CC BY

http://dx.doi.org/10.35596/1729-7648-2024-22-1-30-38

Оригинальная статья Original paper

УДК 621.3.049.774.3

ПРЕЦИЗИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ ПО УРОВНЮ СРЕДНЕКВАДРАТИЧЕСКОГО ЗНАЧЕНИЯ

Я. Д. ГАЛКИН^{1,2}, О. В. ДВОРНИКОВ³, В. А. ЧЕХОВСКИЙ²

¹Белорусский государственный университет информатики и радиоэлектроники (г. Минск, Республика Беларусь) ²Институт ядерных проблем Белорусского государственного университета (г. Минск, Республика Беларусь) ³ОАО «Минский научно-исследовательский приборостроительный институт» (г. Минск, Республика Беларусь)

Поступила в редакцию 15.09.2023

© Белорусский государственный университет информатики и радиоэлектроники, 2024 Belarusian State University of Informatics and Radioelectronics, 2024

Аннотация. Рассмотрены разработанная модель резистивно-транзисторного термоэлектрического преобразователя, методика идентификации ее параметров и результаты схемотехнического моделирования с применением предложенной модели преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения. Приведена электрическая схема преобразователя переменного напряжения в постоянное, полученная при схемотехническом моделировании зависимости погрешности преобразования от уровня входного напряжения, на основании которой сформулированы основные требования для уменьшения погрешности. Применение ранее разработанных на базовом матричном кристалле MH2XA031 операционных усилителей типа OAmp11.2 с входными полевыми транзисторами, управляемыми p-n-переходом, позволяет реализовать прецизионный преобразователь переменного напряжения в постоянное по уровню среднеквадратического значения в виде микросборки, содержащей два кристалла термоэлектрического преобразователя ПН001, один кристалл MH2XA031 со схемой обработки сигналов и внешние фильтрующие конденсаторы. Схемотехническое моделирование показало, что такой преобразователь сохраняет работоспособность при поглощенной дозе гамма-излучения, равной 1 Мрад, и воздействии флюенса нейтронов $1 \cdot 10^{13}$ н/см².

Ключевые слова: термоэлектрический преобразователь, преобразователь переменного напряжения в постоянное, измерение среднеквадратического значения, измерение переменного напряжения, радиационно-стойкие операционные усилители.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Для цитирования. Галкин, Я. Д. Прецизионный преобразователь переменного напряжения в постоянное по уровню среднеквадратического значения / Я. Д. Галкин, О. В. Дворников, В. А. Чеховский // Доклады БГУИР. 2024. Т. 22, № 1. С. 30–38. http://dx.doi.org/10.35596/1729-7648-2024-22-1-30-38.

PRECISION RMS-TO-DC CONVERTER

YAROSLAV D. GALKIN^{1,2}, OLEG V. DVORNIKOV³, VLADIMIR A. TCHEKHOVSKI²

¹Belarusian State University of Informatics and Radioelectronics (Minsk, Republic of Belarus) ²Institute for Nuclear Problems of Belarusian State University (Minsk, Republic of Belarus) ³JSC "Minsk Research Instrument-Making Institute" (Minsk, Republic of Belarus)

Submitted 15.09.2023

Abstract. The developed model of a resistive-transistor thermoelectric converter, the technique for identifying its parameters and the results of circuit simulation using the proposed model of an RMS-DC converter are considered. The electrical circuit of the RMS-DC converter is given, the dependences of the conversion error on the input voltage level obtained by circuit modeling, on the basis of which the main requirements for reducing the error are formulated. The application of operational amplifiers of the OAmp11.2 type with input junction field-effect transistors, previously developed on the master slice array MH2XA031, makes it possible to implement a precision RMS-DC converter in the form of a microassembly containing two crystals of the IIH001 thermoelectric converter, one MH2XA031 crystal with a signal processing circuit and external filter capacitors. Circuit simulation showed that such a converter remains operational at an absorbed dose of gamma radiation equal to 1 Mrad and exposure to a neutron fluence of $1 \cdot 10^{13}$ n/cm².

