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Abstract—A system for visualizing and forecasting floods on 

lowland rivers is presented, combining a geometric approach to 

calculate a flood zone and a complex of four neural networks to 

predict water levels. The modular architecture of the system 

allows independent implementation and interchangeability of 

elements both at the subsystem level and at the level of 

processing individual input variables involved in system 

analysis. 
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I. INTRODUCTION 

A set of rivers located within a river basin generally is a 
complex hierarchy of watercourses. The flow of water in each 
of the watercourses is characterized by its own water 
discharge (the volume of water passing through the cross 
section of the riverbed per unit of time). The high water level 
h is important for assessing the flooding of an area and is 
uniquely determined by the water flow in the watercourse. 
The terrain relief R of the river floodplain is another factor, 
in addition to the water flow rate, that determines the contour 
of the flood zone: 

 z=f(h, R) (1) 

In general, the river flow not only experiences the influence 
of the relief, but also participates in its formation [1]. 

Obviously, a change in water flow in the feeder of any 
river channel (so-called higher-order streams) directly affects 
the change in water flow in a given channel. In turn, the 
change in the value of water flow Δq in the watercourse under 
consideration is influenced (in addition to the previous values 
of flow q) also by a number of climatic factors: precipitation 
c, air temperature t, the amount of previously accumulated 
snow reserves s: 

 Δq=f(q, c, t, s) (2) 

Three different scenarios can be distinguished, in which 
precipitation affects water flow in very different ways. When 
the air temperature is positive, precipitation directly affects 
water flow by flowing into the river bed. At negative 
temperatures they accumulate in the form of snow cover, 
which then affects the spring flood. In this case, the 
contribution of precipitation to water consumption occurs 
with losses due to evaporation and infiltration into the soil. In 
the case of water contained in the snow cover, the magnitude 
of these losses is significantly influenced by the temperature 
regime. In the presence of a large volume of precipitation 
with a subsequent transition of air temperature to negative 
values, the soil saturated with water freezes and significantly 

loses its ability to absorb further; as a result, water infiltration 
is significantly reduced. 

 

Fig. 1. A set of rivers in the river basin as a complex system 

Therefore, when considering a set of rivers within a river 
basin as a complex system (see Figure 1), flood forecasting 
tasks must take into account the temporal dynamics of 
climate impacts over the previous period, and the system 
memory effect in this case extends to time intervals that can 
reach, in depending on the time of year, several months. 

II. FLOOD VISUALIZATION AND PREDICTION 

Figure 2 presents the general structure of the presented 
software system, which includes the following independent 
parts.  

● Flood zone calculation subsystem uses information 
about water discharge in control points of the 
watercourses (i.e. the water level in specific river 
cross-sections) and digital elevation map (DEM) of 
the terrain to calculate contour of the flood zone [1]. 

● The prediction subsystem estimates future values of 
the water discharge based on the current values and 
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hydrometeorological data (input variables on Fig. 1) 
[2]. 

● Data visualization and interpretation sybsystem 
combines online geographical maps and calculated 
contour of the flood zone to show flooded regions. 
Based on this information the subsystem allows to 
estimate socio-economic riscs caused by flood on an 
anthropogenically transformed area [1, 3]. 

 

Fig. 2. A set of rivers in the river basin as a complex system 

The prediction of water discharge is done iteratively, 
obtaining a predicted qi+1 value based on a (supposedly 
measured) qi one,  then obtaining qi+2 value based on qi+1, and 
so on. In the same way, flood zone zi calculation done for the 
current situation is followed by zi+1 , zi+2, ... predicted flood 
zones. This iterative approach allows to show flood dynamics 
with a series of static images of the flooded zones. 

To figure out socio-economic riscs, the magnitude of 
socio-economic damage per unit area is estimated depending 
on the depth of water and weight coefficients, determined by 
the expert estimates method from preliminary physical, 
technical and economic analysis of the effect of the water 
depth on the territory. Also, the duration of flooding of the 
territory is taken into account in the same way as in the case 
of the depth of water on the territory, based on weighting 
factors. Thus, a quantitative risk assessment is represented as 
a product of combinations of the probabilities of flooding 
events and their duration by an assessment of the socio-
economic significance of the territory fragment [1, 3]. 

III. FLOOD ZONE CALCULATION SUBSYSTEM 

There are two main approaches to calculating the flood 
area: geometric and hydrodynamic ones. An integral part of 
both is the terrain model – a digital elevation map, or DEM. 
The hydraulic approach involves solving a system of 
differential equations of hydrodynamics in partial 
derivatives. Its advantages include physical validity and 
calculation of the distribution of the velocities of water 
masses over the area of the flood zone. Its disadvantages are 
the critical dependence of the calculations adequacy on the 
quality of determining the hydraulic characteristics of the 
relief, as well as significant increase in computational 
complexity at the increase in the resolution of the modeling 
zone area.  

