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Abstract—This The article presents an example of using a 

service-oriented platform based on data cube technology. This 

platform has been implemented in two versions, one in Belarus 

and the other in Armenia, serving as a gateway for estimating 

land surface temperature (LST) using Landsat 8 and VIIRS 

data. The gateway provides access to four LST search 

algorithms and two interpolation methods for generating LST 

time series. The study identified the most accurate LST 

estimates, and it confirmed that VIIRS LST products exhibit 

reasonable levels of accuracy. 
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I. INTRODUCTION 

Accurate Land Surface Temperature (LST) data is pivotal 
for weather forecasts and climate change assessments, serving 
as a critical indicator of the Earth's surface heat and exerting a 
profound influence on various atmospheric and environmental 
processes. Precision in LST measurements is of utmost 
importance when monitoring climate shifts, identifying 
drought occurrences, assessing crop health, and understanding 
land surface evaporation patterns. 

The retrieval of LST data from thermal infrared remote 
sensing sources, whether on a global, regional, or city-scale, 
offers unparalleled advantages, particularly in the 
investigation of urban heat island effects. While weather 
stations and remote sensing (RS) techniques traditionally 
serve as primary means for collecting LST data on a large 
scale [1, 2], their application underscores the broader 
significance of these measurements in comprehending and 
addressing environmental changes. 

In contrast to weather stations, RS methods provide a more 
extensive observation range, capable of acquiring spatial LST 
data from satellite sources that complement in situ 
measurements and facilitate the reanalysis of near-surface air 
temperatures [3-5]. Methods employing Thermal Infrared 
(TIR) and passive microwave data are utilized for retrieving 

LST data from satellite sources [6-7]. Passive microwave data 
offer continuous LST monitoring with minimal susceptibility 
to weather conditions but tend to rely on retrieval models that 
exhibit lower accuracy compared to those established using 
TIR data. As a result, TIR data remains the preferred method 
for constructing precise LST models. 

This article introduces SciGaP (Scientific Gateway 
Platform), which streamlines the process of scientific 
problem-solving [8]. The platform simplifies optimal 
algorithm selection, precise interpolation, and result 
visualization, as demonstrated through a comparison of VIIRS 
and Landsat LST products [9]. This study aims to enhance the 
coherence of Landsat 8 and VIIRS data for generating 
essential LST time series, particularly crucial for site-specific 
analyses. 

To address altitudinal variances, we compare the 
effectiveness of Nearest Neighbor (NN) and Inversely 
Weighted Distance (IDW) interpolation methods. We align 
satellite-derived LST observations with ground-based 
meteorological stations to reveal temporal patterns and 
anomalies. Utilizing split-window algorithms, VIIRS data 
contributes to enriching environmental records. The 
evaluation of VIIRS LST data and Landsat-8 TIRS LST 
products is conducted in conjunction with ground-based 
meteorological stations in Armenia during the period from 
May to October 2022. 

II. METHODOLOGY AND DATA PROPCESSING 

The proposed gateway incorporates VIIRS and Landsat 
8/TIRS thermal bands to assess Land Surface Temperature 
(LST). This involves several key phases, including pre-
processing, band selection, and radiance-to-temperature 
conversion. 

During the pre-processing phase, we applied a 60-minute 
time window centered around the station observation time, 
with a ±30-minute buffer around the 3-hour observation point. 
Data falling outside of this defined window were excluded, 
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resulting in a reduction of the dataset for both nighttime and 
daytime periods. Notably, the dataset experienced a 
significant reduction of over 40% during daytime hours. As a 
result, the study focused exclusively on nighttime data, as it 
provided a more comprehensive representation for analysis, 
while the daytime data were considered less suitable for our 
purposes. 

A. Landsat 8/TIRS processing 

Several split-window algorithms have been proposed in 
various studies, consistently showing superior performance 
compared to the single-channel algorithm [10-11]. However, 
a significant challenge arises from the TIRS instrument's 
notable absolute radiometric calibration error, leading to 
considerable stray light issues [12]. This issue is particularly 
prominent in Band 11, making it challenging to employ 
conventional split-window algorithms for Land Surface 
Temperature (LST) retrieval from the two TIR bands of 
Landsat 8 TIRS. 