Keywords: thermoelectrical converter, RMS-DC converter, RMS measurement, AC voltage measurement, radiation hardened operational amplifiers.

Conflict of interests. The authors declare no conflict of interests.

For citation. Galkin Y. D., Dvornikov O. V., Tchekhovski V. A. (2024) Precision RMS-to-DC Converter. *Doklady BGUIR*. 22 (1), 30–38. http://dx.doi.org/10.35596/1729-7648-2024-22-1-30-38 (in Russian).

Введение

В различной радиоэлектронной аппаратуре (вольтметрах, калибраторах, системах автоматической регулировки усиления, биомедицинских приборах, измерителях мощности сигналов, электронных блоках регулировки мощности и проч.) необходимо оценивать уровень переменного напряжения. Наиболее точно описывает сигнал сложной формы среднеквадратическое значение (СКЗ) напряжения, которое позволяет строго сравнивать действие сигналов различной формы: постоянных, периодических, коммутируемых периодических, случайных и др.

Для определения СКЗ напряжения применяются преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения (ПСКЗ), причем их способность обрабатывать сигналы сложной формы обычно описывается коэффициентом амплитуды, определяемым как отношение амплитуды сигнала к его СКЗ. Существующая потребность объясняет наличие широкой номенклатуры серийно выпускаемых ПСКЗ, основными из которых являются:

– ПСКЗ с экспоненциально-логарифмическим преобразованием (AD536, AD636, AD637, AD736, AD737, MX536, MX636). Такие устройства характеризуются высокой точностью преобразования в диапазоне частот до 200 кГц и при коэффициентах амплитуды до 5 [1];

– ПСКЗ на умножителях напряжения (AD834, AD8361, AD8362, AD8317) сохраняют работоспособность в полосе частот до 3 ГГц, однако не допускают наличия постоянной и низкочастотной составляющих в спектре сигнала, и их погрешность довольно велика [2];

– малую погрешность преобразования в широкой полосе частот обеспечивают ПСКЗ с термоэлектрическим преобразователем (ТЭП). Серийно выпускаются резистивно-диодный дифференциальный ТЭП LT1088, резистивно-транзисторные BB4131 и ПН001. Кроме того, доступен ПСКЗ с ТЭП LP34, и разработаны микромеханические ПСКЗ с ТЭП [3];

 – ПСКЗ (LT1966), применяющие ∆∑-преобразование. Погрешность таких ПСКЗ очень мала, но только для низкочастотного сигнала;

– высокочастотные измерители мощности (AD8313, AD8317, AD8318, AD8361, AD8362, LMH2120, LT5534), не обрабатывающие низкочастотные сигналы.

В последнее время для обработки сигналов некоторых типов датчиков возникла необходимость применения радиационно-стойких ПСКЗ, отсутствующих в свободной продаже. Целью исследований являлось изучение возможности создания прецизионного радиационно-стойкого ПСКЗ в виде микросборки, содержащей два кристалла ТЭП ПН001 [4], схему обработки сигналов на операционных усилителях (ОУ), реализованных на базовом матричном кристалле (БМК) МН2ХА031 [5], и внешние фильтрующие конденсаторы.

Модель дифференциального термоэлектрического преобразователя

Для схемотехнического моделирования и оптимизации ПСКЗ, прежде всего, необходима адекватная модель ТЭП в виде эквивалентной электрической схемы. Разработанная модель дифференциального ТЭП ПН001, содержащего два одинаковых кристалла, собранных в 16-выводном корпусе H04.16, показана на рис. 1, а схема включения для идентификации ее параметров – на рис. 2.

