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Abstract— The problem of predictability of the El Niño 

phenomenon on the basis of the well-known Gin-Timmerman 

model is considered. The presence of uncompensated instability 

in the model against the background of statistical data 

accumulated over the entire time of observations on the problem 

leads to the idea of the presence of some hidden damping 

mechanism, however small: critical events of sharp temperature 

increase do not occur too often and between them, on average, 

there are 7-12 years of rather stable behavior. Without fully 

revealing what this mechanism is, some small noise can be 

introduced into the system and an attempt is made to use this 

for research. An attempt is made to create a prediction 

algorithm by using the principle of large deviations in the 

vicinity of the equilibrium state in combination with global 

deterministic analysis. The paper applies such methods as the 

Runge-Kutta method of the 4th order, the search of the 

instanton by methods of the large deviation theory. The explicit 

analytical formulas for calculating the most probable 

trajectories of realization of the event of exceeding the high 

temperature difference between the eastern and western surface 

zones of the equatorial part of the Pacific Ocean are shown. The 

corresponding results for several levels are given. An example 

with identification of a linear model, which is used for local 

forecasting of a hazardous event, is shown. We have shown that 

even small changes in the initial conditions can lead to a 

sufficiently large difference in the time required for the 

temperature ejection phenomenon to occur. This complicates 

the process of El Niño research and reduces the window of time 

for forecasting. 
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I. INTRODUCTION 

Recently, there has been a renewed interest in the 
qualitative theory of nonlinear systems. In the framework of 
control theory, we are talking about the control of critical 
changes in the dynamics of the system under the action of 
small (or slow) changes in its parameters. Even appropriate 
terminology has appeared: for example, phenomena well 
known as bifurcations (in biology back in the 60's they were 
studied in connection with the Belousov-Zhabotinsky 
reactions) are now sometimes referred to as “B-tipping”, i.e., 
“tipping”, meaning exactly qualitative changes in behavior 
[1].  In contrast, in “N-tipping” (N - noise) the parameter is 
modeled by “white noise” [2]. If now we include one of the 
parameters in the state vector and focus on the study of 
“tipping” depending on the rate of its change (usually, 
however, rather small), we obtain “R-tipping” characterized 
by a linear change of the parameter in time [1, 3]. 
Generalization of this approach to arbitrary velocities, 
including sufficiently large ones, and the desire for asymptotic 
parameter estimates led to the consideration of systems with 
separation of motions, i.e., to the active use of singular 
perturbations. Since many practically interesting problems 
with “tipping” contain nonlinearities of the same type as in the 
Van der Polye equation, i.e., with alternation of stable and 

unstable manifolds, relaxation-type oscillations arise in such 
systems [4]. In this case, the parameter-limited solutions are a 
composition of curve sections (arcs) on stable regions and 
sections of rapid motion (“jump”) from one of the stable 
regions to another. More and more often, however, such an 
asymptotic analysis apparatus as in [4] turns out to be 
insufficient: unstable arcs appear in the compositions 
constituting phase curves when the parameter approaches 
zero. Because of their shape or because of their initial disbelief 
in the news, these limiting curves have come to be called 
“ducks”. Such modes are established and analyzed with the 
help of geometric singular perturbation theory (GSPT), the 
origin of which is the theorems of N. Fenichel [5, 6]. Such 
dynamics is characterized by oscillations with alternation of 
small and large oscillations with different velocities (“mixed-
mode oscillations with multiple time scales”) [7]; these 
oscillations are very sensitive to small variations of 
parameters and initial conditions, which is well illustrated by 
the results of studies of practical problems. One of such 
applications of GSPT theory, which has a long history, is the 
problem of modeling and forecasting the phenomenon known 
in meteorology as El-Nino-Southern Oscillation (ENSO) [7-
9]. In all these works, the ENSO study is based on a low-
dimensional model of the Gin-Timmerman phenomenon, 
while the later ones, [8, 9], just note the strong sensitivity of 
the results to variations in the initial data. Therefore, in [9] (as 
in [2]), for example, the stochastic Gin-Timmerman model is 
already used. This shows once again that the use of stochastic 
models instead of deterministic models in practical problems 
is quite justified in a number of cases. 

