
176

Time series forecasting using gradient boosting

algorithms
Iolanta Barysheva

Belarusian State University

Minsk, Republic of Belarus

e-mail: baryshevaiolanta@gmail.com

Vasilevsky Konstantin

Belarusian State University

Minsk, Republic of Belarus

e-mail: VasilevskyK@bsu.by

Abstract— This study investigates the efficiency of gradient

boosting algorithms, particularly XGBoost, in time series

forecasting. We optimize the parameters using

RandomizedSearchCV and apply the model to daily stock prices

of the Ethereum cryptocurrency. Additionally, we compare the

prediction performance of XGBoost with two other models,

LightGBM and CatBoost. Our findings reveal that the

LightGBM model outperforms both CatBoost and XGBoost in

terms of accuracy for time series prediction.

Keywords—gradient boosting, financial time series

forecasting, XGBoost, LightGBM, CatBoost.

I. INTRODUCTION

Time series forecasting is a critical aspect of various
domains, including finance, sales, and weather prediction.
Accurate predictions enable businesses and organizations to
make informed decisions, optimize resource allocation, and
improve overall efficiency.

One highly effective technique that has gained popularity
in recent years is gradient boosting. In this article, we will
explore how gradient boosting algorithms, such as XGBoost,
LightGBM and CatBoost, can be utilized for time series
forecasting.

II. XGBOOST ALGORITHM

Gradient boosting is an ensemble learning method that
combines multiple weak predictive models, typically decision
trees, to create a strong predictive model. It works by
iteratively fitting new models to the residuals of the previous
models, reducing the overall prediction error. This iterative
process continues until a predefined stopping criterion is met.

XGBoost [1] is composed of classification and regression
tree, and uses gradient tree boosting to implement a multi-tree
ensemble learning algorithm. The sum of the predicted values
for the sample for each tree is the predicted values for the
XGBoost model, which is defined as follows:

 �̂�𝑖 = 𝜙(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)𝐾
𝑘=1 ()

Among them, K represents the total number of trees, �̂�𝑖
refers to the prediction result of the i sample, and 𝑓𝑘(𝑥𝑖) refers
to the prediction of the k sample in the 𝑥𝑖 number.

The objective function for XGBoost is:

 𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡)

)𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1 ()

 Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2 ()

The objective function consists of two parts, the loss

function and the regularization term, ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡)

)𝑛
𝑖=1 is the

loss function, used to measure the difference between the real

result and the predicted result, and ∑ Ω(𝑓𝑘)𝐾
𝑘=1 is the

regularization term, which can effectively prevent the tree

structure from being too complicated and avoid the model
from over fitting. In the regularization term, the first term 𝛾𝑇
is used to control the complexity of the tree, and the second

term
1

2
𝜆‖𝜔‖2 is used to control the weight fraction of the leaf

nodes.

III. DATA INTERPRETATION AND PREPROCESSING

The financial time series data collected in this paper are all
from Binance cryptocurrency historical market database. The
data set is Ethereum cryptocurrency daily stock price data
from May 2018 to May 2023.

The stock price data are the opening price, closing price,
highest price, lowest price and trading volume.

In the realm of time series analysis, it is common for most
problems to exhibit either external or internal features that can
aid in model performance. To address this, it is essential to
incorporate appropriate feature engineering techniques.

To begin, we can introduce fundamental features such as
lag values derived from the available numeric features, which
are widely employed in time series problems. However, it is
important to note that when predicting the stock price for a
given day, we cannot utilize the feature values from that same
day, as they will be unavailable during actual inference.
Consequently, we must rely on statistical measures such as the
mean and standard deviation of lagged values.

In this study, we will employ three distinct sets of lagged
values. The first set will consist of lagged values from the
previous day, providing insight into immediate trends. The
second set will encompass lagged values spanning a period of
seven days, serving as a proxy for weekly metrics. Lastly, the
third set will encompass lagged values spanning a period of
30 days, acting as a proxy for monthly metrics. By
incorporating these lagged values, we can capture relevant
temporal patterns and enhance the predictive capabilities of
our model.

 In the realm of boosting models, the inclusion of datetime
features, such as day of week, hour, day, and month, can
greatly enhance their performance. By incorporating these
temporal components into the model, valuable information
regarding the time aspect of the data is provided. This
inclusion improves the model's understanding of temporal
patterns. Consequently, the inclusion of datetime features is a
highly beneficial technique for enhancing the performance of
boosting models.

We need to pre-process the data and check the outliers and
missing values. For the missing values, the method we use is
to take the average of two adjacent numbers, then normalize
the data, and divide the training set and test set.

The predicted stock in the model is closing prices.

177

Fig. 1. Test statistic, critical values and p-value of ADF test

Fig. 2. Test statistic, critical values and p-value of ADF test

IV. EDUCATIONAL DATA ANALYSIS

The Augmented Dickey-Fuller (ADF) test is a widely used
statistical test in econometrics to determine the stationarity of
time series data. Stationarity is a fundamental assumption in
time series models, as it guarantees the constancy of statistical
properties over time.

