
58

Technology for making real-time decisions based on

neural network forecasting

A.A. Starovoytov

Faculty of Applied Mathematics and Computer Science

Belarusian State University

Minsk, Belarus

starovoytovaa@bsu.by

V.V. Krasnoproshin

Faculty of Applied Mathematics and Computer Science

Belarusian State University

Minsk, Belarus

krasnoproshin@bsu.by

Abstract—This paper considers a current applied problem

related to the construction of decision support systems for

critical computing services. An original approach based on

neural network forecasting is proposed, within which a method

of dynamic local approximation using neural network models

(DLANN) has been developed. The scheme and architecture of

the control system have been designed and implemented.

Experiments have been conducted, confirming the effectiveness

of the method and the overall approach.

Keywords—decision-making, information system, proactive

management, uncertainty in external load, neural networks,

critical IT service.

I. INTRODUCTION

Supporting critical IT services and systems (such as
banking, telecommunications, and industrial systems) in an
operational state with guaranteed computational resource
levels is a relevant problem in today's digital society.

Uncertainty in external loads and failures of computing
equipment lead to failures in the operation and performance
degradation of critical IT systems. As a result, the loss of
operational efficiency in processing information and
conducting banking and other operations can have serious
consequences, including financial losses and major incidents.

Making operational decisions for the management of
critical IT services allows for the reduction or prevention of
negative consequences. However, the human factor often
contributes to a decrease in operational efficiency. Therefore,
various automated solutions are actively being developed to
enhance efficiency and proactivity in the management of
critical systems.

One of the promising approaches to solving the problem is
the use of intelligent systems that realize the scheme: data
collection - building a predictive model - proactive decision-
making - performing control actions.

Several authors have developed various critical IT service
management systems using neural network models,
contributing to effective decision-making [1], [2], [3], [4].
However, in these systems, only one neural network model is
trained for specific types of external loads. It is assumed that
these models will successfully predict the values of required
parameters for other types of loads associated with
uncertainty.

In these works, training datasets are prepared in advance,
containing long-time series with a large number of elements.
Training on such datasets takes a considerable amount of time
and requires high-performance resources to effectively train
models within an acceptable timeframe.

In this paper, an approach is proposed based on the idea
that a managed IT system can exist in various states (in terms
of computational resource capacity), and for each state during

its lifetime, a neural network model can be created and trained.
This model is capable of predicting the average %CPU
utilization of computational modules, based on which a
control decision can be made to change the system's state.

II. MODEL SYSTEM OF CRITICAL IT SERVICE

Due to the difficulty of developing the relevant systems in
laboratory conditions (without direct interaction with the
actual critical infrastructure), a model system was developed
for researching the discussed issue. This model system
conceptually corresponds to a critical information service
model.

The system consists of a set of computational modules
where instances of application software operate, and external
requests are load-balanced between them. A stress system is
used to generate requests, allowing for the configuration of the
load and the retrieval of statistics on processed requests and
response times. The model system supports a scaling
mechanism (state change). Let's briefly describe the main
components of the model system:

A. Computational Modules Block

In the works [1], [2], [3], [4], virtual machines (VMs) were
used as computational modules for application software.
These VMs were deployed in various public clouds such as
Amazon, Google, and others, or in private clouds and data
centers. The management of VMs (creation, startup,
shutdown, deletion) was achieved using the capabilities of
cloud services or data center management systems. While
VMs offer good application isolation, they do require more
computational resources since each VM needs resources for
its operating system. Additionally, a module with
functionality similar to a cloud service for managing VMs is
necessary. This module handles the configuration of operating
systems, installation, configuration, and management of web
applications, and adheres to the Infrastructure as Code (IaC)
model.

After considering various options (VM, Kubernetes
Cluster, Docker Compose), it was decided to use Docker
Compose for the computational modules in the model system.
This decision allows for the creation of computational
modules as Docker containers, their management, and the
collection of various utilization metrics. There are ready-made
libraries like Docker SDK for Python for working with the
Docker API Engine. Load balancing across containers with
the web application is accomplished using Docker Compose's
built-in service naming features. The configuration of services
and resources can be described in Yaml format.

B. Application Web Service Block

To save resources, ensure stability, simplify configuration,
and operation, it was decided to implement an application web
service as a microservice based on the popular high-

59

performance minimalistic web framework, Echo.labstack,
written in the high-level Go programming language.