 Рис. 1. Эквивалентная электрическая схема для LTSpice дифференциального
 термоэлектрического преобразователя ПН001 с нумерацией выводов корпуса
 Fig. 1. LTSpice equivalent electrical circuit for differential thermoelectrical converter ПН001 with package pin numbering

Рис. 2. Схема включения дифференциального термоэлектрического преобразователя ПН001 при идентификации параметров его модели, $V_{CC} = 6 \text{ B}, V_{EE} = -6 \text{ B}$

Эквивалентная электрическая схема базируется на известной термоэлектрической модели [6], учитывает конструктивные особенности ТЭП ПН001 и возможности применяемого программного обеспечения LTSpice, а именно:

– в микросборке ПН001 каждый ТЭП содержит два нагревательных резистора с сопротивлением R_H = 400 Ом (R1, R2 в ТЭП № 1; R3, R4 в ТЭП № 2). Эти резисторы расположены на разном расстоянии от термочувствительных транзисторов Q1, Q2 и поэтому имеют разное подключение паразитной емкости C_{STR} . Конденсаторы C_{STR1} , C_{STR3} соединены с коллекторами Q1, Q2 и через C_{S1} , C_{S2} с полупроводниковой подложкой p-типа проводимости, на которую поступает самый отрицательный потенциал схемы с вывода 13 корпуса. Конденсаторы C_{STR2} , C_{STR4} соединены с полупроводниковой подложкой через C_{SUB2} , C_{SUB4} ;

– коэффициент преобразования рассеиваемой на нагревательных резисторах мощности в напряжение на прямосмещенных эмиттерных переходах *Q*1, *Q*2 описан резисторами *RT*1, *RT*2, которые совместно с конденсаторами *CT*1, *CT*2 характеризуют тепловую постоянную ТЭП;

– влияние мощности, рассеиваемой на нагревательных резисторах, на параметры Q1, Q2 учтено в функциональных источниках B1, B2, выходной ток которых равен абсолютной величине произведения тока, протекающего через нулевой источник напряжения V1 (V2), на напряжение между узлами 2 и 4 (5 и 7);

– не идентичность транзисторов Q1, Q2 по падению напряжения на прямосмещенных эмиттерных переходах ΔV_{BE} и разной величине статического коэффициента усиления тока базы в схеме с общим эмиттером $\Delta\beta$ описана источником напряжения V3, величина которого задается напряжением смещения нуля V_{OFF} дифференциального ТЭП.

Для идентификации параметров модели *RT*1, *RT*2, *CT*1, *CT*2 было выполнено измерение и моделирование в LTSpice схемы рис. 2 с последующей настройкой указанных параметров для получения удовлетворительного совпадения результатов моделирования и измерений (рис. 3).

Рис. 3. Результаты измерений и моделирования (пунктирная линия)
дифференциального термоэлектрического преобразователя ПН001: *a* – передаточная характеристика; *b* – переходная характеристика; 1, 2 – напряжение в узлах OU₂ и OU₁ на рис. 2
Fig. 3. Results of measurements and simulations (dash line) of differential thermoelectrical converter ПН001: *a* – transfer characteristic; *b* – transient response; 1, 2 – voltage at nodes OU₂ and OU₁ in Fig. 2

Результаты схемотехнического моделирования преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения

Электрическая схема ПСКЗ, показанная на рис. 4, ранее была экспериментально апробирована с применением ОУ ОР27 в первом и AD711 в остальных каскадах [4].

Рис. 4. Электрическая схема преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения Fig. 4. Electrical circuit of the RMS-DC converter

