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Abstract—This paper elucidates an advanced, multi-

threshold-based human fall detection algorithm, employing 

acceleration sensor data to revolutionize fall risk management 

in high-risk populations such as the elderly and mobility-

impaired individuals. The data procured is meticulously 

analyzed and pre-processed, with various indicators employed 

in selecting appropriate parameters for data management. A 

key innovation of this study is the application of multiple 

thresholds, an enhancement leading to increased accuracy and 

reliability in distinguishing real falls from non-fall activities. 

Optimal thresholds were determined using a boxplot, 

facilitating a more precise fall detection system. Impressively, 

this approach achieved 95.45% fall detection accuracy, 

indicating its potential for practical integration. This research 

substantially contributes to the safety of individuals prone to 

falls. 

Keywords—fall detection algorithm, wearable sensor, 

threshold, triaxial accelerometer  

I. INTRODUCTION  

According to data from the International Database of the 
United States Census Bureau, the average proportion of the 
population aged 17 and older in developed countries such as 
the United States, Japan, and Germany was 2015%. It is 
projected to reach 2050% by 2030 due to declining birth rates 
and extended life expectancy. Population aging is a common 
phenomenon in many countries, particularly in developing 
and developed countries [1]. Falls among older adults pose a 
public health problem and a threat, which can impact quality 
of life and lead to severe disability affecting independent 
living [2,3]. Falls among individuals who are helpless at home 
are more severe than those who receive help within 12 hours 
[4]. There is a positive correlation between mortality rate and 
waiting time for rescue [4,5]. Non-fatal falls, in addition to 
causing disability or functional impairment, also have 
psychological and social impacts [6]. Fear of falling again 
leads to a loss of walking safety confidence in older adults, 
limiting activities of daily living (ADLs) [7]. 

To improve the quality of home healthcare services, two 
strategies have been proposed to address falls: falls prevention 
and falls detection [8]. Falls prevention strategies analyze risk 
factors and then provide targeted interventions to mitigate the 
occurrence of falls [9,10]. Environmental factors include 
obstacles, poor lighting, loose carpets, lack of safety 

equipment, and weather; the most common physiological 
causes of falls are balance impairment, history of falling, 
functional and cognitive impairments, medication use, 
orthostatic hypotension, muscle weakness, and visual 
impairment [7,11]. Existing methods for preventing falls 
include muscle strength and balance training, and creating a 
preventive checklist to minimize the risk of falling in 
hazardous environments. Unfortunately, falls cannot be 
completely prevented, making fall detection systems crucial 
for older adults. 