C. Load Generation Block

Two software options were considered as load generators:
Apache JMeter, written in Java, and Locust, written in Python.
Apache JMeter is more feature-rich but complex to configure
and resource-intensive. In contrast, Locust has fewer features,
is easy to configure, allows for load profile descriptions in the
form of Python classes, is less resource-intensive, supports
distributed configurations of instances, and allows load
profiles to be defined as functions or pre-prepared data. Locust
was chosen as the load generator due to its suitability for the
model system.

III. APPROACH DESCRIPTION

Operational decision-making involves several key aspects:

• The adequacy of forecasting the system's key
parameters.

• The speed of preparing a forecast.

• The forecasting horizon into the future.

The situation is complicated by the fact that the load
behavior in critical systems can change quite rapidly. For
example, the load can sharply increase within a short period
of time, leading to a lack of computational resources.
Additionally, the load profile can vary significantly from day
to day.

The currently used approaches for making predictions
based on large datasets of historical data may lose forecasting
quality and require initial preparation of a training dataset
covering a long observation period. In addition, they involve
complex neural network models (e.g., LSTM layers with
memory and others) that require extended training times on
high-performance resources for the given dataset.

A pre-trained model on a large dataset may have
insufficient generalization capability, and in some cases, it
may not be able to generate an accurate forecast for a new load
pattern. Additionally, all critical systems have entirely
different load profiles, and a model trained on data from one
system may not be suitable for another.

What happened with the system over an extended period
of time is not important as the ability to make accurate
forecasts based on a small amount of last real-time
accumulating data. Furthermore, model training on this data
and subsequent predictions should be carried out rapidly, in
parallel with the accumulation of new data.

The main idea is that the system's load profile can be
divided into small segments during operation. For each
segment (during its existence), a neural network model can be
constructed to describe the behavior within that segment. This
model enables a set of predictions to be made, based on which
the system transitions to a new segment. This process then
repeats for the next segment, and so on.

A collection of models will accumulate, each of which will
have better accuracy within its specific segment compared to
a global model trained on data over a longer period.

In [5], a similar approach is proposed in the form of a
Local Approximation (LA) method. The main idea behind this
method is to divide the domain of a function into several local

regions, construct approximating models, and estimate the
parameters of these models separately within each region.

If the function is smooth, the regions can be small enough
so that the function does not change too abruptly within each
of them. This allows for relatively simple models, such as
linear ones, to be applied in each region. The key condition for
the effective use of LA method is the successful choice of the
size of the local region, i.e., the number of neighbors.

This method was used for forecasting economic time
series, where similar trends for specific days on stock price
charts acted as neighbors. The main challenge lay in selecting
suitable neighbors, as the quality of the forecast depends
heavily on this choice. The paper qualitatively compares
global and local approximation and suggests a similar idea
that, compared to the global model, less informative local
approximation may be preferable when accuracy is the more
important criterion. A global model may not achieve the
required accuracy due to the accumulation and averaging of a
larger amount of data.

IV. FORECASTING METHOD

In the considered case, the state of the critical system is
related to the volume of computational resources required for
the system to function normally under a specific load. The
state is determined by the number of used computational
modules. Data for building the model are taken from the local
time segment corresponding to a specific system state. The
metric used is the average %CPU utilization across a set of
computational modules.

The local time segment requires specific consideration.
The lifetime of a particular state depends on the nature of the
load. The transition to another state is determined by the level
of the measured metric (the transition threshold). Maximum
and minimum levels of average %CPU utilization across
computational modules are defined. When the utilization
crosses the maximum threshold, the system automatically
transitions to a new state with more resources, while crossing
the minimum threshold leads to a transition to a state with
fewer resources.

Local time segments for different states may have varying
numbers of data samples. This quantity should include data
samples required for model training (training also requires a
certain amount of time).

Forecasting within the local time window leads to the
following challenge:

Let's consider a critical system that can be in a finite set of
states 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}, determined by external load on the
system and transition levels. In each state 𝑖 the system
generates a discrete signal in the form of a short time series

𝑋𝑡
𝑆𝑖 (or a set of time series). The task is to build a predictor

based on a neural network using a portion of this signal,

denoted as �̃�𝑡
𝑆𝑖 , which forecasts the system's transition to a

new state 𝑆𝑖+1.

To solve this problem was developed a method of dynamic
local approximation by neural network models (DLANN).
The essence of which is that during the operation of the system
for each of its states simple neural network models are built
on a part of the local time segment data (e.g., with one hidden
and one output layer).