In this paper, an attempt is made to consider one of the 
“rollover” problems from a probabilistic point of view, basing 
the algorithm for estimating the probability of a critical event 
(CE) on the principle of large deviations [10]. The problem is 
formulated in the next section, and Section 3 presents the 
solution algorithm as applied to the ENSO problem, where a 
Gaussian perturbation of the deterministic Gin-Timmerman 
model is chosen as the object of study. Sections 4 and 5 are 
devoted to two levels of consideration of the model, local and 
global, within which the results of the numerical study are 
given. The conclusion contains the conclusions of the paper. 

II. THE PROBLEM STATEMENT 

A. Estimation of large deviations 

Let’s consider the system 

 �̇̃� = 𝑎(�̃�) + 𝜀𝜎�̇�,  �̃�(𝑡0) = 𝑥0 ∈ 𝑅𝑛, (1) 

where �̇� is 𝑘-vector of “white noise”, 𝑎  is a smooth  vector 
function, 𝜀 > 0 is a small parameter, 𝜎 is 𝑛 × 𝑘 matrix. We 
will assume that the corresponding unperturbed system 
(derived from (1) when 𝜀 = 0): 

 �̇� = 𝑎(𝑥), (2) 
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has a single solution for each 𝑥0 in a given (and small enough) 

neighborhood of its equilibrium state 𝜒,  𝑎(𝜒) = 0. 

Together with equation (1), consider a deterministic path 
system [11, 12]: 

 �̇� = 𝑓(𝜙, 𝑣) = 𝑎(𝜙) + 𝜎𝑣,  (3) 

where 𝑣  is the summable function for which the action 
functional [10] (AF) is defined on the solutions of (3): 

  𝑆𝑡0𝑡𝑓
(𝜙, 𝑣) =

1

2
∫ 𝑣𝑇𝑣𝑑𝑡

𝑡𝑓

𝑡0
,  (4) 

taking finite values for absolutely continuous functions on 
[𝑡0, 𝑡𝑓],  𝜙(𝑡0) = 𝑥0 ∈ 𝑅𝑛. 

Let us introduce the “tipping” condition: 

  𝑙(𝑡𝑓 , 𝜙(𝑡𝑓)) = 𝐶𝜙(𝑡𝑓) − 𝑦 = 0 (5) 

and a region D with regular boundary 𝜕𝐷 , containing all 
regular states of the system (3), i.e., the states "before the 
tipping"; in particular 𝑥0 ∈ 𝐷 and the set of paths leaving D as 
part of functions continuous on the segment [𝑡0, 𝑡𝑓], is : 

𝐹 = {𝜙 ∈ 𝐶𝑡0𝑡𝑓
(𝑅𝑛): 𝜙𝜏 ∈ 𝐷, 𝜏 ∈ [𝑡0, 𝑡𝑓), 𝜙𝑡𝑓

∈ 𝑅𝑛\𝐷}.  

Then, according to the principle of large deviations [10], 
the equality is true: 

  𝑙𝑖𝑚
𝜀→0

𝜀2 𝑙𝑛 𝑃 {�̃�𝑡 ∈ 𝑅𝑛\𝐷} = −𝑚𝑖𝑛
𝜙∈𝐹

𝑆𝑡0𝑡𝑓
(𝜙, 𝑣),  (6) 

where the functional 𝑆𝑡0𝑡𝑓
= 𝑆𝑡0𝑡𝑓

(𝜙, 𝑡)  is defined in 

accordance with (4) on the solutions of the controlled system 
(3).  The optimal control problem (3-5) will be referred to 
as the Lagrange-Pontryagin (LP) problem, and its solutions 
(extrema of the AF) as the CE profiles. 

Additional conditions in (3) 𝜙(𝑡𝑓) = 𝑥𝑓 are defined by the 

functional set and relations (5),(6), i.e. 𝐶𝑥𝑓 − 𝑦 = 0. 