Поскольку основная цель проводимых работ заключается в создании радиационно-стойкого ПСКЗ в виде микросборки с минимальным количеством кристаллов, во втором и третьем каскадах рассматриваемой схемы применен ОУ OAmp11.2 с входными JFET, разработанный для элементов БМК MH2XA031, и в первом каскаде – ОУ OP27, макромодель которого содержится в библиотеке компонентов LTSpice. В соответствии с макромоделью коэффициент усиления напряжения ОУ OP27 составляет $2,4 \cdot 10^6$, напряжение смещения нуля и входные токи имеют нулевые значения. Все остальные активные элементы ПСКЗ на рис. 4 (транзисторы Q1-Q4, диоды D1-D3) реализованы на элементах БМК. Напряжение смещения нуля OP27 описывается отдельным источником напряжения V_{OFFU1} . Такое описание ПСКЗ позволяет, с одной стороны, учесть влияние параметров элементов БМК МН2ХА031 на характеристики ПСКЗ и, с другой, отдельно изучить воздействие напряжения смещения нуля ОУ в первом каскаде на работоспособность и погрешность ПСКЗ.

Моделирование осуществлялось в LTSpice при подаче в узел *In* прямоугольного импульса напряжения с различной амплитудой и длительностью 10 с, на выходе OUTRMS регистрировалась амплитуда установившегося импульса (рис. 5). При моделировании поочередно изменялся один из параметров: напряжение смещения нуля транзисторов ТЭП (V_{OFF}), сопротивление нагревательного резистора R_H , напряжение смещения нуля ОУ в первом каскаде (V_{OFFU1}). Основные результаты моделирования иллюстрируют рис. 6–8.

Рис. 5. Импульсы на входе и выходе преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения при моделировании в LTSpice,

 $R_H = 400 \text{ OM}, V_{OFF} = V_{OFFU1} = 0 \text{ B}$ Fig. 5. Transient response of the RMS-DC converter at LTSpice simulation,

 $R_{H} = 400 \text{ Ohm}, V_{OFF} = V_{OFFU1} = 0 \text{ V}$

Рис. 7. Погрешность преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения при $V_{OFF} = 0,1$ мВ, $V_{OFFU1} = 0$ В: $1 - R_H = 200$ Ом; $2 - R_H = 400$ Ом Fig. 7. Conversion error of the RMS-DC converter at $V_{OFF} = 0.1$ mV, $V_{OFFU1} = 0$ V: $1 - R_H = 200$ Ohm; $2 - R_H = 400$ Ohm

Рис. 6. Погрешность преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения при $R_H = 400$ Ом,

 $V_{OFFU1} = 0$ B: $1 - V_{OFF} = 0$ B; $2 - V_{OFF} = 0,1$ MB; $3 - V_{OFF} = 0,3$ MB; $4 - V_{OFF} = 0,5$ MB **Fig. 6.** Conversion error of the RMS-DC converter at $R_H = 400$ Ohm, $V_{OFFU1} = 0$ V: $1 - V_{OFF} = 0$ V; $2 - V_{OFF} = 0.1$ mV; $3 - V_{OFF} = 0.3$ mV; $4 - V_{OFF} = 0.5$ mV

Рис. 8. Погрешность преобразователя переменного напряжения в постоянное по уровню среднеквадратического значения при $R_H = 400$ Ом:

$$1 - V_{OFFU1} = 0,1 \text{ mB}; 2 - V_{OFF} = 0,1 \text{ mB}$$

Fig. 8. Conversion error of the RMS-DC
at $R_H = 400 \text{ Ohm};$
 $1 - V_{OFFU1} = 0.1 \text{ mV}; 2 - V_{OFF} = 0.1 \text{ mV}$

На основе результатов схемотехнического моделирования установлено:

– на работоспособность и погрешность ПСКЗ при малых входных сигналах значительно влияет напряжение смещения нуля транзисторов ТЭП. Так, при $V_{OFF} = 0$ В и отсутствии напряжения смещения нуля ОУ ОР27 ($V_{OFFU1} = 0$ В) погрешность ПСКЗ незначительна (менее 0,02 %) даже при V(in) = 10 мВ. При значениях V_{OFF} в диапазоне от 0,1 мВ до 0,5 мВ ПСКЗ не работоспособен при V(in) < 300 мВ (рис. 6);

– параллельное включение в каждом ТЭП ПН001 двух резисторов, т. е. уменьшение суммарного сопротивления нагревательного резистора R_H с 400 до 200 Ом, уменьшает погрешность ПСКЗ (рис. 7);

– влияние на погрешность ПСКЗ напряжения смещения нуля транзисторов ТЭП существенно больше, чем напряжения смещения нуля ОУ ОР27 (рис. 8), что обусловлено усилением, равным 35, дифференциального каскада, состоящего из транзисторов ТЭП и нагрузочных резисторов *R2–R5*.