60

It is assumed that the model trained on a portion of the data
will adequately make forecasts for the entire local segment.
During training, a quality criterion is saved for each model –
the validation error. After training, based on incoming data,
forecasts of the average %CPU utilization across a set of
computational modules are generated with a specified horizon
into the future. These forecasts are compared to the transition
levels, and when they are reached, a control decision is
generated. This process then repeats.

For simplify, the parameters that determine the size of the
time segment for training and the horizon into the future are
predetermined and can be related to characteristics of specific
system. Automatic selection of these parameters based on
signal characteristics is also possible.

To simplify the process, neural networks with the same
architecture are used. There is also the possibility of
automatically adjusting the architecture (e.g., changing the
number of neurons in the hidden layers or adding hidden
layers) depending on the complexity of the signal, which can
be assessed using some metric (e.g., entropy, variance, etc.)

There are situations where, due to a sudden change in the
load's nature, it's impossible to gather a sufficient amount of
data to train the model and prepare predictions for making
control decisions. In such cases, the control decision is
generated based on the current average %CPU utilization
across computational modules, which is compared to the
transition levels.

By combining the work of these two predictors, we obtain
a combined control system with both reactive and proactive
approaches.

Based on the method, a control system was implemented,
and its operational principles and architecture are described in
more detail in the following sections.

V. MODEL LIBRARY METHOD

In the process described above, various neural network
models are created, each associated with a specific state
determined by the number of computational modules. Each
model memorizes the characteristics of a particular system
state.

The set of models can be saved and accumulated as a
library of neural models. There can be multiple models for
each state. For each model, training quality metrics (validation
error) and signal complexity assessment are saved. The library
of models can be used for predictions before training a new
model in various scenarios:

A. To choose the best model for a state

In this case, when the system transitions to one of the
known states, a model is selected from the library based on the
one with the lowest training error.

B. To create an ensemble from a set of models that

correspond to one state

In this case, an ensemble (composition without training) is
created from predictions of existing N models for one state,
with weights associated with validation errors:

 �̂�𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ∑ 𝜀𝑖�̂�𝑚𝑜𝑑𝑒𝑙𝑖

𝑁
𝑖=1 ()

 𝜀𝑖 =
(

1

𝑣𝑎𝑙_𝑒𝑟𝑟𝑖
)

∑ (
1

𝑣𝑎𝑙_𝑒𝑟𝑟𝑖
)𝑁

𝑖=1

 ()

C. To create an ensemble from a set of models that

correspond to different states)

In this case, an ensemble (composition without training) is
created from existing models for different states, with weights
associated with the signal's complexity. The formulas are
similar to (1) and (2), but instead of the validation error, values
related to the signal's complexity on which the neural models
were trained are used.

All of these options can be used during the training of a
new model as an additional predictor when the model for the
current signal is not yet ready. You can compare the forecast
results with the accumulating data. If the forecast is adequate,
you can allow the use of predictions from this predictor for
making control decisions. This has the potential to increase
proactivity.

The model library allows to create stacked models that can
be trained on data from a new state.

Over time, the model library will continue to grow. There
is no need to store many models for the same state. Therefore,
it is possible to implement a mechanism for forgetting models,
where for a specific state, only a certain number of models
with the lowest validation errors are retained.

VI. OPERATING PRINCIPLE OF THE MANAGEMENT SYSTEM

The management of critical IT system resources is handled
by an agent that receives real-time data on the utilization of
computational modules and makes decisions about scaling the
managed system. The agent uses a combination of reactive
and proactive control. For each state of the managed system,
a separate dataset is automatically generated, a neural network
model is trained based on this dataset, and predictions of
resource utilization parameters are made.

The agent compares the current data on the average load
across computational modules with the prediction results for a
specific state of the system and makes decisions about
changing the state (scaling).

If a peak in load appears and the neural network model is
not ready yet or there is no prediction for the average
utilization of modules, or the prediction does not give such
behavior, then the reactive component is activated.

If the forecast of average parameters exceed the threshold
values, then a proactive decision is made in advance to change
the system's state (proactive component).

Fig. 1. Structural block diagram of the combined control system

61

VII. ARCHITECTURE

The system architecture consists of 5 main blocks, which
are depicted in Fig 1.

• The monitoring block is responsible for collecting
performance metrics of the computational modules of
the system and adding new metrics (when the system
state changes).

• The state change block is responsible for sending
control commands (which change the state of the
managed system) and monitoring the correctness of
state changes.

• The dispatch and decision-making block.