In [12, 14, 15], examples of solution construction in 
problems for a linear or nearly linear object stabilized in the 
vicinity of the equilibrium point are given: in the linear case, 
the solution exists in the form of an (explicit) a-profile of the 
CE – a single curve leading from the attractor to the CE, to 
which the profiles originating from the points 𝑥0 = 𝑥(𝑡0) at 
𝑡0 → −∞. In contrast to this kind of problems, the dynamics 
of eco- and meteo-monitoring objects is characterized by the 
absence of Hurvicness of the zero linearized unperturbed 
equations (2). In the case of the Gin-Timmerman model, the 
object has a saddle-focus with a negative real root as an 
equilibrium point; then the LP problem is formed as a 
reduction problem for some damped system. Let us pass to 
concrete models. 

B. ENSO mathematical model: weakly perturbed and 

weakly stable system 

As a mathematical model of the ENSO phenomenon, i.e., 
as equation (2), we take system (3) from [7] with state vector 
𝜙 ∈ 𝑅3 . We take the state designation immediately with 
respect to the path system to preserve the component 
designations as in the original (dimensionless) Jin-
Timmerman model: 𝜙 = (𝑥,   𝑣,   𝑧)𝑇 = (𝜙1,   𝜙2,   𝜙3)𝑇 , 
with respect to which we specify that the coordinate is the 
normalized temperature difference between the eastern and 
western surface zones of the equatorial Pacific Ocean. 

The right-hand side in (2) is of the form: 

𝑎(𝜙) = (

𝜌𝛿(𝑥2 − 𝑎𝑥) + 𝑥[𝑥 + 𝑦 + 𝑐 − cth(𝑥 + 𝑧)]

−𝜌𝛿(𝑎𝑦 + 𝑥2)

𝛿(𝑘 − 𝑧 − 𝑥/2)

) 

We will also choose the values of the model parameters 
according to one of the variants in [7]: 

𝛿 = 0.2254, 𝜌 = 0.322, 𝑎 = 7.394,  
𝑘 = 0.403, 𝑐 = 2.395. 

(12) 

These values correspond to the equilibrium state of the 
unperturbed system 𝜙𝑒: 

 𝜙𝑒 = (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒)𝑇 = (−2.484,   −0.8345,    1.645)𝑇  (13) 

and the Jacobi matrix   

𝐴𝑒 = 𝐴(𝜙𝑒) =
𝑑𝑎(𝜙)

𝑑𝜙
|𝜙=𝜙𝑒

=

(

𝛼1𝑒 𝑥𝑒 −𝑐𝑥𝑒 ⋅ 𝑐1𝑒

−2𝜌𝛿𝑥𝑒 −𝜌𝛿 ⋅ 𝑎 0
−𝛿/2 0 −𝛿

), 

where 𝛼1𝑒 = 𝛼1𝑒(𝜙𝑒), 𝑐1𝑒 = 𝑐1𝑒(𝜙𝑒) have the form: 

𝑐1𝑒 = 1 − [𝑡ℎ(𝑥𝑒 + 𝑦𝑒)]2, 

𝛼1𝑒 = 𝜌𝛿(2𝑥𝑒 − 𝑎) + 2𝑥𝑒 + 𝑦𝑒 + 𝑐[1 − 𝑡ℎ(𝑥𝑒 + 𝑦𝑒) −
𝑥𝑒с1𝑒]. 

 
For the variant (12) the matrix has eigenvalues 

𝜆1,2 = 0.029 ± 𝑗1.008, 𝜆3 = −0.328, 

that is, the fixed point (13) is a saddle-focus [16] with an 
unstable oscillatory component and a stable aperiodic motion. 

The presence of uncompensated instability in the model 
does not seem quite convincing against the background of the 
statistical data accumulated over the entire time of 
observations on the problem: the conclusion is that CEs do not 
occur too often and between them, on average, there are 7-12 
years of rather stable behavior. This leads to the idea of the 
presence of some hidden damping mechanism, however 
small. In this connection, in addition to the small perturbation, 
we will consider in (1) 

 �̇̃� = 𝑎𝜀(�̃�) + 𝜀𝜎�̇�,  (14) 

where 

 𝑎𝜀(𝑥) = 𝑎(𝑥) + 𝜀𝜗𝑥,    𝜗 ∈ 𝑅3×3. 