Fall detection systems are considered assistive systems 
designed to send alerts when a fall event occurs. There are two 
types of fall detection systems, including user manual and 
automatic systems. User manual fall detection systems aim to 
send emergency messages through user operations. However, 
such systems cannot provide assistance to fallers when they 
lose consciousness. Alternatively, automatic fall detection 
systems are recommended to detect falls without any user 
operation when fallers lose consciousness. Automatic fall 
detection systems can be categorized into two major types 
based on their sensor types: environment-based fall detection 
systems and wearable device-based fall detection systems 
[12,13]. Environment-based devices are installed in smart 
environments, which include cameras [14], infrared sensors, 
acoustic sensors, vibration sensors, and pressure sensors [15]. 
These environment-based devices perform well in controlled 
environments such as living rooms, bathrooms, or 
laboratories. However, these devices are not practical in 
uncontrolled environments. In contrast, wearable sensor-
based fall detection systems can detect falls anytime and 
anywhere when users wear the sensors. Lin et al. proposed a 
wearable mercury switch integrated with optical sensors to 
enhance fall detection rates of wearable devices [16]. Chen et 
al. used a three-axis accelerometer attached to the waist to 
detect falls, and fixed wireless networks to locate victims [17]. 
Bourke and Lyons used only a dual-axis gyroscope mounted 
on the trunk to detect falls [18]. In this work, the proposed fall 
detection algorithm aims to automatically detect severe falls, 
which are defined as "an event in which a person 
unintentionally comes to rest on the ground, floor, or lower 
level due to the following reasons: receiving a violent blow, 
losing consciousness, suddenly paralyzed, such as from stroke 
or seizure," considering that the patient cannot call for help on 
their own. 
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Fall detection algorithms play a crucial role in automatic 
fall detection systems. To provide reliable fall detection 
algorithms, two common technical issues and challenges 
should be addressed. First is variability as falls can occur 
suddenly and involuntarily in various forms and directions in 
daily life. Falls can happen during walking, standing, and 
frequently occur during transitional activities, such as getting 
out of bed or a chair . The second is ambiguity as certain 
characteristics of falls may resemble those of ADLs, which 
can confuse fall detection systems. For example, severe fall 
events can result in strong impact forces and energy similar to 
jumping or running in daily life. Additionally, the occurrence 
of minor falls has a smaller impact and energy compared to 
severe fall events, but minor falls may resemble lying down in 
daily life. These technical issues and challenges may hinder 
the adequacy of most fall detection algorithms for automatic 
fall detection systems when considering specific events such 
as impact, posture after a fall, and changes in speed during 
falls. Some prominent studies have proposed a multi-stage fall 
model that provides more granular observations of fall events 
for automatic fall detection systems, separating falls into 
different stages, such as four stages (pre-fall, impact, post-fall, 
and recovery stages), and five stages (pre-fall, fall, impact, 
rest, and recovery stages). For example, activities after a fall 
and before a fall can greatly influence the impact signal. 
Therefore, multiphase fall models have the potential to 
address the aforementioned technical challenges and provide 
more detailed information for fall detection systems. 

This study aims to accurately detect falls during activities 
of daily living using wearable sensors. We propose a new 
multi-threshold fall detection algorithm, which includes a 
method based on multiple thresholds to detect fall events. 
First, a set of thresholds is established to identify absolute falls 
and ADLs using a threshold-based method. The advantage of 
the threshold-based approach is its low computational 
complexity and ease of implementation. However, it is 
challenging to set appropriate thresholds due to the overlap in 
peak acceleration values generated by falls and ADLs. This 
issue is addressed by selecting multiple thresholds. 

The rest of this work is organized as follows: In Section 2, 
we briefly extend related work on fall detection, such as 
threshold-based fall detection algorithms. Section 3 
introduces the proposed multi-threshold fall detection 
algorithm, including a method based on threshold knowledge, 
and performance evaluation. Detailed results analysis and 
discussion are provided in Section 4. Finally, conclusions 
from the proposed multi-threshold fall detection algorithm are 
summarized in Section 5. 

II. RELATED WORK 

A. Fall Detection Algorithm 

Sensor placement is a key issue in developing fall 
detection algorithms based on wearable sensors. The most 
common wearing positions are the waist, wrist, trunk, thigh, 
back, ankle, foot, neck, and head. The waist and trunk are 
close to the body's center of mass, and the neck maintains 
balance of the head during ADLs, so sensors attached to the 
waist, trunk, or head can detect larger accelerations when the 
body lands. 

Fall detection algorithms for wearable sensor-based fall 
detection systems primarily fall into two categories: threshold-
based fall detection algorithms [12,24]. Some studies aim to 

assess the effectiveness of different wearing positions and 
detection algorithms, as shown in Table I. 

TABLE I.  THRESHOLD-BASED FALL DETECTION ALGORITHM 

LITERATURE 

Article 

(Year) 

Sensor

(s) 
Position 

Fall and 

ADL 

Types 

Results 

Chao et 

al. 
(2009) 

[35] 

Tri-

axial 
acceler

ometer 

Chest 
Waist 

Falls: 8 
ADLs: 13 

Sn 2: 98.2% (Chest) 

Sp 2: 92.4% (Chest) 
Sn 2: 98.2% (Waist) 

Sp 2: 89.9% (Waist) 

Huynh 
et al. 

