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Abstract— This study investigates the efficiency of gradient 

boosting algorithms, particularly XGBoost, in time series 

forecasting. We optimize the parameters using 

RandomizedSearchCV and apply the model to daily stock prices 

of the Ethereum cryptocurrency. Additionally, we compare the 

prediction performance of XGBoost with two other models, 

LightGBM and CatBoost. Our findings reveal that the 

LightGBM model outperforms both CatBoost and XGBoost in 

terms of accuracy for time series prediction. 
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I. INTRODUCTION 

Time series forecasting is a critical aspect of various 
domains, including finance, sales, and weather prediction. 
Accurate predictions enable businesses and organizations to 
make informed decisions, optimize resource allocation, and 
improve overall efficiency. 

One highly effective technique that has gained popularity 
in recent years is gradient boosting. In this article, we will 
explore how gradient boosting algorithms, such as XGBoost, 
LightGBM and CatBoost, can be utilized for time series 
forecasting. 

II. XGBOOST ALGORITHM 

Gradient boosting is an ensemble learning method that 
combines multiple weak predictive models, typically decision 
trees, to create a strong predictive model. It works by 
iteratively fitting new models to the residuals of the previous 
models, reducing the overall prediction error. This iterative 
process continues until a predefined stopping criterion is met. 

XGBoost [1] is composed of classification and regression 
tree, and uses gradient tree boosting to implement a multi-tree 
ensemble learning algorithm. The sum of the predicted values 
for the sample for each tree is the predicted values for the 
XGBoost model, which is defined as follows: 

 �̂�𝑖 =  𝜙(𝑥𝑖) =  ∑ 𝑓𝑘(𝑥𝑖)𝐾
𝑘=1  () 

Among them, K represents the total number of trees, �̂�𝑖 
refers to the prediction result of the i sample, and 𝑓𝑘(𝑥𝑖) refers 
to the prediction of the k sample in the 𝑥𝑖 number.  

The objective function for XGBoost is: 

 𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡)

)𝑛
𝑖=1 +  ∑ Ω(𝑓𝑘)𝐾

𝑘=1  () 

 Ω(𝑓) =  𝛾𝑇 + 
1

2
𝜆‖𝜔‖2 () 

The objective function consists of two parts, the loss 

function and the regularization term, ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡)

)𝑛
𝑖=1  is the 

loss function, used to measure the difference between the real 

result and the predicted result, and ∑ Ω(𝑓𝑘)𝐾
𝑘=1  is the 

regularization term, which can effectively prevent the tree 

structure from being too complicated and avoid the model 
from over fitting. In the regularization term, the first term 𝛾𝑇 
is used to control the complexity of the tree, and the second 

term 
1

2
𝜆‖𝜔‖2 is used to control the weight fraction of the leaf 

nodes. 

III. DATA INTERPRETATION AND PREPROCESSING 

The financial time series data collected in this paper are all 
from Binance cryptocurrency historical market database. The 
data set is Ethereum cryptocurrency daily stock price data 
from May 2018 to May 2023. 

The stock price data are the opening price, closing price, 
highest price, lowest price and trading volume. 

In the realm of time series analysis, it is common for most 
problems to exhibit either external or internal features that can 
aid in model performance. To address this, it is essential to 
incorporate appropriate feature engineering techniques. 

To begin, we can introduce fundamental features such as 
lag values derived from the available numeric features, which 
are widely employed in time series problems. However, it is 
important to note that when predicting the stock price for a 
given day, we cannot utilize the feature values from that same 
day, as they will be unavailable during actual inference. 
Consequently, we must rely on statistical measures such as the 
mean and standard deviation of lagged values. 

In this study, we will employ three distinct sets of lagged 
values. The first set will consist of lagged values from the 
previous day, providing insight into immediate trends. The 
second set will encompass lagged values spanning a period of 
seven days, serving as a proxy for weekly metrics. Lastly, the 
third set will encompass lagged values spanning a period of 
30 days, acting as a proxy for monthly metrics. By 
incorporating these lagged values, we can capture relevant 
temporal patterns and enhance the predictive capabilities of 
our model. 

 In the realm of boosting models, the inclusion of datetime 
features, such as day of week, hour, day, and month, can 
greatly enhance their performance. By incorporating these 
temporal components into the model, valuable information 
regarding the time aspect of the data is provided. This 
inclusion improves the model's understanding of temporal 
patterns. Consequently, the inclusion of datetime features is a 
highly beneficial technique for enhancing the performance of 
boosting models.  

We need to pre-process the data and check the outliers and 
missing values. For the missing values, the method we use is 
to take the average of two adjacent numbers, then normalize 
the data, and divide the training set and test set.  