Selecting in 𝜗 = {𝜗𝑖,𝑗} elements 

 𝜗1,1 = 0.045[1 − 𝑡ℎ(𝑥𝑒 + 𝑦𝑒) − 𝑥𝑒с1𝑒], 

   𝜗1,3 = −0.045𝑥𝑒𝑐1𝑒, (15) 

and others are zeros, we get when 𝜀 = 1 the system (14) have 
the same Jacobi matrix as above; and if in 𝐴𝑒  change 𝑐 =
2.395 to 𝑐 = 2.440. In this case 𝐴𝑒 acquires eigenvalues 

 𝜆1,2 = −0.0125 ± 𝑗1.048, 𝜆3 = −0.3224. 
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III. A-PROFILE AND SITUATIONAL FORECAST OF LOCAL 

PROCESSES 

Let us consider the system (14),(15) in the linear 
approximation and for it the solution of the system in the form 
of an a-profile [11], that is, at 𝑡0 → −∞. This corresponds to 
the path system 

 �̇� = Ae𝜑 + 𝜎𝜎𝑇𝑒𝐴𝑒
𝑇(𝑡𝑓−𝑡)𝐷−1𝑥𝑓, 𝐶𝜙(𝑡𝑓) = 𝑦,   

providing (asymptotically on 𝑡0 → −∞) the minimum value 
of AF (quasipotential [10]) 

  𝑉(0, 𝑥𝑓) =
1

2
𝑥𝑓

𝑇𝐷−1𝑥𝑓.   

Here 𝐷 > 0 is the only solution of the Lyapunov equation 
𝜎𝜎𝑇 = −𝐴𝑒𝐷 − 𝐷𝐴𝑒

𝑇  . According to Lagrange's principle, as 
part of the necessary conditions of extremum we have the 
minimization problem 𝑉(0, 𝑥𝑓) under constraint (5), resulting 

in 𝑥𝑓 = 𝐷𝐶𝑇(𝐶𝐷𝐶𝑇)−1𝑦. 

As a result, for the A-profile we obtain 

  �̃�(𝑡) = 𝐷𝑒𝐴𝑒
𝑇(𝑡𝑓−𝑡)𝐶𝑇(𝐶𝐷𝐶𝑇)−1𝑦.   (16) 

For the minimum value of FD on the segment [𝑡𝑆, 𝑡𝑓], 𝑡0 <
𝑡𝑆 < 𝑡𝑓, there is the equality [11] 

  �̃�𝑡𝑆𝑡𝑓
= 𝑉(0, 𝑥𝑓) − 𝑉(0, �̃�(𝑡𝑆)). (17) 

Remark 1. Taking into account the asymptotic relation 
(6), relations (16) and (17) present the following possibility of 
situational forecast: the a-profile forms in the phase space of 
an unperturbed system curve (16) leading from 𝜒 = 0  into 
point 𝑥𝑓 ∈ 𝜕𝐷, and as soon as once at some moment 𝑡𝑆  the 

trajectory of the perturbed system (1) (or (14),(15)) enters a 
small neighborhood of the a-profile curve, the difference of 
quasipotentials (17) gives an estimate of probability 

𝑃𝑡𝑆𝑡𝑓
= 𝑃{�̃�𝑡 ∈ 𝑅𝑛\𝐷, 𝑡𝑆 ≤ 𝑡 ≤ 𝑡𝑓} 

of exiting the region D. The details can be found in [17], and 
here we will give the results of computing (16),(17) and 
illustrate the possibility of predicting the ENSO phenomenon. 

Fig. 1a shows the a-profile (16) for model (14), (15), and 

Fig. 1b shows the AF (17) in the functions 𝑡𝑆 = 𝑡: �̃�(𝑡) =
�̃�𝑡𝑆𝑡𝑓|𝑡𝑆=𝑡, which by virtue of (6) gives an estimate (at 𝜀 = 1) 

𝑃𝑡𝑆𝑡𝑓
, ore precisely �̃�(𝑡) ≅ 𝑙𝑛 𝑃𝑓 (𝑡) = 𝑙𝑛 𝑃𝑡𝑡𝑓

. 