(2015) 

[38] 

Tri-
axial 

acceler

ometer 

Chest 
Falls: 4 

ADLs: 6 

Sn 2: 96.55% 

Sp 2: 89.50% 

Palmeri

ni et al. 

(2015) 
[39] 

Tri-

axial 

acceler
ometer 

Lower 

back 

Falls: 5 

ADLs: -- 

Sn 2: 90% 

Sp 2: 89.7% 

 

B. Threshold-Based Fall Detection Algorithms 

Threshold-based fall detection methods distinguish 
between falls and ADLs when the peak is below or above a 
threshold. The advantage of threshold-based techniques is 
their low computational complexity, making them easy to 
implement in wearable sensors. However, threshold-based 
techniques are not suitable for detecting different types of 
falls, as thresholds are designed based on the body's 
experience during the fall process, and fixed thresholds cannot 
meet the various individual activity habits in daily life. 

Bourke et al. used a single threshold, either a fall threshold 
related to the peak impact force during the fall process, or a 
fall threshold related to the acceleration before ground contact, 
to detect falls through three accelerometer sensors installed on 
the trunk and thigh. The results showed that the fall threshold 
of 3.52 g (1g = 9.81 m/s^2) of the trunk had the highest 
specificity, indicating that the trunk is the best wearing 
position for the fall sensor. Kangas et al. used a single-
threshold-based fall detection algorithm, performed postural 
detection after a fall, and studied the location of the fall 
detection sensor by installing a tri-axial accelerometer at the 
waist, wrist, or head. The results showed that the head-
mounted accelerometer provided perfect results, and the 
authors believed that the head is a reasonable wearing position 
for fall detection. Kangas et al. designed a more complex 
algorithm than the single-threshold-based fall detection 
algorithm and used accelerometers installed at the waist, wrist, 
and head to evaluate different low-complexity fall detection 
algorithms. The results ultimately demonstrated that effective 
sensor positions are the waist and head. The sensor at the head 
level had the highest accuracy, but usability, and user 
acceptance, i.e., ergonomics, should be considered in more 
detail. In summary, an accelerometer worn at the waist may 
be the best choice for wearable sensor-based fall detection 
algorithms. 

III. MATERIALS AND METHODS 

To develop the algorithm of the proposed model, the 
Sisfall public dataset is used. The Sisfall dataset contains 15 
falls and 19 ADLs, performed by 38 subjects, with sensors 
fixed to the waist. Among other public domain datasets, Sisfall 
is distinctive because it has prefabricated falls and activities of 
daily living (ADL) for older adults, and ADL activities in the 
Sisfall dataset include walking, jogging, sitting, standing, and 
more. Whereas fall activities are 15 activities, including 
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falling forward, falling backward, falling while walking, etc. 
The dataset is in CSV file format. We summarize the 
important characteristics of the Sisfall dataset in Table II. 

TABLE II.  THE KEY CHARACTERISTICS OF THE SISFALL DATASET. 

Characteristics Sisfall dataset 

Sampling frequency 200Hz 

Number of subjects 38 subjects 

Number of ADLs 19 

Number of falls 15 

Subjects age 19-75 

Sensors used accelerometer 

Position of sensor Waist 

The main processes used in this study for fall and ADLs 
identification are detailed in the study. This approach is 
mainly applied to the Sisfall dataset. Figure 1 shows a 
flowchart of the steps performed in this study to predict falls 
and ADLs events to form accelerometer sensor data. 
Flowchart of the model presented in this study. 

A. Data analysis and preprocessing 

Since the accelerometer data results will seriously affect 
the recognition quality, the accelerometer data is selected for 
analysis and preprocessing during data processing. Fig. 1 
shows an example of the fall and 3-axis acceleration curves of 
the ADL recorded in the Sisfall dataset. Fig. 1(a) is the fall 
acceleration data, and Figure 1(b) is the daily life acceleration 
data. 

