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critical computing services. An original approach based on 
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I. INTRODUCTION 

Supporting critical IT services and systems (such as 
banking, telecommunications, and industrial systems) in an 
operational state with guaranteed computational resource 
levels is a relevant problem in today's digital society. 

Uncertainty in external loads and failures of computing 
equipment lead to failures in the operation and performance 
degradation of critical IT systems. As a result, the loss of 
operational efficiency in processing information and 
conducting banking and other operations can have serious 
consequences, including financial losses and major incidents.  

Making operational decisions for the management of 
critical IT services allows for the reduction or prevention of 
negative consequences. However, the human factor often 
contributes to a decrease in operational efficiency. Therefore, 
various automated solutions are actively being developed to 
enhance efficiency and proactivity in the management of 
critical systems. 

One of the promising approaches to solving the problem is 
the use of intelligent systems that realize the scheme: data 
collection - building a predictive model - proactive decision-
making - performing control actions.  

Several authors have developed various critical IT service 
management systems using neural network models, 
contributing to effective decision-making [1], [2], [3], [4]. 
However, in these systems, only one neural network model is 
trained for specific types of external loads. It is assumed that 
these models will successfully predict the values of required 
parameters for other types of loads associated with 
uncertainty. 

In these works, training datasets are prepared in advance, 
containing long-time series with a large number of elements. 
Training on such datasets takes a considerable amount of time 
and requires high-performance resources to effectively train 
models within an acceptable timeframe. 

In this paper, an approach is proposed based on the idea 
that a managed IT system can exist in various states (in terms 
of computational resource capacity), and for each state during 

its lifetime, a neural network model can be created and trained. 
This model is capable of predicting the average %CPU 
utilization of computational modules, based on which a 
control decision can be made to change the system's state. 

II. MODEL SYSTEM OF CRITICAL IT SERVICE 

Due to the difficulty of developing the relevant systems in 
laboratory conditions (without direct interaction with the 
actual critical infrastructure), a model system was developed 
for researching the discussed issue. This model system 
conceptually corresponds to a critical information service 
model. 

The system consists of a set of computational modules 
where instances of application software operate, and external 
requests are load-balanced between them. A stress system is 
used to generate requests, allowing for the configuration of the 
load and the retrieval of statistics on processed requests and 
response times. The model system supports a scaling 
mechanism (state change). Let's briefly describe the main 
components of the model system: 

A. Computational Modules Block 

In the works [1], [2], [3], [4], virtual machines (VMs) were 
used as computational modules for application software. 
These VMs were deployed in various public clouds such as 
Amazon, Google, and others, or in private clouds and data 
centers. The management of VMs (creation, startup, 
shutdown, deletion) was achieved using the capabilities of 
cloud services or data center management systems. While 
VMs offer good application isolation, they do require more 
computational resources since each VM needs resources for 
its operating system. Additionally, a module with 
functionality similar to a cloud service for managing VMs is 
necessary. This module handles the configuration of operating 
systems, installation, configuration, and management of web 
applications, and adheres to the Infrastructure as Code (IaC) 
model. 

After considering various options (VM, Kubernetes 
Cluster, Docker Compose), it was decided to use Docker 
Compose for the computational modules in the model system. 
This decision allows for the creation of computational 
modules as Docker containers, their management, and the 
collection of various utilization metrics. There are ready-made 
libraries like Docker SDK for Python for working with the 
Docker API Engine. Load balancing across containers with 
the web application is accomplished using Docker Compose's 
built-in service naming features. The configuration of services 
and resources can be described in Yaml format.         

B. Application Web Service Block 

To save resources, ensure stability, simplify configuration, 
and operation, it was decided to implement an application web 
service as a microservice based on the popular high-
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performance minimalistic web framework, Echo.labstack, 
written in the high-level Go programming language. 

C. Load Generation Block 

Two software options were considered as load generators: 
Apache JMeter, written in Java, and Locust, written in Python. 
Apache JMeter is more feature-rich but complex to configure 
and resource-intensive. In contrast, Locust has fewer features, 
is easy to configure, allows for load profile descriptions in the 
form of Python classes, is less resource-intensive, supports 
distributed configurations of instances, and allows load 
profiles to be defined as functions or pre-prepared data. Locust 
was chosen as the load generator due to its suitability for the 
model system. 