Таким образом, для реализации прецизионного радиационно-стойкого ПСКЗ необходимо, главным образом, уменьшить напряжение смещения нуля транзисторов ТЭП, например, подачей напряжения в узлы b1 или b2 на рис. 4, а также минимизировать напряжение смещения нуля и разность входных токов ОУ в первом каскаде ПСКЗ.

Радиационно-стойкий операционный усилитель

При схемотехническом синтезе ОУ для микросборки радиационно-стойкого ПСКЗ необходимо учитывать особенности радиационного изменения вольт-амперных характеристик (ВАХ) элементов БМК MH2XA031, главными из которых являются [5, 7]:

– зависимости статического коэффициента усиления тока базы в схеме с общим эмиттером *n*–*p*–*n*- (β_N) и *p*–*n*–*p*-транзисторов (β_P) от эмиттерного тока I_E при воздействии флюенса нейтронов F_N и поглощенной дозы гамма-излучения (рис. 9, 10), показывающие значительное падение β_N и β_P при $F_N > 1 \cdot 10^{14}$ н/см², приводящее к потере работоспособности аналоговых ИС, и допустимое при проектировании многих схем уменьшение β_N и β_P при $D_G < 1$ Мрад;

Рис. 9. Зависимость статического коэффициента усиления тока базы в схеме с общим эмиттером $n-p-n-(\beta_N)$ (*a*) и $p-n-p-(\beta_P)$ (*b*) транзисторов от эмиттерного тока I_E : 1 – нормальные условия; $2 - D_G = 300$ крад; $3 - D_G = 1$ Мрад

Fig. 9. Static base current gain in a common-emitter circuit $n-p-n-(\beta_N)(a)$ and $p-n-p-(\beta_P)(b)$ transistors versus emitter current I_E : 1 – normal conditions; 2 – D_G = 300 krad; 3 – D_G = 1 Mrad

Рис. 10. Зависимость $\beta_N(a)$ и $\beta_P(b)$ от эмиттерного тока I_E : 1 – нормальные условия; $2 - F_N = 5 \cdot 10^{13} \text{ н/см}^2$; $3 - F_N = 1 \cdot 10^{14} \text{ н/см}^2$; $4 - F_N = 3 \cdot 10^{14} \text{ н/см}^2$ **Fig. 10.** $\beta_N(a)$ and $\beta_P(b)$ versus emitter current I_E : 1 – normal conditions; $2 - F_N = 5 \cdot 10^{13} \text{ n/cm}^2$; $3 - F_N = 1 \cdot 10^{14} \text{ n/cm}^2$; $4 - F_N = 3 \cdot 10^{14} \text{ n/cm}^2$

– крайне незначительное (менее 1 %) изменение максимального тока стока I_{Dmax} и напряжения отсечки V_{TH} JFET, расположенных на БМК, при $D_G < 1$ Мрад;

– радиационное ухудшение параметров JFET, наступающее при воздействии больших флюенсов нейтронов, но оно все равно намного меньше радиационного падения β_N и β_P . Так, $\Delta I_{Dmax} < 4\%$, $\Delta V_{TH} < 2\%$ при $F_N = 3 \cdot 10^{13}$ н/см² и $\Delta I_{Dmax} < 37\%$, $\Delta V_{TH} < 18\%$ при $F_N = 3 \cdot 10^{14}$ н/см².