A stationary time series maintains constant statistical
properties, including mean, variance, and autocovariance,
over time. On the other hand, a non-stationary time series
exhibits changing trends, seasonality, or other patterns.

The ADF test [2] is an extension of the Dickey-Fuller test,
initially developed by economists David Dickey and Wayne
Fuller in 1979. The augmented version incorporates higher-
order autoregressive processes, enabling more accurate testing
of stationarity.

The ADF test is based on the null hypothesis that a unit
root exists in the time series, indicating non-stationarity. The
alternative hypothesis suggests that the time series is
stationary. By rejecting the null hypothesis, we conclude that
the time series is indeed stationary.

When conducting an ADF test, we obtain a test statistic
and compare it to critical values at various significance levels.
The test statistic is negative, and its magnitude determines the
strength of evidence against the null hypothesis.

A more negative test statistic (i.e., farther from zero)
provides stronger evidence to reject the null hypothesis of
non-stationarity. Conversely, a less negative test statistic (i.e.,
closer to zero) fails to reject the null hypothesis.

Critical values are predetermined thresholds that assist in
determining the significance level at which we can reject the
null hypothesis. These values depend on the sample size,
desired level of significance, and the type of ADF test (e.g.,
with or without a trend).

Another approach to interpreting ADF test results is by
examining the p-value associated with the test statistic. The p-
value represents the probability of obtaining a test statistic as
extreme as the observed one, assuming the null hypothesis is

true. If the p-value is lower than the chosen significance level
(e.g., 0.05), we reject the null hypothesis.

TABLE I. THE AUGMENTED DICKEY-FULLER TEST STATISTICS

ANALYSIS: TEST STATISTIC, CRITICAL VALUES AND P-VALUE OF ADF TEST

ADF test statistics

Test statistic -1.53896

p-value 0.51416

1% Critical value -3.43535

5% Critical value -2.86375

10% Critical value -2.56795

The p-value is clearly greater than 0.05 significance level,
we cannot reject the null hypothesis and conclude that the time
series we are working with has a unit root.

Gradient boosting algorithms have emerged as powerful
tools for time series forecasting. By effectively capturing
temporal dependencies, handling non-stationarity, and
incorporating seasonality and trends, these algorithms can
provide accurate predictions in various domains. However, it
is important to carefully engineer features, tune
hyperparameters, and apply regularization techniques to
optimize the model's performance. As time series forecasting
continues to gain importance, leveraging the capabilities of
gradient boosting algorithms will undoubtedly play a
significant role in driving accurate and reliable predictions.

V. HYPERPARAMETER TUNING

Hyperparameters play a crucial role in the performance of
machine learning models, including the XGBoost regressor.
These parameters, which are set before the learning process
begins, control the behavior of the model. Finding the optimal
combination of hyperparameters is a challenging task that can
significantly impact the model's performance. We introduce
RandomizedSearchCV [3], a technique that automates the
search for the best hyperparameter combination in XGBoost
regressor models.

Hyperparameters are parameters that are not learned from
the data but are set manually. They determine the behavior of
the model and can greatly influence its performance. Tuning
these hyperparameters is essential to achieve optimal results.
RandomizedSearchCV is a method that simplifies the process
of searching for the best hyperparameter combination by
randomly sampling from a predefined search space.

To begin the hyperparameter tuning process, it is
necessary to define the hyperparameters and their
corresponding possible values. For instance, the learning rate,
maximum depth, number of estimators, and other relevant
hyperparameters can be specified.

RandomizedSearchCV requires a parameter grid, which is
a dictionary where each key represents a hyperparameter
name, and the corresponding value is a list of possible values
for that hyperparameter. This parameter grid represents the
search space from which the hyperparameters will be
sampled.

Next, an instance of the RandomizedSearchCV class
needs to be created. This instance should include the XGBoost
regressor model, the parameter grid, and other optional
parameters such as the number of iterations and cross-
validation settings.

178

Once the RandomizedSearchCV object is set up, the fit
method can be called, passing the training data.
RandomizedSearchCV will then perform a specified number
of iterations, randomly sampling hyperparameter
combinations from the search space. For each combination,
the XGBoost regressor model is trained and evaluated using
cross-validation.

After the search is complete, RandomizedSearchCV
provides the best hyperparameter combination found during
the search. This selection is based on a specified scoring
metric, such as mean squared error or R-squared. The best
hyperparameter combination can be accessed using the
best_params_ attribute of the RandomizedSearchCV object.

Finally, the XGBoost regressor model can be retrained
using the best hyperparameters obtained from
RandomizedSearchCV on the entire training dataset. This step
ensures that the final model incorporates the optimized
hyperparameters.

By utilizing RandomizedSearchCV, a wide range of
hyperparameter combinations can be efficiently explored.
This technique enables the identification of the
hyperparameter values that yield the best performance for the
XGBoost regressor model. RandomizedSearchCV simplifies
the task of finding the optimal hyperparameter combination.