III. APPROACH DESCRIPTION 

Operational decision-making involves several key aspects: 

• The adequacy of forecasting the system's key 
parameters. 

• The speed of preparing a forecast. 

• The forecasting horizon into the future. 

The situation is complicated by the fact that the load 
behavior in critical systems can change quite rapidly. For 
example, the load can sharply increase within a short period 
of time, leading to a lack of computational resources. 
Additionally, the load profile can vary significantly from day 
to day. 

The currently used approaches for making predictions 
based on large datasets of historical data may lose forecasting 
quality and require initial preparation of a training dataset 
covering a long observation period. In addition, they involve 
complex neural network models (e.g., LSTM layers with 
memory and others) that require extended training times on 
high-performance resources for the given dataset. 

A pre-trained model on a large dataset may have 
insufficient generalization capability, and in some cases, it 
may not be able to generate an accurate forecast for a new load 
pattern. Additionally, all critical systems have entirely 
different load profiles, and a model trained on data from one 
system may not be suitable for another. 

What happened with the system over an extended period 
of time is not important as the ability to make accurate 
forecasts based on a small amount of last real-time 
accumulating data. Furthermore, model training on this data 
and subsequent predictions should be carried out rapidly, in 
parallel with the accumulation of new data. 

The main idea is that the system's load profile can be 
divided into small segments during operation. For each 
segment (during its existence), a neural network model can be 
constructed to describe the behavior within that segment. This 
model enables a set of predictions to be made, based on which 
the system transitions to a new segment. This process then 
repeats for the next segment, and so on. 

A collection of models will accumulate, each of which will 
have better accuracy within its specific segment compared to 
a global model trained on data over a longer period. 

In [5], a similar approach is proposed in the form of a 
Local Approximation (LA) method. The main idea behind this 
method is to divide the domain of a function into several local 

regions, construct approximating models, and estimate the 
parameters of these models separately within each region. 

If the function is smooth, the regions can be small enough 
so that the function does not change too abruptly within each 
of them. This allows for relatively simple models, such as 
linear ones, to be applied in each region. The key condition for 
the effective use of LA method is the successful choice of the 
size of the local region, i.e., the number of neighbors. 

This method was used for forecasting economic time 
series, where similar trends for specific days on stock price 
charts acted as neighbors. The main challenge lay in selecting 
suitable neighbors, as the quality of the forecast depends 
heavily on this choice. The paper qualitatively compares 
global and local approximation and suggests a similar idea 
that, compared to the global model, less informative local 
approximation may be preferable when accuracy is the more 
important criterion. A global model may not achieve the 
required accuracy due to the accumulation and averaging of a 
larger amount of data. 

IV. FORECASTING METHOD 

In the considered case, the state of the critical system is 
related to the volume of computational resources required for 
the system to function normally under a specific load. The 
state is determined by the number of used computational 
modules. Data for building the model are taken from the local 
time segment corresponding to a specific system state. The 
metric used is the average %CPU utilization across a set of 
computational modules. 

The local time segment requires specific consideration. 
The lifetime of a particular state depends on the nature of the 
load. The transition to another state is determined by the level 
of the measured metric (the transition threshold). Maximum 
and minimum levels of average %CPU utilization across 
computational modules are defined. When the utilization 
crosses the maximum threshold, the system automatically 
transitions to a new state with more resources, while crossing 
the minimum threshold leads to a transition to a state with 
fewer resources. 

Local time segments for different states may have varying 
numbers of data samples. This quantity should include data 
samples required for model training (training also requires a 
certain amount of time). 

Forecasting within the local time window leads to the 
following challenge: 

Let's consider a critical system that can be in a finite set of 
states 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑛}, determined by external load on the 
system and transition levels. In each state 𝑖  the system 
generates a discrete signal in the form of a short time series 

𝑋𝑡
𝑆𝑖 (or a set of time series). The task is to build a predictor 

based on a neural network using a portion of this signal, 

denoted as �̃�𝑡
𝑆𝑖 , which forecasts the system's transition to a 

new state 𝑆𝑖+1. 