As a result, for our investigations, we have chosen to adopt 
the single-channel algorithm based on the recommendation 
provided by the United States Geological Survey [13]. This 
decision is driven by the technical limitations associated with 
the TIRS instrument and its radiometric calibration, which 
make the single-channel approach a more suitable option for 
our specific needs. The algorithm is described step by step in 
[14] 

B. VIIRS processing 

VIIRS offers global moderate-reso lution data twice daily, 
ensuring continuous coverage. Its advantages encompass 
reduced data delivery times, improved image quality owing to 
enhanced scan geometry, and the provision of novel and 
enhanced forecasting products. Operating with a full field of 
view spanning 112.56° in the cross-track direction, VIIRS 
functions as a scanning radiometer, providing complete global 
daily coverage around the clock. It operates at a nominal 
equatorial altitude of 829 km, with a swath width of 
approximately 3060 km. 

For Land Surface Temperature (LST) retrieval, data from 
VIIRS channels M15 and M16 are employed in conjunction 
with a split-window technique. This approach rectifies for 
atmospheric absorption and explicitly incorporates surface 
emissivity in the retrieval process. Nevertheless, the precision 
of satellite-based LST measurements is constrained by factors 
such as atmospheric correction, surface emission 
characteristics, and sensor performance. These elements can 
impact the efficacy of LST algorithms under diverse retrieval 
conditions, including region, season, day/night, or dry/moist 
conditions [25-26]. 

LST estimation utilizes brightness temperatures recorded 
at 11µm (band M15) and 12µm (band M16) channels. The 
split-window technique mitigates atmospheric effects by 
leveraging two or more adjacent Thermal Infrared (TIR) 
channels, typically within the 10-12.5µm range. This 
approach is straightforward, computationally efficient, and 
does not necessitate precise atmospheric profiles. 

Various algorithms, including those developed by 
Jiminez-Munoz [15], Kerr [16], McMillin [17], and Price [18], 
have been implemented for LST retrieval. 

III. SCIENTIFIC GATEWAY PLATFORM 

The advanced scientific gateway platform is constructed 
on top of a virtual scalable environment [19] and incorporates 
pre-existing services [20,21,14], seamlessly integrating data 
extraction and analytics modules, as depicted in Figure 5. This 
novel gateway, based on Jupyter [22], offers several benefits 
for data visualization, enabling the seamless integration of 
code and visual elements within a comprehensive notebook. 
This integration significantly streamlines the analysis 
workflow. 

Furthermore, the platform boasts a highly adaptable and 
robust framework explicitly tailored for the assessment of 
land-surface temperatures. This feat is accomplished by 
harnessing the capabilities of the esteemed Landsat 8 and 
VIIRS data sets, renowned for their accuracy and reliability in 
the field of remote sensing. 

To optimize the user experience and cater to diverse 
visualization needs [23], the platform employs Matplotlib and 
Seaborn as its primary visualization libraries. These powerful 
tools enable the creation and customization of various 
visualization types and styles, ensuring that researchers and 
analysts can effectively convey their findings and insights 
through clear, visually appealing data representations. 

The data extraction module leverages two potent Python 
libraries, Rasterio and Pyproj, to efficiently extract Landsat 8 
and VIIRS data. Rasterio is a versatile library capable of 
reading, writing, and manipulating raster data, making it an 
invaluable asset for handling satellite imagery. On the other 
hand, Pyproj facilitates precise coordinate transformations 
between various reference systems, ensuring accurate 
alignment and processing of spatial data. 

By incorporating NN and IDW interpolation methods 
through Python programming within the Jupyter Notebook 
environment, the module's capabilities have been significantly 
extended. This integration harmoniously combines the 
strengths of Rasterio and Pyproj with the adaptability of NN 
and IDW interpolation methods, offering a robust solution for 
managing Landsat 8 and VIIRS data. The use of the Jupyter 
Notebook environment enables users to interact seamlessly 
with the module, simplifying data manipulation, analysis, and 
visualization tasks. 