The predicted stock in the model is closing prices. 
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Fig. 1. Test statistic, critical values and p-value of ADF test 

 

Fig. 2. Test statistic, critical values and p-value of ADF test 

IV. EDUCATIONAL DATA ANALYSIS 

The Augmented Dickey-Fuller (ADF) test is a widely used 
statistical test in econometrics to determine the stationarity of 
time series data. Stationarity is a fundamental assumption in 
time series models, as it guarantees the constancy of statistical 
properties over time. 

A stationary time series maintains constant statistical 
properties, including mean, variance, and autocovariance, 
over time. On the other hand, a non-stationary time series 
exhibits changing trends, seasonality, or other patterns. 

The ADF test [2] is an extension of the Dickey-Fuller test, 
initially developed by economists David Dickey and Wayne 
Fuller in 1979. The augmented version incorporates higher-
order autoregressive processes, enabling more accurate testing 
of stationarity. 

The ADF test is based on the null hypothesis that a unit 
root exists in the time series, indicating non-stationarity. The 
alternative hypothesis suggests that the time series is 
stationary. By rejecting the null hypothesis, we conclude that 
the time series is indeed stationary. 

When conducting an ADF test, we obtain a test statistic 
and compare it to critical values at various significance levels. 
The test statistic is negative, and its magnitude determines the 
strength of evidence against the null hypothesis. 

A more negative test statistic (i.e., farther from zero) 
provides stronger evidence to reject the null hypothesis of 
non-stationarity. Conversely, a less negative test statistic (i.e., 
closer to zero) fails to reject the null hypothesis. 

Critical values are predetermined thresholds that assist in 
determining the significance level at which we can reject the 
null hypothesis. These values depend on the sample size, 
desired level of significance, and the type of ADF test (e.g., 
with or without a trend). 

Another approach to interpreting ADF test results is by 
examining the p-value associated with the test statistic. The p-
value represents the probability of obtaining a test statistic as 
extreme as the observed one, assuming the null hypothesis is 

true. If the p-value is lower than the chosen significance level 
(e.g., 0.05), we reject the null hypothesis. 

TABLE I.  THE AUGMENTED DICKEY-FULLER TEST STATISTICS 

ANALYSIS: TEST STATISTIC, CRITICAL VALUES AND P-VALUE OF ADF TEST 

ADF test statistics 

Test statistic -1.53896 

p-value 0.51416 

1% Critical value -3.43535 

5% Critical value -2.86375 

10% Critical value -2.56795 

The p-value is clearly greater than 0.05 significance level, 
we cannot reject the null hypothesis and conclude that the time 
series we are working with has a unit root. 

Gradient boosting algorithms have emerged as powerful 
tools for time series forecasting. By effectively capturing 
temporal dependencies, handling non-stationarity, and 
incorporating seasonality and trends, these algorithms can 
provide accurate predictions in various domains. However, it 
is important to carefully engineer features, tune 
hyperparameters, and apply regularization techniques to 
optimize the model's performance. As time series forecasting 
continues to gain importance, leveraging the capabilities of 
gradient boosting algorithms will undoubtedly play a 
significant role in driving accurate and reliable predictions. 

V. HYPERPARAMETER TUNING 

Hyperparameters play a crucial role in the performance of 
machine learning models, including the XGBoost regressor. 
These parameters, which are set before the learning process 
begins, control the behavior of the model. Finding the optimal 
combination of hyperparameters is a challenging task that can 
significantly impact the model's performance. We introduce 
RandomizedSearchCV [3], a technique that automates the 
search for the best hyperparameter combination in XGBoost 
regressor models. 

Hyperparameters are parameters that are not learned from 
the data but are set manually. They determine the behavior of 
the model and can greatly influence its performance. Tuning 
these hyperparameters is essential to achieve optimal results. 
RandomizedSearchCV is a method that simplifies the process 
of searching for the best hyperparameter combination by 
randomly sampling from a predefined search space. 

To begin the hyperparameter tuning process, it is 
necessary to define the hyperparameters and their 
corresponding possible values. For instance, the learning rate, 
maximum depth, number of estimators, and other relevant 
hyperparameters can be specified. 

RandomizedSearchCV requires a parameter grid, which is 
a dictionary where each key represents a hyperparameter 
name, and the corresponding value is a list of possible values 
for that hyperparameter. This parameter grid represents the 
search space from which the hyperparameters will be 
sampled. 

Next, an instance of the RandomizedSearchCV class 
needs to be created. This instance should include the XGBoost 
regressor model, the parameter grid, and other optional 
parameters such as the number of iterations and cross-
validation settings. 
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Once the RandomizedSearchCV object is set up, the fit 
method can be called, passing the training data. 
RandomizedSearchCV will then perform a specified number 
of iterations, randomly sampling hyperparameter 
combinations from the search space. For each combination, 
the XGBoost regressor model is trained and evaluated using 
cross-validation.  