 In order to analyze and determine the cutoff frequency and 
the best filter selection criteria, I selected multiple metrics to 
determine, the selection of metrics is shown in Table III, and 
the final preprocessing stage consists of a fourth-order 
Butterworth low-pass filter with a cutoff frequency of 5 Hz. 

TABLE III.  THE KEY CHARACTERISTICS OF THE SISFALL DATASET. 

Metrics Mathematical formulas 

PCA CP𝑘 =
∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝑛
𝑖=1

 

SNR 10log⁡[
∑ 𝑎(𝑛)2
𝑚𝑗
𝑛=𝑚𝑗−𝑀+1

∑ [𝑎(𝑛) − 𝑎(𝑛)̂]2
𝑚𝑗
𝑛=𝑚𝑗−𝑀+1

] 

MSE 
1

𝑁
∑ (𝑦 − 𝑦̂)2

𝑁

𝑖=1
 

R-squared 1 −
∑(𝑦𝑖 − 𝑦𝑖̂)

2

∑(𝑦𝑖 − 𝑦𝑖̅)
2
 

Energy ratio 
∑ 𝑥[𝑖]2𝑘
𝑖=0

∑ 𝑥[𝑖]2𝑁−1
𝑖=0

 

MAPE 
1

𝑁
∑|

𝑦𝑖 − 𝑦𝑖̂
𝑦𝑖

|

𝑁

𝑖=1

 

MAE 
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

 

 After comparing and analyzing multiple criteria, this paper 
selects the energy ratio as the best indicator for selecting the 
cutoff frequency, as shown in the following fig. 2: 

 

Fig 2. The curve graph of the energy ratio of 'Fall' and 'ADL' 

 The curve graph of the energy ratio of 'Fall' and 'ADL' 
shows that the greatest data increase is within the 0-20Hz 
bandwidth. We have refined the bandwidth, as shown in 
Fig. 3. 

 

 

Fig 3. The curve graph of the energy ratio of 'Fall' and 'ADL' in different 
frequency bands 

 Fig. 3 shows a line chart of the energy ratio under the 
different frequency bands of ADL and Fall, with the abscissa 
representing the frequency band. Energy is displayed by 

 

(a) 

 

(b) 

Fig 1. Fall and ADL acceleration data 
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frequency band. As can be seen from the figure, the energy in 
the 0-5Hz frequency range accounts for almost the entire 
proportion. The visible range of human activity is in the 0-5Hz 
range, so we can set the cutoff frequency of the low-pass filter 
to 5Hz. 

 At the same time, the choice of our filter is also very 
important, in digital signal processing, especially 
accelerometer data processing there are multiple filters for us 
to choose from, such as Bessel, Chebyshev and Butterworth 
filters, and the order of the filter also affects the quality of the 
filtered data. After testing, we select MSE indicators, signal-
to-noise ratio and energy indicators to select the type and order 
of filters. 

 From Fig. 4 and Fig. 5, we can see that the Butterworth 
filter is always optimal under different metrics and different 
parameters. So we chose the Butterworth filter as the best filter 
for the data preprocessing stage. 

 

 

 

Fig 4. Comparison of different metrics of different filters under different 
orders and different bandwidths of Fall. 

 

 

 

Fig 5. Comparison of different metrics of different filters under different 
orders and different bandwidths of ADLs. 

B. Multi-threshold fall detection algorithm 

This article takes a suitable approach to finding thresholds, 
using multiple thresholds to accurately identify falls and ADL 
activity. The threshold determination method used in this 
paper is based on the threshold selection method of Boxplot. 

A boxplot, or box-and-whisker plot, is a standardized way 
of displaying the distribution of data based on a five-number 
summary: the minimum, the first quartile (Q1), the median 
(Q2), the third quartile (Q3), and the maximum. It provides a 
visual representation of the central tendency, variability, 
skewness, and outliers of the data set. One common method 
for threshold selection involves using the maximum value of 
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the boxplot. This is especially useful when trying to identify 
and handle outliers in your data set. 