To solve this problem was developed a method of dynamic 
local approximation by neural network models (DLANN). 
The essence of which is that during the operation of the system 
for each of its states simple neural network models are built 
on a part of the local time segment data (e.g., with one hidden 
and one output layer). 
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It is assumed that the model trained on a portion of the data 
will adequately make forecasts for the entire local segment. 
During training, a quality criterion is saved for each model – 
the validation error. After training, based on incoming data, 
forecasts of the average %CPU utilization across a set of 
computational modules are generated with a specified horizon 
into the future. These forecasts are compared to the transition 
levels, and when they are reached, a control decision is 
generated. This process then repeats. 

For simplify, the parameters that determine the size of the 
time segment for training and the horizon into the future are 
predetermined and can be related to characteristics of specific 
system. Automatic selection of these parameters based on 
signal characteristics is also possible.  

To simplify the process, neural networks with the same 
architecture are used. There is also the possibility of 
automatically adjusting the architecture (e.g., changing the 
number of neurons in the hidden layers or adding hidden 
layers) depending on the complexity of the signal, which can 
be assessed using some metric (e.g., entropy, variance, etc.) 

There are situations where, due to a sudden change in the 
load's nature, it's impossible to gather a sufficient amount of 
data to train the model and prepare predictions for making 
control decisions. In such cases, the control decision is 
generated based on the current average %CPU utilization 
across computational modules, which is compared to the 
transition levels. 

By combining the work of these two predictors, we obtain 
a combined control system with both reactive and proactive 
approaches. 

Based on the method, a control system was implemented, 
and its operational principles and architecture are described in 
more detail in the following sections. 

V. MODEL LIBRARY METHOD 

In the process described above, various neural network 
models are created, each associated with a specific state 
determined by the number of computational modules. Each 
model memorizes the characteristics of a particular system 
state. 

The set of models can be saved and accumulated as a 
library of neural models. There can be multiple models for 
each state. For each model, training quality metrics (validation 
error) and signal complexity assessment are saved. The library 
of models can be used for predictions before training a new 
model in various scenarios: 

A. To choose the best model for a state  

In this case, when the system transitions to one of the 
known states, a model is selected from the library based on the 
one with the lowest training error. 

B. To create an ensemble from a set of models that 

correspond to one state 

In this case, an ensemble (composition without training) is 
created from predictions of existing N models for one state, 
with weights associated with validation errors: 

 �̂�𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ∑ 𝜀𝑖�̂�𝑚𝑜𝑑𝑒𝑙𝑖

𝑁
𝑖=1  () 

 𝜀𝑖 =
(

1

𝑣𝑎𝑙_𝑒𝑟𝑟𝑖
)

∑ (
1

𝑣𝑎𝑙_𝑒𝑟𝑟𝑖
)𝑁

𝑖=1

 () 

C. To create an ensemble from a set of models that 

correspond to different states) 

In this case, an ensemble (composition without training) is 
created from existing models for different states, with weights 
associated with the signal's complexity. The formulas are 
similar to (1) and (2), but instead of the validation error, values 
related to the signal's complexity on which the neural models 
were trained are used.  

All of these options can be used during the training of a 
new model as an additional predictor when the model for the 
current signal is not yet ready. You can compare the forecast 
results with the accumulating data. If the forecast is adequate, 
you can allow the use of predictions from this predictor for 
making control decisions. This has the potential to increase 
proactivity. 

The model library allows to create stacked models that can 
be trained on data from a new state. 

Over time, the model library will continue to grow. There 
is no need to store many models for the same state. Therefore, 
it is possible to implement a mechanism for forgetting models, 
where for a specific state, only a certain number of models 
with the lowest validation errors are retained. 

VI. OPERATING PRINCIPLE OF THE  MANAGEMENT SYSTEM 

The management of critical IT system resources is handled 
by an agent that receives real-time data on the utilization of 
computational modules and makes decisions about scaling the 
managed system. The agent uses a combination of reactive 
and proactive control. For each state of the managed system, 
a separate dataset is automatically generated, a neural network 
model is trained based on this dataset, and predictions of 
resource utilization parameters are made. 

The agent compares the current data on the average load 
across computational modules with the prediction results for a 
specific state of the system and makes decisions about 
changing the state (scaling). 

If a peak in load appears and the neural network model is 
not ready yet or there is no prediction for the average 
utilization of modules, or the prediction does not give such 
behavior, then the reactive component is activated. 