• The training module - creates a neural network model
for a set of historical data for the state of the managed
system.

• The forecasting module - provides forecasts for
resource utilization parameters with a specific horizon
into the future for the current state of the managed
system.

The dispatch and decision-making block is central. It,
along with the other blocks, is implemented in the high-level
Python language. More details about its operation algorithm
are presented in Fig 2.

During initialization, resource utilization thresholds
(system SLAs) are set, reaching which leads to a change in the
state of the managed system. Thresholds for resource addition
(A) and removal (D) are set separately. A system stabilization
parameter (cool_period) is defined, which determines the
number of cycles during which no state-changing actions are
performed in the system. A parameter that specifies the
number of iterations for accumulating data for one state to
create a model (M) is set. A lookahead parameter (Z) is also

defined, indicating the number of forecast points into the
future.

In the main process, after the initialization stage, there is a
loop in which each iteration involves defining the list of
computational modules, obtaining current utilization values of
these modules, and making decisions about changing the state
of the managed system.

Metrics are collected in parallel using the joblib library,
with data being collected at a frequency ~ 2 𝑠−1. Historical
data about utilization of each computational module for
different system states are saved in CSV files. Data on module
utilization for the current state is accumulated in memory in a
dictionary. Based on the latest received data, the main process
calculates the average value over the set of computational
modules (R).

If R exceeds the threshold for addition (A), a decision is
made to add resources to the managed system. If R is less than
the removal threshold (D), a decision is made to remove
resources. After the decision is made, a command is sent to
the state change block (reactive component).If R exceeds the
threshold for addition (A), a decision is made to add resources
to the managed system. If R is less than the removal threshold
(D), a decision is made to remove resources. After the decision
is made, a command is sent to the state change block (reactive
component).

In this process, mechanisms of non-blocking interaction
with other processes are implemented, which run in parallel to
the main process and are responsible for creating and training
neural networks and forecasting resource utilization
parameters for a specific state with a specified horizon into the
future. This mechanism is implemented using the
multiprocessing library. Interprocess communication uses the
multiprocessing.Queue mechanism, which forms FIFO (first
input first output) queues.

Fig. 2 Control system operation algorithm.

62

Three queues (model_list_q, model_state_q,
model_result_q) are used for communication between the
main process and the process responsible for creating and
training neural network models, and three queues
(predict_file_q, predict_list_q, predict_result_q) are used for
communication with the prediction process.

VIII. NETWORK PARAMETERS (ПАРАМЕТРЫ СЕТИ)

It's assume that each subsequent element of the series
depends on some number of previous elements in the series.
Lagged values of the time series are used as independent
parameters for autoregression. The number of these
parameters determines the time window (tw) for the series.
The time window of 30 elements was selected empirically,
assuming that the main contribution to the approximating
function for the next element in the series comes from a linear
combination of the 30 previous elements.

PyTorch is used for creating and training the model.

The preprocessing of the original series with scaling into
the [0,1] interval is not performed because it introduces
additional errors into the raw data and leads to additional
overhead for scaling before and after training. A short time
series of 64 data points is used, with a time interval of 2
seconds between data points. The total duration of the series
is 128 seconds. The original series is divided into two sets: the
training set (70% - 43 data points) and the test set (30% - 21
data points). Considering that the time window is 30, the
number of training examples is 14. Training is performed for
100 epochs with a batch size of 1. A two-layer neural network
is used with one hidden layer and one output layer. The
number of neurons in the hidden layer is 90, which is three
times larger than the time window size. There is one neuron in
the output layer, serving as an accumulator. A fully connected
linear layer (nn.Linear) is used. The activation function is
ReLU, and dropout is employed for regularization with a
dropout probability of 0.015. The loss function used is
nn.MSELoss (mean squared error), and the optimization
method is torch.optim.Adam with a learning rate of 0.002.

The training time for the neural network with the specified
architecture for the dataset is ~ 2s. The prediction performing
speed, taking into account a forecast horizon of 40 samples, is
less than 1 second.

IX. ADDING PROACTIVITY TO SYSTEM CYCLE

After obtaining the model for the current state, the main
process transfers information about the model to the
prediction process. The model file name is placed in the
predict_file_q queue, and the current utilization data is placed
in the predict_list_q queue. The prediction process checks for
data in these queues at intervals corresponding to the data
collection frequency. Once the data is read from the queues,
the prediction is executed, and the forecasted data is sent to
the model_result_q queue.