The Interquartile Range (IQR), which measures statistical 
dispersion, is calculated as the difference between the upper 
quartile (Q3) and the lower quartile (Q1). An outlier is any 
value that lies more than one and a half times the IQR above 
the third quartile or below the first quartile. 

The mathematical formula to calculate the boxplot's 
maximum value is as follows: 

 Maximum = Q3 + 1.5 × IQR () 

The use of boxplot maximum values as a threshold 
selection method offers a robust and efficient strategy for 
managing large datasets. This technique allows for the 
identification and handling of outliers, ensuring the integrity 
of our data analysis. 

Table IV shows the feature extraction features used to test 
the proposed dataset. 

TABLE IV.  THE FEATURE EXTRACTION FEATURES USED TO TEST THE 

PROPOSED DATASET. 

Type Code Feature Mathematical formulas 

Amplitude  

C1 
Sum vector 

magnitude 
Norm𝑥𝑦𝑧 = √𝑎𝑥

2 + 𝑎𝑦
2 + 𝑎𝑧

2 

C2 

Sum vector 

magnitude 
on 

horizontal 

plane 

Normℎ𝑜𝑟𝑖 = √𝑎𝑦
2 + 𝑎𝑧

2 

C3 

The value 
of the 

maximum 
ADLs sum 

vector 

magnitude 

𝑇𝑓𝑎𝑙𝑙
𝑁𝑜𝑟𝑚𝑥𝑦𝑧

= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡Norm𝑥𝑦𝑧⁡𝑜𝑓⁡ 

𝐴𝐷𝐿𝑠 

C4 

The value 
of the 

minimum 

falls sum 
vector 

magnitude 

𝑇𝐴𝐷𝐿
𝑁𝑜𝑟𝑚𝑥𝑦𝑧

= 𝑚𝑖𝑛𝑚𝑢𝑚⁡Norm𝑥𝑦𝑧⁡𝑜𝑓⁡ 

Fall 

C5 

The value 
of the 

maximum 

ADLs sum 
vector 

magnitude 

on 
horizontal 

plane 

𝑇𝑓𝑎𝑙𝑙
𝑁𝑜𝑟𝑚ℎ𝑜𝑟𝑖

= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡Normℎ𝑜𝑟⁡𝑜𝑓⁡ 
ADLs 

C6 

The value 
of the 

minimum 

Fall sum 
vector 

magnitude 

on 
horizontal 

plane 

𝑇𝐴𝐷𝐿
𝑁𝑜𝑟𝑚ℎ𝑜𝑟𝑖

= 𝑚𝑖𝑛𝑚𝑢𝑚⁡Normℎ𝑜𝑟⁡𝑜𝑓⁡𝐹𝑎𝑙𝑙 
 

C7 

Angle 
between z-

axis and 

vertical 

𝐴𝑛𝑔𝑙𝑒𝑧 = 𝑎𝑡𝑎𝑛2(√𝑎𝑥
2 + 𝑎𝑧

2

− 𝑎𝑦) 

 As shown in Fig. 6 and Fig. 7, the thresholds are shown by 
Boxplot, we can easily get the threshold from the data of 
Boxplot. 

 

Fig 6. The threshold selection for 𝑁𝑜𝑟𝑚𝑥𝑦𝑧 

 