С учетом указанных факторов в ПСКЗ использован разработанный путем схемотехнического моделирования для элементов БМК ОУ типа ОАmp11.2 [7], который в нормальных условиях при работе на 400-омную нагрузку обеспечивает $V_{OFFU1} = 0,08$ мВ, коэффициент усиления напряжения $K_V = 9 \cdot 10^4$, входной ток $I_{IN} = 33,1$ пА. Допустимый уровень радиационной стойкости ОAmp11.2 позволяет оценить схемотехническое моделирование с применением моделей транзисторов, обеспечивающих получение зависимостей на рис. 9, 10.

Так, для OAmp11.2 при поглощенной дозе $D_G = 1$ Мрад $V_{OFFU1} = 0,07$ мВ, $K_V = 8,8 \cdot 10^4$. Передаточные характеристики OAmp11.2 при различных флюенсах нейтронов показаны на рис. 11.

Рис. 11. Зависимость выходного напряжения V_{OU} от входного V_{IN} операционного усилителя OAmp11.2 при 400-омной нагрузке: 1 – нормальные условия; $2 - F_N = 1 \cdot 10^{13} \text{ н/см}^2$; $3 - F_N = 3 \cdot 10^{13} \text{ н/см}^2$ Fig. 11. Output voltage V_{OU} versus input V_{IN} of an OAmp11.2 operational amplifier at 400 Ohm load: 1 - normal conditions; $2 - F_N = 1 \cdot 10^{13} \text{ n/cm}^2$; $3 - F_N = 3 \cdot 10^{13} \text{ n/cm}^2$

По передаточным характеристикам можно определить, что $V_{OFFU1} = 0,06$ мВ, $K_V = 3,2 \cdot 10^4$ при $F_N = 1 \cdot 10^{13}$ н/см², а $V_{OFFU1} = -0,03$ мВ, $K_V = 7,4 \cdot 10^3$ при $F_N = 3 \cdot 10^{13}$ н/см². Таким образом, ПСКЗ с ОАтр11.2 будет работоспособен при $D_G = 1$ Мрад и $F_N = 1 \cdot 10^{13}$ н/см². Однако уменьшение выходного напряжения при $F_N = 1 \cdot 10^{13}$ н/см² не допускает параллельное соединение двух нагревательных резисторов ($R_H = 200$ Ом) для уменьшения погрешности преобразования ПСКЗ и, таким образом, рекомендуется модернизация ОАтр11.2 с целью увеличения его нагрузочной способности.

Заключение

1. На основе результатов схемотехнического моделирования преобразователя переменного напряжения в постоянное с применением созданной эквивалентной электрической схемы резистивно-транзисторного термоэлектрического преобразователя сформулированы рекомендации к компонентам преобразователя переменного напряжения в постоянное для уменьшения его погрешности.

2. Применение операционного усилителя с входным JFET типа OAmp11.2 позволяет реализовать прецизионный преобразователь переменного напряжения в постоянное в виде микросборки, содержащей два кристалла дифференциального термоэлектрического преобразователя ПH001, один базовый матричный кристалл MH2XA031 со схемой обработки сигналов и внешние фильтрующие конденсаторы.

3. Схемотехническое моделирование показало, что применение OAmp11.2 обеспечивает работоспособность преобразователя переменного напряжения в постоянное при поглощенной дозе гамма-излучения, равной 1 Мрад, и воздействии флюенса нейтронов $F_N = 1 \cdot 10^{13}$ н/см². 4. Дальнейшее увеличение радиационной стойкости и уменьшение погрешности преобразователя переменного напряжения в постоянное возможно при модернизации операционных усилителей OAmp11.2, направленной на увеличение его нагрузочной способности.