If the forecast of average parameters exceed the threshold 
values, then a proactive decision is made in advance to change 
the system's state (proactive component). 

  
Fig. 1. Structural block diagram of the combined control system 
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VII. ARCHITECTURE 

The system architecture consists of 5 main blocks, which 
are depicted in Fig 1. 

• The monitoring block is responsible for collecting 
performance metrics of the computational modules of 
the system and adding new metrics (when the system 
state changes). 

• The state change block is responsible for sending 
control commands (which change the state of the 
managed system) and monitoring the correctness of 
state changes. 

• The dispatch and decision-making block.  

• The training module - creates a neural network model 
for a set of historical data for the state of the managed 
system. 

• The forecasting module - provides forecasts for 
resource utilization parameters with a specific horizon 
into the future for the current state of the managed 
system. 

The dispatch and decision-making block is central. It, 
along with the other blocks, is implemented in the high-level 
Python language. More details about its operation algorithm 
are presented in Fig 2. 

During initialization, resource utilization thresholds 
(system SLAs) are set, reaching which leads to a change in the 
state of the managed system. Thresholds for resource addition 
(A) and removal (D) are set separately. A system stabilization 
parameter (cool_period) is defined, which determines the 
number of cycles during which no state-changing actions are 
performed in the system. A parameter that specifies the 
number of iterations for accumulating data for one state to 
create a model (M) is set. A lookahead parameter (Z) is also 

defined, indicating the number of forecast points into the 
future. 

In the main process, after the initialization stage, there is a 
loop in which each iteration involves defining the list of 
computational modules, obtaining current utilization values of 
these modules, and making decisions about changing the state 
of the managed system. 

Metrics are collected in parallel using the joblib library, 
with data being collected at a frequency  ~ 2 𝑠−1. Historical 
data about utilization of each computational module for 
different system states are saved in CSV files. Data on module 
utilization for the current state is accumulated in memory in a 
dictionary. Based on the latest received data, the main process 
calculates the average value over the set of computational 
modules (R). 

If R exceeds the threshold for addition (A), a decision is 
made to add resources to the managed system. If R is less than 
the removal threshold (D), a decision is made to remove 
resources. After the decision is made, a command is sent to 
the state change block (reactive component).If R exceeds the 
threshold for addition (A), a decision is made to add resources 
to the managed system. If R is less than the removal threshold 
(D), a decision is made to remove resources. After the decision 
is made, a command is sent to the state change block (reactive 
component). 

In this process, mechanisms of non-blocking interaction 
with other processes are implemented, which run in parallel to 
the main process and are responsible for creating and training 
neural networks and forecasting resource utilization 
parameters for a specific state with a specified horizon into the 
future. This mechanism is implemented using the 
multiprocessing library. Interprocess communication uses the 
multiprocessing.Queue mechanism, which forms FIFO (first 
input first output) queues. 

 

Fig. 2 Control system operation algorithm. 
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Three queues (model_list_q, model_state_q, 
model_result_q) are used for communication between the 
main process and the process responsible for creating and 
training neural network models, and three queues 
(predict_file_q, predict_list_q, predict_result_q) are used for 
communication with the prediction process. 

VIII. NETWORK PARAMETERS (ПАРАМЕТРЫ СЕТИ) 

It's assume that each subsequent element of the series 
depends on some number of previous elements in the series. 
Lagged values of the time series are used as independent 
parameters for autoregression. The number of these 
parameters determines the time window (tw) for the series. 
The time window of 30 elements was selected empirically, 
assuming that the main contribution to the approximating 
function for the next element in the series comes from a linear 
combination of the 30 previous elements. 

PyTorch is used for creating and training the model. 

The preprocessing of the original series with scaling into 
the [0,1] interval is not performed because it introduces 
additional errors into the raw data and leads to additional 
overhead for scaling before and after training. A short time 
series of 64 data points is used, with a time interval of 2 
seconds between data points. The total duration of the series 
is 128 seconds. The original series is divided into two sets: the 
training set (70% - 43 data points) and the test set (30% - 21 
data points). Considering that the time window is 30, the 
number of training examples is 14. Training is performed for 
100 epochs with a batch size of 1. A two-layer neural network 
is used with one hidden layer and one output layer. The 
number of neurons in the hidden layer is 90, which is three 
times larger than the time window size. There is one neuron in 
the output layer, serving as an accumulator. A fully connected 
linear layer (nn.Linear) is used. The activation function is 
ReLU, and dropout is employed for regularization with a 
dropout probability of 0.015. The loss function used is 
nn.MSELoss (mean squared error), and the optimization 
method is torch.optim.Adam with a learning rate of 0.002. 