Hydrodynamic approach can be either one-dimensional 
or two-dimensional. If it is sufficient to predict the time 
course of changes in the water level in the river channel, it is 
recommended to use a hydrodynamic model that solves the 
system of hydraulic equations in a one-dimensional 
approximation. The initial data for a one-dimensional 
hydrodynamic model is information about the terrain in the 
form of river cross-sections. When performing calculations, 
the heights of the water surface level along the section of the 
river bed are used as initial conditions. The result of the 
simulation is the change in time of the levels of the height of 
the rise of the surface of the water and the rates of flow of the 
volume of water along the section of the river channel.  

The geometric approach involves the creation of a three-
dimensional model of the water surface and its subsequent 
intersection with the DEM to determine the contour of the 
flood area boundary. The disadvantages of the geometric 
approach include the following three: 

● oversimplification of hydrological and 
hydrodynamic processes;  

● limiting the calculation of the area by the width of the 
cross sections of the river valley;  

● non-triviality of the choice and location of these 
sections (especially if it is necessary to calculate the 
flooding of the river system).  

The advantages of the geometric approach include its low 
demands to computing resources, satisfactory quality of 
forecasting the flooding area in the presence of a dense 
network of hydrological measuring stations, and 
inaccessibility of the hydrodynamic characteristics of the 
river valley. 

So, from the point of view of a compromise between 
accuracy (taking into account the natural relief and 
technogenic elements of the territory) and the use of 
computing resources, we can recommend geometric 
approach when flood zones are calculated for lowland rivers, 
and the whole flooding process shows relatively low 
dynamics [1, 4, 5]. 

IV. PREDICTION SUBSYSTEM 

A block diagram illustrating the presented method of 
neural network flood forecasting is presented in Fig. 3. Due 
to the fact that high and low floods have very different flow 
patterns, their prediction is carried out by separate artificial 
neural networks (ANN), trained on phenomena of the 
corresponding class. 

The forecast of water flow values up to the maximum 
during high floods is carried out by the forecasting ANN 1, 
which simultaneously processes the values of two time series 
using the sliding window method: the average daily water 
flows recorded at the hydrological observation post, and the 
total values of water accumulation in the snow cover in the 
studied catchment area. The calculation of the amount of 
water accumulation in the snow cover was carried out by a 
separate ANN based on the results of a daily assessment of 
the water content in the snow cover based on data from 
passive radio-thermal scanning of the catchment area from an 
artificial Earth satellite (AES), with optional filtering of the 
generated time series. 
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Fig. 3. The predicting subsystem diagram 

The existing approach to determining the water 
equivalent of snow cover from radio-thermal satellite 
measurements is based on the use of empirical regression 
dependencies, which often give significant discrepancies 
compared to direct measurements on snow-measuring routes 
[6, 7]. 

In order to increase the accuracy of calculating the water 
content in snow, the possibility of replacing regression 
dependencies with an ANN was studied using the example of 
a large climatically heterogeneous territory. To carry out the 
research, we used data obtained from the microwave 
scanning radiometer-polarimeter SSM/I for the period from 
1987 to 2014. The territory of the Russian Federation was 
chosen as the territory with the required size and climatic 
heterogeneity [6]. During the experiments, meteorological 
stations with differentiation of snow-measuring routes 
according to landscape characteristics were used to train the 
ANN: forest, field, and forest/field. The architecture of the 
ANN was a classic multilayer perceptron with one 
intermediate layer, and the hyperbolic tangent was used as the 
activation function of neurons in the hidden layer (fig. 4). 

 

Fig. 4. ANN architecture used to find out the amount of water in a snow 

cover 

As a result, ANNs, individually trained for each snow-
measuring route, for data with an expanded set of used radio 
frequency channels (19.35; 37.0; 85.5 GHz of both horizontal 
and vertical polarization) made it possible to achieve a 
maximum value of the Pearson correlation coefficient r equal 
to 0 .79, which allows us to conclude that it is preferable to 

use an ANN to estimate the value of the water equivalent of 
snow cover [6]. 

In case there is no access to the results of microwave 
scanning of the catchment surface (for example, due to a 
malfunction of satellite equipment), a forecasting ANN 2 is 
provided, which is capable of forecasting high floods using a 
single time series. A real example of the limited availability 
of such data is the technical malfunction of the 37 GHz 
vertical polarization channel of the SSMIS sensor, located on 
the DMSP F-17 satellite, registered starting from 
04/05/2016 [8]. 

