streams. 

Since the Earth’s magnetosphere is a complex dynamic 
system, the state and behavior of which depends not only on 
its current state and external influence on it, but also on its 
history, to predict its state, and therefore geomagnetic 
disturbances, it is necessary to use sufficient ML methods. In 
this case, to take into account the history, one can use either 
recurrent algorithms [4] or delay embedding of a 
multidimensional TS of input variables (e.g. [5-11]). In the 
second approach, each data pattern includes, in addition to 
the current values of the input variables, their previous 
values with delays from one TS step to a value called the 
embedding depth. 

A significant disadvantage of the TS embedding method 
is the multiple increase in the number of input features (IF), 
which increases the requirements for the number of patterns 
in the training set, and so it can create problems associated 
with model overtraining. However, based on the features of 
the method, it follows that the IF obtained as a result of delay 
embedding of a TS are characterized by multicollinearity, 
that is, they carry largely similar information. Therefore, to 
reduce the dimensionality of input data when making 
forecasts, it is useful to use algorithms for selecting IF that 
take into account multicollinearity. 

In the present study, the selection of significant IF in the 
problem of predicting the Dst index is carried out by a 
method based on iterative selection of features with the 
highest correlation with respect to the target variable, and 
exclusion of features with high cross-correlation. This 
method is compared with the traditional selection method - 
the cross-correlation filter, as well as with limiting the 
embedding depth of each input parameter by the 
autocorrelation value without using selection. The 
comparison criterion is the root mean squared error of the 
Dst index forecast based on the selected set of features on 
independent data.  
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Since the Dst index has a rather long history of 
observation, ML has been used to predict geomagnetic 
disturbances by many various scientific groups [4-7], 
including the authors of this work [8-11].  

In their earlier studies, the authors of this paper have 
shown that the best quality of the Dst index forecast was 
achieved when building a neural network (NN) model that 
uses the history of both the Dst index and the parameters of 
the SW (velocity) and IMF (component Bz) as input data [8]. 
In the following studies [9-10], each pattern contained hourly 
average values of the main parameters of the SW and IMF, 
as well as hourly values of the Dst index itself - with delay 
embedding of the TS for the depth of 24 hours, which 
significantly improved the quality of the forecast.  

In our previous papers dedicated to reducing the 
dimensionality of input data [3, 12], the results of data 
dimensionality reduction based on the ranking of IF by their 
significance in solving the problem of the geomagnetic Dst 
index forecasting were considered. To assess the relative 
significance of features, an iterative approach was used, 
associated with the search of candidate models by discarding 
features one by one based on simple linear regression 
models. An alternative method for selecting IF is described 
in the paper [13]. 

In addition to optimizing the operation of NN models, the 
selection of significant IF can make it possible to draw some 
conclusions about the relationships between various physical 
quantities, the values of which are used as IF. 

The purpose of this study was to investigate the 
applicability of the method for selecting IF, based on 
iterative selection of features with the highest correlation 
with respect to the target variable and on excluding features 
with high cross-correlation, in predicting the Dst index, as 
well as to compare the results obtained using the method 
with various parameters. 

II. INPUT DATA 

Since it has long been known that the cause of 
geomagnetic disturbances are changes in the parameters of 
the IMF and SW (caused by coronal mass ejections and high-
speed streams of SW) [14], we used TS of the following 
physical quantities characterizing the state of near-Earth 
space and the Earth’s magnetosphere as IF when 
constructing the NN model: 

• SW characteristics – SW velocity (vSW) in km/s, 
proton density (ρSW) in cm-3, and SW temperature 
(TSW) in K; 

• IMF characteristics – Bx, By and Bz components in 
the GSM system, and the magnetic field vector 
module |B| (all in nT); 

• The predicted Dst index itself (in nT); 

• Time characteristics describing the phase of the 
Earth's rotation around the Sun and around its axis.  

SW and IMF parameters were measured at the Lagrange 
point L1 in the Sun-Earth system. 