Fig 7. The threshold selection for 𝑁𝑜𝑟𝑚ℎ𝑜𝑟𝑖 

C. . Performance Evaluation Criteria  

The result of fall detection is either fall or ADL, which 
belongs to the binary classification. In the performance 
evaluation criteria of the binary classification test, a positive 
condition means that the subject falls, and a negative condition 
means that the subject performed an ADL. Based on the 
detected result, a fall alarm belongs to the positive test 
outcome, and an ADL is the result of a negative test outcome. 
There are four situations in fall detection, including true 
positive (TP), false positive (FP), true negative (TN), and false 
negative (FN) . The fall detection system should avoid getting 
FP and FN results. Sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accuracy 
are the common performance evaluation criteria for the binary 
classification test, and many studies adopted those criteria to 
show the results of fall detection  Sensitivity (or recall) is the 
capability of detecting falls, and the PPV (or precision) is the 
quality of detecting exact falls. Sensitivity, specificity, 
precision, and accuracy show more effective evaluation of 
human activity classification for the imbalanced dataset  The 
sensitivity, specificity, and precision are computed by 
Equations (2)–(3), respectively. Accuracy is the proportion of 
the truth test outcome in the total results, whose calculation 
follows Equation (4). The higher values of sensitivity, 
specificity, precision, and accuracy, the higher the 
performance the system provides. 

 Sensitivity ,
TP

TP FN
=

+
 () 

 Specificity ,
TN

FP TN
=

+
 () 

 Accuracy .
TP TN

TP FP TN FN

+
=

+ + +
 () 
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IV. RESULTS AND DISCUSSION 

In this paper, we used the SisFall dataset. It consisted of 
up to 34 activities (falls and ADL) performed by 38 
participants using a wearable device fixed to the waist. One of 
the participants was an elderly person who simulated ADL 
and falls. 

The SisFall dataset contains more actors, activities, and 
record types than any other publicly available dataset. It 
consisted of 2706 ADLs and 1798 falls, including data from 
15 healthy independent older adults. The advantage of the 
dataset is that it has a large age span and includes both young 
and old people.. 

A. Combinations of thresholds  

In the multi-threshold-based fall detection algorithm, 
threshold-based classification is utilized to identify absolute 
falls or ADLs and reduce computational complexity. We use 
Equal Error Rate to select the best threshold without features. 

 
Fig 8. Comparison between T_hori⁡ threshold and T_hori + Angle 
threshold 

 
Fig 9. Comparison between T_Norm⁡ threshold and T_Norm+ Angle 
threshold 

As can be seen from Figures 9 and 10, the effect of a single 

threshold is much lower than that of a combination of two 

thresholds 

B. Multiple threshold combinations 

We combine multiple thresholds to determine the success 
of predicting fall, as shown in Table V. We can see in the table 
that Norm_hori⁡ + Norm_xyz + angle effect is optimal, and 
the Sensitivity, specificity, and accuracy are 93.33%, 97.46%, 
and 95.45%, respectively. 

V. CONCLUSIONS 

The problems arising from fall accidents are an important 
issue for aging and aging societies. Timely resuscitation of 
victims not only reduces injuries from falls, but also increases 
the confidence of older adults to undergo ADL.  

 

TABLE V.  RECOGNITION SUCCESS RATE AT DIFFERENT THRESHOLDS. 

 Sensitivity specificity accuracy 

Norm_hori  88% 97.46% 92.85% 

Norm_xyz 53.33% 97.46% 75.97% 

Norm_hori
+ Norm_xyz 

48% 97.46% 73.37% 

Norm_hori
+ angle 

88% 97.46% 92.85% 

Norm_xyz
+ angle 

53.33% 97.46% 75.97% 

Normhori⁡ 
Norm_xyz
+ angle 

93.33% 97.46% 95.45% 

The data visualized is shown in Figure 10. 

 

Fig 10. Accuracy at different thresholds 

Rapid fall detection systems have the opportunity to 
provide real-time emergency alerts and services to improve 
safety and health-related quality of life. In this work, we 
propose a novel multi-threshold fall detection algorithm to 
detect fall events by using multiple threshold fall models. The 
overall performance of sensitivity, specificity and accuracy of 
the algorithm was 93.33%, 97.46% and 95.45%, respectively. 
Compared with single-threshold or double-threshold 
algorithms, algorithms using multiple thresholds have much 
better overall performance in terms of sensitivity, specificity, 
precision, and accuracy, respectively. In future work, we plan 
to improve the fall detection system for continuous monitoring 
and evaluate it in an out-of-laboratory environment. 

REFERENCES 

 
[1] Bloom, D.E.; Boersch-Supan, A.; McGee, P.; Seike, A. Population 

aging: Facts, challenges, and responses. Benefits Compens. Int. 2011, 
41, 22. 