Finally, minor floods occur when the soil significantly 
absorbs water released as a result of snow melting, and for 
them there is no significant dependence of the water flow in 
the area on the accumulated snow reserves. For phenomena 
of this class, a predictive ANN 3 is provided, which takes into 
account only a number of flow rates. 

A sign that allows us to determine that not a low, but a 
high flood is coming, is precipitation in the fall followed by 
winter freezing of the soil (i.e., a significant decrease in its 
infiltration capacity) and the presence of a sufficient amount 
of accumulated snow reserves. Due to the fact that the 
microwave radiation recorded by the orbital sensor complex 
is completely absorbed by the layer of water in the thickness 
or on the surface of the snow (appearing as a result of melting 
and/or precipitation), it is possible to reliably and timely 
detect the moment of the beginning of intensive melting of 
the snow cover. 

The determination of the expected flood category is based 
on the results of a preliminary accounting of the amount of 
autumn precipitation for the October-November period and 
the proportion of days with negative average daily air 
temperature for the December-January period. The necessary 
characteristic values of the considered quantities for a 
specific area are determined based on the analysis of 
meteorological time series accumulated over the 
corresponding time periods immediately preceding the 
recorded high floods. 

In the case when data on autumn precipitation and winter 
average daily temperatures indicate an upcoming minor 
flood, a third ANN trained on hydrological data characteristic 
of minor floods is used for forecasting. 

The architecture of predictive ANNs is similar to that 
shown in Fig. 4 (a classic multilayer perceptron with one 
hidden layer is used). The activation function in the hidden 
and output layers is the hyperbolic tangent. In accordance 
with the chosen activation function, the elements of the 
training and testing samples are scaled to the range [-1, 1]. 

The size of the sliding window for processing input data 
by predictive ANNs is determined empirically in order to 
minimize the error of the trained neural network on the test 
sample. The data sets used for training and testing the ANN 
must cover the period including the peak of the average daily 
water flow - the latest recorded during spring floods at the 
selected river section. 

The size of the forecast horizon must correspond to the 
lead time of the medium-term meteorological forecast (from 
7 to 10 days). To assess the nature of the water decline when 
the peak of the flood reaches, it is advisable to also forecast 
the descending branch of the hydrograph (no more than twice 
the forecast horizon). 
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V. COMPUTATIONAL EXPERIMENTS 

In the conducted computational experiments, the 

architectures of artificial neural networks with the following 

changes in the size of the hidden layer were studied: the 

number of neurons in the hidden layer corresponds to the 

number of neurons in the input layer, the size of the hidden 

layer is half the size of the input layer, and the size of the 

hidden layer is half the size of the input layer (see Table 1) . 

The consequences of changes in the results of the ANN 

operation when the size of the sliding window is reduced to 

23 days are also studied. 

TABLE I.  ANN ARCHITECTURE EXAMINED TO PREDICT WATER DISCHARGE 

IN THE RIVER CONTROL POINT 

 Layesrs 

structur

e  

Size of a 

training 

sample 

Size of 

a 

testing 

sample 

Number 

of 

training 

iteratio

ns  

MSE of 

the 

training 

MSE 

of the 

predict

ion 

ANN 1 

92-92-7 18300 

732 

1000 

0,0002 0,0007 

92-46-7 9150 0,0003 0,0012 

92-184-7 36478 0,0003 0,0011 

46-46-7 5040 1008 0,0002 0,0005 

ANN 2 

46-46-7 5002 

122 

0,0004 0,0011 

46-23-7 2440 0,0004 0,001 

46-92-7 9760 0,0004 0,0011 

23-23-7 1428 168 0,0003 0,001 

ANN 3 

46-46-7 5002 

1968 

0,0004 0,0008 

46-23-7 2460 0,0008 0,0011 

46-92-7 9758 0,0004 0,0012 

23-23-7 1470 2520 0,001 0,0009 

As a result of the studies, based on the lowest achieved 

values of the root mean square error of the forecast, the 

following architectures were considered optimal for ANN 1, 

ANN 2 and ANN 3: 46-46-7, 23-23-7 and 46-46-7, 

respectively. When assessing the quality of forecasting water 

flow at the control river section during spring floods, the 

developed ANNs obtained high values of Pearson correlation 

coefficients, namely: 0.99, 0.94 and 0.74. Figure 5 shows an 

example of the water discharge prediction (dashed line shows 

ANN-generated values, while bold line is a hydrographer 

obtained via real measuremets). 
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Fig. 5. Example of the water discharge prediction 