The platform employs two distinct algorithms for 
estimating LST from Landsat 8 and VIIRS satellite data. Each 
algorithm is meticulously tailored to its respective data source, 
ensuring the accuracy and reliability of LST results. For 
Landsat 8 data, the split-window algorithm is employed to 
correct atmospheric effects and yield precise LST estimations. 

Fig. 1. Topography of the scientific gateway  
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Meanwhile, for VIIRS data, the Jimenez-Munoz, Kerr, 
McMillin, and Price algorithms are selected. These algorithms 
are implemented using the Python programming language 
within the Jupyter Notebook development environment. This 
choice guarantees efficient processing and visualization of 
LST outcomes and seamless integration with popular Python 
libraries like NumPy, pandas, and Rasterio, which facilitate 
data manipulation and analysis. The Jupyter Notebook 
environment also fosters a user-friendly and interactive 
workflow, enabling researchers to test, modify, and share their 
work efficiently. 

IV. METHODS AND ALGORITHMS APPLIED FOR LST 

VALIDATION 

Two methods have been carefully chosen to estimate 
satellite-derived Land Surface Temperature (LST) values at 
meteorological stations: Nearest Neighbor (NN), which 
assigns values from the nearest pixel, and the Inverse Distance 
Weighting (IDW) method [24]. 

The Nearest Neighbor method, a deterministic spatial 
interpolation approach, operates under the assumption of 
constant variable values within a defined neighborhood 
around each sample point. In contrast, the IDW method 
assigns weights to neighboring sample points based on their 
distance from the station's location. The objective of 
evaluating these methods using meteorological station 
observations was to enhance data availability in a cost-
effective manner. 

The evaluation employed various statistical metrics, 
including BIAS, the coefficient of correlation (R), the 
coefficient of determination (R²), and Root Mean Square Error 
(RMSE). BIAS quantifies the average error magnitude 
between predicted and actual values, revealing any systematic 
overestimation or underestimation tendencies. R assesses the 
linear relationship between predicted and actual values, while 
RMSE calculates the square root of the average squared 
differences between the two value sets, providing an overall 
measure of error. R² elucidates the extent to which 
independent variables can explain variance in the dependent 
variable within a regression model. Collectively, these metrics 
establish a quantitative framework for assessing the accuracy 
of the spatial interpolation results. 

The performance of different algorithms has been 
evaluated using VIIRS and Landsat data in three different 
terrain types: valley areas dominated by irrigated meadow and 
mountain-brown semi-desert soil, foothill areas, and mountain 
areas characterized by mid-mountain steppe soils and 
mountain meadow. According to estimates, the Price, 
Jiminez-Munoz, and McMillin algorithms provided the best 
results at nighttime in the valley, foothill, and mountain areas. 
At the same time, the Kerr algorithm showed very poor results 
and, according to our research, cannot be used in our region to 
estimate surface air temperature. The Landsat LST data also 
showed good agreement with the measured temperatures, with 
an RMSE of 3.0 0C and an R-value of 0.55.   

    Although the results obtained for the daytime were not 
satisfactory, it can be concluded from the results that the four 
algorithms Price, Jimenez-Muñoz, and McMillin, can be 
successfully used to evaluate the LST study regardless of the 
region (plain, foothills, mountains) at night. 

V. DISCUSSION AND CONCLUSING 

The article introduces a scientific gateway that conducted 
temperature-based validation by directly comparing ground-
based Land Surface Temperature (LST) measurements with 
satellite-derived LST values. It thoroughly examined and 
analyzed the statistical differences between these two 
variables. The article underscores the capabilities of Landsat-
8 TIRS and VIIRS data in producing high-temporal-
frequency, medium-spatial-resolution LST maps, showcasing 
their potential for various applications. 

Future research endeavors will focus on amalgamating 
VIIRS and Landsat-8 data to create denser time series, 
expected to yield superior results compared to this study. In 
conclusion, this study contributes to the expanding body of 
research exploring the potential of remote sensing data in 
comprehending temperature fluctuations and their 
implications across various applications, including urban heat 
island analysis, environmental monitoring, and agriculture. 
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