[2] Stevens, J.A.; Corso, P.S.; Finkelstein, E.A.; Miller, T.R. The costs of 
fatal and non-fatal falls among older adults. Inj. Prev. 2006, 12, 290–
295. 

[3] Kannus, P.; Parkkari, J.; Koskinen, S.; Niemi, S.; Palvanen, M.; 
Jarvinen, M.; Vuori, I. Fall-induced injuries and deaths among older 
adults. JAMA 1999, 281, 1895–1899. 

[4] Gurley, R.J.; Lum, N.; Sande, M.; Lo, B.; Katz, M.H. Persons found in 
their homes helpless or dead. N. Engl. J. Med. 1996, 334, 1710–1716. 

[5] Wild, D.; Nayak, U.; Isaacs, B. How dangerous are falls in old people 
at home? Br. Med. J. (Clin. Res. Ed.) 1981, 282, 266–268. 

[6] Hartholt, K.A.; van Beeck, E.F.; Polinder, S.; van der Velde, N.; van 
Lieshout, E.M.; Panneman, M.J.; van der Cammen, T.J.; Patka, P. 
Societal consequences of falls in the older population: Injuries, 
healthcare costs, and long-term reduced quality of life. J. Trauma Acute 
Care Surg. 2011, 71, 748–753. 



175 

[7] Shumway-Cook, A.; Ciol, M.A.; Gruber, W.; Robinson, C. Incidence 
of and risk factors for falls following hip fracture in community-
dwelling older adults. Phys. Ther. 2005, 85, 648–655.. 

[8] Delahoz, Y.S.; Labrador, M.A. Survey on fall detection and fall 
prevention using wearable and external sensors. Sensors 2014, 14, 
19806–19842. 

[9] Tinetti, M.E. Preventing falls in elderly persons. N. Engl. J. Med. 2003, 
348, 42–49. 

[10] Prevention, O.F.; Panel, O.S. Guideline for the prevention of falls in 
older persons. J. Am. Geriatr. Soc. 2001, 49, 664–672. 

[11] Zecevic, A.A.; Salmoni, A.W.; Speechley, M.; Vandervoort, A.A. 
Defining a fall and reasons for falling: Comparisons among the views 
of seniors, health care providers, and the research literature. Gerontol. 
2006, 46, 367–376. 

[12] Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall 
detection systems. Biomed. Eng. Online 2013, 12, 1–66. 

[13] Zigel, Y.; Litvak, D.; Gannot, I. A method for automatic fall detection 
of elderly people using floor vibrations and sound—Proof of concept 

on human mimicking doll falls. IEEE Trans. Biomed. Eng. 2009, 56, 
2858–2867 

[14] Stone, E.E.; Skubic, M. Fall detection in homes of older adults using 
the microsoft kinect. IEEE J. Biomed. Health Inform. 2015, 19, 290–
301. 

[15] Daher, M.; Diab, A.; El Najjar, M.E.B.; Khalil, M.; Charpillet, F. 
Automatic fall detection system using sensing floors. Int. J. Comput. 
Inform. Sci. 2016, 12, 75 

[16] Lin, C.-S.; Hsu, H.C.; Lay, Y.-L.; Chiu, C.-C.; Chao, C.-S. Wearable 
device for real-time monitoring of human falls. Measurement 2007, 40, 
831–840.  

[17] Chen, J.; Kwong, K.; Chang, D.; Luk, J.; Bajcsy, R. Wearable sensors 
for reliable fall detection. In Proceedings of the 27th Annual 
International Conference of the Engineering in Medicine and Biology 
Society, Shanghai, China, 17–18 January 2005; pp. 3551–3554. 

[18] Bourke, A.K.; Lyons, G.M. A threshold-based fall-detection algorithm 
using a bi-axial gyroscope sensor. Med. Eng. Phys. 2008, 30, 84–90. 

 

 