TABLE II. PARAMETER OPTIMIZATION RESULT: TUNED

HYPERPARAMETERS

Best params:

objective': 'reg:squarederror',
'colsample_bylevel': 0.6, 'colsample_bytree': 1,

'gamma': 0.6, 'learning_rate': 0.2,'max_depth':

7, 'min_child_weight': 7, 'n_estimators': 1577,
'subsample': 0.7

Best validation score -1.48428

To facilitate a comprehensive comparison of the three
gradient boosting models, including CatBoost and LightGBM
models, it is imperative that each model undergoes the same
set of actions as previously described. Specifically, this entails
the implementation of hyperparameter optimization using
RandomizedSearchCV. By ensuring consistency in the
experimental setup, we can effectively evaluate and contrast
the performance of these models.

VI. RESULTS

The test set prediction results obtained by all models are
demonstrated below. The predicted stock in the model is
closing prices.

VII. CONCLUSION

To evaluate the accuracy of the models in forecasting the
target variable, RMSE and MAE are calculated for each

model's predictions. RMSE measures the average difference
between the predicted and actual values, giving more weight
to larger errors. MAE measures the average absolute
difference between the predicted and actual values, treating
all errors equally. The RMSE and MAE values obtained from
each model are compared. Lower values indicate better
performance, as they represent smaller errors between the
predicted and actual values. Both metrics should be
considered to gain a comprehensive understanding of the
models' performance.

Our study investigates the factors that contribute to
LightGBM's potential for achieving lower error metrics
compared to XGBoost and Catoost. The analysis focuses on
four key aspects: handling of categorical features, training
speed, handling of imbalanced data, and regularization
techniques. The findings highlight the advantages of
LightGBM in these areas and emphasize the importance of
selecting the most suitable model for specific time series
forecasting tasks.

LightGBM incorporates a specialized technique called
Light Gradient-Based One-Hot Encoding to efficiently
handle categorical features. This approach converts
categorical features into numerical values, reducing memory
usage and expediting the training process. In contrast,
XGBoost and CatBoost employ different methods for
handling categorical features, which may not be as efficient
for time series forecasting tasks.

Fig. 4. CatBoost prediction

Fig. 5. LightGBM prediction: Error metrics

TABLE III. RMSE AND MAE SUMMARY OF DIFFERENT

GRADIENT BOOSTING MODELS

 RMSE MAE

XGBoost 163.7086 128.3656

LightGBM 133.7627 103.9441

CatBoost 206.9712 157.1234

Fig. 3. XGBoost prediction

179

LightGBM is renowned for its fast training speed,
attributed to its leaf-wise tree growth strategy. By prioritizing
the leaves that are likely to yield the greatest loss reduction,
LightGBM adopts a depth-first tree growth approach. This
strategy proves advantageous for time series forecasting,
particularly when dealing with large datasets. Conversely,
XGBoost and CatBoost adopt a level-wise tree growth
strategy, which can be comparatively slower.

Time series forecasting often involves imbalanced data,
where certain periods exhibit more frequent or significant
events. LightGBM addresses this issue through the
is_unbalance parameter, which automatically adjusts the
weights of positive and negative samples during training.
This feature proves beneficial when working with
imbalanced time series datasets. While XGBoost and
CatBoost also offer techniques to handle imbalanced data,
LightGBM's built-in functionality simplifies the process.

LightGBM provides a range of regularization techniques,
including L1 and L2 regularization, to mitigate overfitting
and enhance generalization. These techniques prove
particularly valuable in time series forecasting, where noise
or outliers can lead to overfitting. While XGBoost and
CatBoost also offer regularization options, LightGBM's
implementation may be more effective in certain scenarios.

It is important to note that the performance of these
models can vary depending on the specific dataset and
problem at hand. Therefore, it is recommended to conduct
experiments with different models and hyperparameters to
identify the optimal solution for a given time series
forecasting problem.

REFERENCES

[1] Xu J., He J., Gu J., Wu H., Wang L., Zhu Y., Wang Z., He X. and Zhou

Z, “Financial Time series prediction based on XGBoost and generative
adversarial networks,” International Journal of Circuits, Systems and
Signal Processing, 2022, pp. 637–645.

[2] R. Harris, “Testing for unit roots using the augmented Dickey-Fuller
test,” Economics Letters, 1992, pp. 381–386.

[3] C. V. Priscilla and D. P. Prabha, “Influence of Optimizing XGBoost to
handle Class Imbalance in Credit Card Fraud Detection,” 2020 Third
International Conference on Smart Systems and Inventive Technology,
2020.

[4] Y. Wang and G. Ye, “Forecasting method of stock market volatility in
time series data based on mixed model of ARIMA and XGBoost,”
China Communications, 2020, pp. 205–221.

[5] T. Cinto, A. L. S. Gradvohl, G.P. Coelho and A.E.A. Da Silva, “Solar
flare forecasting using time series and extreme gradient boosting
ensembles,” Solar Physics, 2020.