Each parameter, except for time characteristics, was 
described by 25 hourly average values: the current (0th) one, 
and 24 historical values for the last day (a total of 8 physical 
values * 25 hours + 4 time characteristics = 204 IF). We used 

data for the period from November 1997 to the end of 2017 
as the training set (from which 20% were randomly allocated 
to the validation set) and from the beginning of 2018 to the 
end of 2022 as the independent test set. The target variable 
was the Dst value one hour ahead. 

III. FEATURE SELECTION ALGORITHM 

To rank IFs by importance, the method based on the 
iterative selection of features with the highest correlation 
with respect to the target variable and the exclusion of 
features with high cross-correlation was used. The general 
scheme of the algorithm is presented in Fig. 1. 

The algorithm has two main parameters (thresholds). 

TXX threshold is the maximum allowed cross-correlation 
between any pair of selected features (Fig.1).  

TXY threshold is the minimum allowed correlation of any 
selected feature with the target variable. 

The pair of these parameters defines both the number of 
IF selected by the algorithm and the set of IF selected for 
each physical quantity. 

IV. NEURAL NETWORK ARCHITECTURE AND PARAMETERS 

The following architecture and parameters of the NN 
were used: 

• Architecture: Multilayer perceptron, 1 hidden layer 
with 32 neurons; 

• Optimization algorithm: Stochastic gradient descent 
(SGD); 

• Learning rate 0.01, moment 0.5; 

• Mini batch size – 200 patterns; 

• Early stopping method – stopping training after 200 
epochs without improving the results on the 
validation set. 

 

Fig. 1. Iterative algorithm for selection of input features. 
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Each neural network was trained 5 times, statistics of the 
application results were averaged. 

V. RESULTS 

Fig. 2 shows the correlations of input features with target 
variable and with each other using a heatmap. 

As can be seen from the presented diagram, in addition to 
the Dst index itself, the best correlation with Dst is shown by 
the IMF module |B| and its Bz component, as well as the 
velocity and temperature of the SW. Two latest physical 
variables demonstrate high cross-correlation. 

Fig. 3 shows the dependence of the number of selected 
features on the algorithm parameters described above in 
Section III (TXX and TXY thresholds).  

Table 1 shows the results of NN trained only on the 
features selected for various combinations of parameters Txx 
and TXY. Combinations with approximately a 5-fold 
reduction in the number of input features (down to about 40) 
were selected. The trivial inertial model is the simplest 
reference model always used to assess model quality: its 
prediction is equal to the last known value; models with 
quality indicators worse than those of the trivial inertial 
model should be discarded. The threshold combination 
Txx=1, Txy=0 corresponds to selection of the full set of 
features (no features discarded). Txx=1 corresponds to a 
simple correlation filter selecting all features with 
correlations with target variable exceeding the TXY threshold. 

The quality indicators used in Table I are the multiple 
determination coefficient (R2), the mean absolute error 
(MAE) and the root mean squared error (RMSE). R2 is 
dimensionless, it compares the tested model with a simple 
model whose prediction is equal to the average value of the 

target variable over the whole tested set, and its best possible 
value is equal to 1. Both types of errors have the same 
dimension as the target variable (nT). 

Figure 4 shows the features selected by the algorithm for 
the best Txx and Txy pair from Table I - Txx=0.9 and 
Txy=0.3. 

VI. CONCLUSION 

Based on the above results, we can draw the next 
conclusions: 

• As the result of selection of significant input features 
by the studied algorithm, optimal sets of input 
features were selected for Dst-index prediction 
horizon equal to 1 hour. The results are consistent 
with the physical notions on the groups of the most 
significant input features. 

• The proposed algorithm selects input features that 
are meaningful from the physical point of view. 

• The use of the algorithm makes it possible to reduce 
the number of input features 5-fold without 
significantly worsening the results. 

• With the same number of input features, the results 
obtained are better than when using a simple 
correlation filter not taking into account the 
multicollinearity of the input features. 

• Further optimization of algorithm and neural 
networks parameters is necessary. 
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