After receiving the forecast results for the current state, the
main process calculates the maximum average utilization (P)
across the computational modules for the prediction window
(Z). Then, max(R, P) is computed, which represents the
maximum between the current utilization value and the
maximum forecasted value. This value, along with the state
code, the number of computational modules, and the
stabilization limit, is used to make decisions regarding system
scaling. If max(R, P) exceeds the addition threshold (A), a
decision to add resources to the managed system is made. If

max(R, P) is less than the removal threshold (D), a decision to
remove resources is made. After making the decision, a
command is sent to the state change block. This introduces a
proactive component into the decision-making process.

X. EXAMPLE OF SYSTEM OPERATION UNDER WORKLOAD

As an example, the system's performance is illustrated
under a gradually increasing load, reaching up to 600 users
performing various requests over approximately 0.5 hours.

As a result of running the system, it changed its state six
times, with proactive changes occurring 4 times and reactive
changes occurring 2 times.

On Fig. 3-8, examples of utilization forecasts for different
states are presented (green color represents the input model
data, blue color represents the forecast).

XI. RESULTS

The article considered the problem related to making
operational decisions in managing the computational
resources of a critical IT service in conditions of uncertainty
in external loads.

Fig. 3. Forecast 1 for state S0

Fig. 4 Forecast 1 for state S1

Fig. 5. Forecast 51 for state S1

63

As a result of the conducted research, a model system for
a critical service has been developed. An original approach to
solving the forecasting problem for decision-making has been
proposed, which enhances the adaptive properties and stability
of the managed system to external loads. Within this approach,
a new method of dynamic local approximation using neural
network models (DLANN) has been developed.

The structure and architecture of the combined control
system have been described. A technology for making real-
time management decisions has been developed, described
and implemented in practice.

The experiments have been conducted that confirm the
proposed technology works.

The structure and architecture of the combined control
system have been described. A technology for making
operational management decisions has been developed and
described, which has been implemented in practice.This
approach allows for the creation of a library of neural models

capable of making predictions for system states. Furthermore,
using this technology in the future opens up the possibility of
implementing adaptation mechanisms in the system,
conceptually similar to those found in the natural world. These
mechanisms involve adapting to changing circumstances
during an organism's life cycle to better perform their
functions, one of which is survival. In this context, mutation
mechanisms with natural selection are employed (where
organisms that make better predictions of the current
environment survive) as well as crossover mechanisms,
resulting in offspring with combinations of parental
characteristics.

In the context of the discussed process, each neural
network model can be compared to a set of DNA encoding the
characteristics of a specific state corresponding to external
influences. Mutation with natural selection can be seen as the
survival of those models that make better predictions of
changes in resource utilization parameters, i.e., they lead to
the best adaptation to a specific external influence. Crossover
can be likened to the mechanism of stacking the best models.
This analogy draws parallels between the evolutionary
process in biology and the development of adaptive neural
network models.

The iterations of building models, it becomes possible to
create a model that can provide predictions for a generalized
representation of the states of the managed system.

REFERENCES

[1] M. Straesser, J. Grohmann, J. von Kistowski, S. Eismann, A. Bauer, S.

Kounev. Why Is It Not Solved Yet?: Challenges for Production-Ready
Autoscaling // In ICPE '22: ACM/SPEC International Conference on
Performance Engineering, Bejing, China, April 9 - 13, 2022, P. 105–
115, ACM, 2022.

[2] N. Khan, D. A. Elizondo, L. Deka, M. A. M.–Cabello. Fuzzy Logic
applied to Sys-tem Monitors // IEEE Access, Vol. 9, P. 56523-56538,
2021.

[3] B. M. Nguyen, G. Nguyen, Giang. A Proactive Cloud Scaling Model
Based on Fuzzy Time Series and SLA Awareness // Procedia Computer
Science (International Conference on Computational Science ICCS
2017), 108, P.365–374, 2017.

[4] V. Persico, D. Grimaldi, A. Pescape, A. Salvi, S. Santini. A Fuzzy
Approach Based on Heterogeneous Metrics for Scaling Out Public
Clouds // IEEE Transactions on Parallel and Distributed Systems, Vol.
28, No. 8, P. 2117–2130, 2017.

[5] Loskutov A.Yu. & Zhuravlev D.I. Application of a local approximation
technique for forecasting economic indicators. Voprosy' analiza i
upravleniya riskom, 2003, (1), pp. 21-31. (In Russ.).

Fig. 6. Forecast 1 for state S2

Fig. 7. Forecast 19 for state S2