IV. A-PROFILE AND SITUATIONAL FORECAST OF LOCAL 

PROCESSES 

An alternative method is to reconstruct the model from 
data corresponding to stationary dynamics in a small 

neighborhood of the equilibrium state. For this purpose, a 
section without emissions of the El Niño phenomenon was 
selected and used to identify a linear model of the 3rd order 
state space. The purpose of the identification was to obtain a 
model of the behavioral dynamics followed by the creation of 
an A-profile of the critical situation associated with the 
exceeding of the temperature level threshold. 

As a result of parametric identification by error [19] with 
initialization of parameters by the method of subspaces [20] 
(functions pem and ssest of Matlab software package), a linear 
stationary model in the form of state space was obtained 

 {
𝑑𝑣

𝑑𝑡
= 𝐴𝑣 + 𝐵𝑢,

𝑧 = 𝐶𝑥,
  (18) 

where 𝐴 ∈ 𝑅3×3, 𝐵 ∈ 𝑅3×3, 𝐶 is an eye matrix. 

The obtained model describes the training data with 
sufficiently acceptable quality. It is important to note that the 
eigenvalues of the system A matrix are very close to the 
linearized Gin-Timmerman model and equal to 𝜆1,2 =
−0.0002 ±  0.8177𝑖 , 𝜆3 = −0.4473 . Thus, a model with 
dynamics similar to the pre-crisis model was obtained from 
the experimental data. This model was also used to construct 
the a-profile using the same scheme as above. 

Remark 2. Due to the monotonicity of AF in time, both 
the probability value 𝑃𝑓(𝑡) (or its logarithm) and the estimate 

of the remaining time 𝑡𝑓 − 𝑡  (Fig. 1b) can characterize the 

proximity of the current moment to the critical one. 

V. GLOBAL CONTROL 

In accordance with Remark 1, the neighborhood of the A-
profile in the considered monitoring problem is a critical set 
between small fluctuations in the vicinity of the equilibrium 
state and global movements in the direction of "overturning". 
Small fluctuations can be considered as fluctuations at which 
the changes of the normalized difference are limited by the 
interval 𝑀0 = {−3 < 𝑥 < 𝑦 < 0}, , and it is in this range that 
the role of random perturbations is essential; then 𝑀 = {−3 <
𝑥 < 0} corresponds to the global level and the approach of a 
strong El Niño event means 𝑥 ∈ 𝑀1 = 𝑀\𝑀0. This motion at 
𝑥(𝑡) ∈ 𝑀1  is determined by global instability and is 
independent of noise, so a nonlinear deterministic system (2) 
is used as a model. In turn, this means that, unlike the local LP 
problem, there is no probabilistic criterion for the proximity 
of a crisis at the global level. However, the criterion of time to 
crisis remains (see Remark 2) and this is illustrated in Fig. 2; 
the solutions of system (2) shown there differ only in the initial 
conditions. A small change in the initial conditions leads to a 
rather large difference in the time until the phenomenon is 
realized. 

This shows the strong sensitivity of the model in this 
regime and places increased demands on the constant updating 
of its parameter estimates. 

VI. CONCLUSION 

Systems with complex dynamics arising in the description 
of some processes of meteorology and ecology are considered. 
Their peculiarity is that, being unstable, they retain some 
properties close to stable behavior in the vicinity of the 
equilibrium state during sufficiently long time intervals. This 
allows us to use for their study various tools for analysis in the 
local zone and outside it, which is done in this paper with 

a)  

b)  

Fig. 1. A-profile and action functional as a function of time. 
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application to the problem of modeling and forecasting of the 
El Niño-Southern Oscillation process. An attempt is made to 
use the principle of large deviations in the neighborhood of the 
equilibrium state in combination with a global deterministic 
analysis based on the well-known Gin-Timmerman model. 
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a)  

b)  

Fig. 2. Solutions for nonlinear Gin-Timmerman system with (a) 𝑥0 =
(−2.1, −0.9, 1.45)𝑇 and (b) 𝑥0 = (−2.1, −0.9, 1.55)𝑇. 