After the search is complete, RandomizedSearchCV 
provides the best hyperparameter combination found during 
the search. This selection is based on a specified scoring 
metric, such as mean squared error or R-squared. The best 
hyperparameter combination can be accessed using the 
best_params_ attribute of the RandomizedSearchCV object. 

Finally, the XGBoost regressor model can be retrained 
using the best hyperparameters obtained from 
RandomizedSearchCV on the entire training dataset. This step 
ensures that the final model incorporates the optimized 
hyperparameters.  

By utilizing RandomizedSearchCV, a wide range of 
hyperparameter combinations can be efficiently explored. 
This technique enables the identification of the 
hyperparameter values that yield the best performance for the 
XGBoost regressor model. RandomizedSearchCV simplifies 
the task of finding the optimal hyperparameter combination. 

TABLE II.  PARAMETER OPTIMIZATION RESULT: TUNED 

HYPERPARAMETERS 

Best params: 

objective': 'reg:squarederror', 
'colsample_bylevel': 0.6, 'colsample_bytree': 1, 

'gamma': 0.6, 'learning_rate': 0.2,'max_depth': 

7, 'min_child_weight': 7, 'n_estimators': 1577, 
'subsample': 0.7 

Best validation score -1.48428 

To facilitate a comprehensive comparison of the three 
gradient boosting models, including CatBoost and LightGBM 
models, it is imperative that each model undergoes the same 
set of actions as previously described. Specifically, this entails 
the implementation of hyperparameter optimization using 
RandomizedSearchCV. By ensuring consistency in the 
experimental setup, we can effectively evaluate and contrast 
the performance of these models.  

VI. RESULTS 

The test set prediction results obtained by all models are 
demonstrated below. The predicted stock in the model is 
closing prices.  

VII. CONCLUSION 

To evaluate the accuracy of the models in forecasting the 
target variable, RMSE and MAE are calculated for each 

model's predictions. RMSE measures the average difference 
between the predicted and actual values, giving more weight 
to larger errors. MAE measures the average absolute 
difference between the predicted and actual values, treating 
all errors equally. The RMSE and MAE values obtained from 
each model are compared. Lower values indicate better 
performance, as they represent smaller errors between the 
predicted and actual values. Both metrics should be 
considered to gain a comprehensive understanding of the 
models' performance.  

Our study investigates the factors that contribute to 
LightGBM's potential for achieving lower error metrics 
compared to XGBoost and Catoost. The analysis focuses on 
four key aspects: handling of categorical features, training 
speed, handling of imbalanced data, and regularization 
techniques. The findings highlight the advantages of 
LightGBM in these areas and emphasize the importance of 
selecting the most suitable model for specific time series 
forecasting tasks. 

LightGBM incorporates a specialized technique called 
Light Gradient-Based One-Hot Encoding to efficiently 
handle categorical features. This approach converts 
categorical features into numerical values, reducing memory 
usage and expediting the training process. In contrast, 
XGBoost and CatBoost employ different methods for 
handling categorical features, which may not be as efficient 
for time series forecasting tasks. 

 

Fig. 4. CatBoost prediction 

 

Fig. 5. LightGBM prediction: Error metrics 

TABLE III. RMSE AND MAE SUMMARY OF DIFFERENT 

GRADIENT BOOSTING MODELS 

 RMSE MAE 

XGBoost 163.7086 128.3656 

LightGBM 133.7627 103.9441 

CatBoost 206.9712 157.1234 

 

 

Fig. 3. XGBoost prediction 
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LightGBM is renowned for its fast training speed, 
attributed to its leaf-wise tree growth strategy. By prioritizing 
the leaves that are likely to yield the greatest loss reduction, 
LightGBM adopts a depth-first tree growth approach. This 
strategy proves advantageous for time series forecasting, 
particularly when dealing with large datasets. Conversely, 
XGBoost and CatBoost adopt a level-wise tree growth 
strategy, which can be comparatively slower. 

Time series forecasting often involves imbalanced data, 
where certain periods exhibit more frequent or significant 
events. LightGBM addresses this issue through the 
is_unbalance parameter, which automatically adjusts the 
weights of positive and negative samples during training. 
This feature proves beneficial when working with 
imbalanced time series datasets. While XGBoost and 
CatBoost also offer techniques to handle imbalanced data, 
LightGBM's built-in functionality simplifies the process. 

LightGBM provides a range of regularization techniques, 
including L1 and L2 regularization, to mitigate overfitting 
and enhance generalization. These techniques prove 
particularly valuable in time series forecasting, where noise 
or outliers can lead to overfitting. While XGBoost and 
CatBoost also offer regularization options, LightGBM's 
implementation may be more effective in certain scenarios. 

It is important to note that the performance of these 
models can vary depending on the specific dataset and 
problem at hand. Therefore, it is recommended to conduct 
experiments with different models and hyperparameters to 
identify the optimal solution for a given time series 
forecasting problem. 
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