The training time for the neural network with the specified 
architecture for the dataset is ~ 2s. The prediction performing 
speed, taking into account a forecast horizon of 40 samples, is 
less than 1 second. 

IX. ADDING PROACTIVITY TO SYSTEM CYCLE 

After obtaining the model for the current state, the main 
process transfers information about the model to the 
prediction process. The model file name is placed in the 
predict_file_q queue, and the current utilization data is placed 
in the predict_list_q queue. The prediction process checks for 
data in these queues at intervals corresponding to the data 
collection frequency. Once the data is read from the queues, 
the prediction is executed, and the forecasted data is sent to 
the model_result_q queue. 

After receiving the forecast results for the current state, the 
main process calculates the maximum average utilization (P) 
across the computational modules for the prediction window 
(Z). Then, max(R, P) is computed, which represents the 
maximum between the current utilization value and the 
maximum forecasted value. This value, along with the state 
code, the number of computational modules, and the 
stabilization limit, is used to make decisions regarding system 
scaling. If max(R, P) exceeds the addition threshold (A), a 
decision to add resources to the managed system is made. If 

max(R, P) is less than the removal threshold (D), a decision to 
remove resources is made. After making the decision, a 
command is sent to the state change block. This introduces a 
proactive component into the decision-making process. 

X. EXAMPLE OF SYSTEM OPERATION UNDER WORKLOAD 

As an example, the system's performance is illustrated 
under a gradually increasing load, reaching up to 600 users 
performing various requests over approximately 0.5 hours. 

As a result of running the system, it changed its state six 
times, with proactive changes occurring 4 times and reactive 
changes occurring 2 times. 

On Fig. 3-8, examples of utilization forecasts for different 
states are presented (green color represents the input model 
data, blue color represents the forecast). 

XI. RESULTS 

The article considered the problem related to making 
operational decisions in managing the computational 
resources of a critical IT service in conditions of uncertainty 
in external loads. 

 

Fig. 3. Forecast 1 for state S0 

 

Fig. 4 Forecast 1 for state S1 

 

Fig. 5. Forecast 51 for state S1 
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As a result of the conducted research, a model system for 
a critical service has been developed. An original approach to 
solving the forecasting problem for decision-making has been 
proposed, which enhances the adaptive properties and stability 
of the managed system to external loads. Within this approach, 
a new method of dynamic local approximation using neural 
network models (DLANN) has been developed.  

The structure and architecture of the combined control 
system have been described. A technology for making real-
time management decisions has been developed, described 
and implemented in practice. 

The experiments have been conducted that confirm the 
proposed technology works. 

The structure and architecture of the combined control 
system have been described. A technology for making 
operational management decisions has been developed and 
described, which has been implemented in practice.This 
approach allows for the creation of a library of neural models 

capable of making predictions for system states. Furthermore, 
using this technology in the future opens up the possibility of 
implementing adaptation mechanisms in the system, 
conceptually similar to those found in the natural world. These 
mechanisms involve adapting to changing circumstances 
during an organism's life cycle to better perform their 
functions, one of which is survival. In this context, mutation 
mechanisms with natural selection are employed (where 
organisms that make better predictions of the current 
environment survive) as well as crossover mechanisms, 
resulting in offspring with combinations of parental 
characteristics. 

In the context of the discussed process, each neural 
network model can be compared to a set of DNA encoding the 
characteristics of a specific state corresponding to external 
influences. Mutation with natural selection can be seen as the 
survival of those models that make better predictions of 
changes in resource utilization parameters, i.e., they lead to 
the best adaptation to a specific external influence. Crossover 
can be likened to the mechanism of stacking the best models. 
This analogy draws parallels between the evolutionary 
process in biology and the development of adaptive neural 
network models. 

The iterations of building models, it becomes possible to 
create a model that can provide predictions for a generalized 
representation of the states of the managed system. 
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Fig. 6. Forecast 1 for state S2 

 

Fig. 7. Forecast 19 for state S2 

 

 