Список литературы

- Дворников, О. В. Микроэлектронные преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения. Ч. 1. Преобразователи с экспоненциально-логарифмической обратной связью / О. В. Дворников, В. А. Чеховский, Ю. Ф. Шульгевич // Компоненты и технологии. 2004. № 9. С. 62–69.
- Дворников, О. В. Микроэлектронные преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения. Ч. 2. Преобразователи на аналоговых умножителях напряжения / О. В. Дворников, В. А. Чеховский, Ю. Ф. Шульгевич // Компоненты и технологии. 2005. № 1. С. 34–39.
- Yoon, E. A Wideband Monolithic RMS-DC Converter Using Micromachined Diaphragm Structures / E. Yoon, K. D. Wise // IEEE Transactions on Electron Devices. 1994. Vol. 41, No 9. P. 1666–1668. DOI: 10.1109/16.310122.
- Дворников, О. В. Измерительный преобразователь для широкополосных вольтметров переменного тока / О. В. Дворников, В. А. Чеховский, Ю. Ф. Шульгевич // Новости науки и технологий. 2007. Т. 2, № 6. С. 13–17.
- 5. Проектирование аналоговых микросхем для экстремальных условий эксплуатации на основе базового матричного кристалла MH2XA031 / О. В. Дворников [и др.] // Проблемы разработки перспективных микро- и наноэлектронных систем. 2021. № 2. С. 37–46. DOI: 10.31114/2078-7707-2021-2-37-46.
- 6. Ott, W. E. A New Technique of Thermal RMS Measurement / W. E. Ott // IEEE Journal of Solid-State Circuits. 1974. Vol. 9, No 6. P. 374–380. DOI: 10.1109/JSSC.1974.1050530.
- Прокопенко, Н. Н. Проектирование низкотемпературных и радиационно-стойких аналоговых микросхем для обработки сигналов датчиков / Н. Н. Прокопенко, О. В. Дворников, А. В. Бугакова. М.: СО-ЛОН-Пресс, 2021.

References

- Dvornikov O. V., Tchekhovsky V. A., Shulgevich U. F. (2004) Microelectronic Converters of Alternating Voltage to Direct Voltage Based on the Level of the Root Mean Square Value. Part 1. Converters with Exponential-Logarithmic Feedback. *Components and Technologies*. (9), 62–69 (in Russian).
- Dvornikov O. V., Tchekhovsky V. A., Shulgevich U. F. (2005) Microelectronic Converters of Alternating Voltage to Direct Voltage Based on the Level of the Root Mean Square Value. Part 2. Converters Based on Analog Voltage Multipliers. *Components and Technologies*. (1), 34–39 (in Russian).
- 3. Yoon E., Wise K. D. (1994) A Wideband Monolithic RMS-DC Converter Using Micromachined Diaphragm Structures. *IEEE Transactions on Electron Devices*. 41 (9), 1666–1668. DOI: 10.1109/16.310122.
- 4. Dvornikov O. V., Tchekhovsky V. A., Shulgevich U. F (2007) Measuring Transducer for Wideband AC Voltmeters. *Science and Technology News*. 2 (6), 13–17 (in Russian).
- Dvornikov O. V., Tchekhovsky V. A., Prokopenko N. N., Galkin Y. D., Kunts A. V., Chumakov V. E. (2021) Analog Integrated Circuits Design for Extreme Environmental Conditions on the Base of Master Slice Array MH2XA031. *Problems of Advanced Micro- and Nanoelectronic Systems Development*. (2), 37–46. DOI: 10.31114/2078-7707-2021-2-37-46 (in Russian).
- 6. Ott W. E. (1974) A New Technique of Thermal RMS Measurement. *IEEE Journal of Solid-State Circuits*. 9 (6), 374–380. DOI: 10.1109/JSSC.1974.1050530.
- 7. Prokopenko N. N., Dvornikov O. V., Bugakova A. V. (2021) Design of Low-Temperature and Radiation-Resistant Analog Microcircuits for Processing Sensor Signals. Moscow, SOLON-Press Publ. (in Russian).

Вклад авторов

Галкин Я. Д. разработал модель термоэлектрического преобразователя и выполнил идентификацию ее параметров.

Дворников О. В. выполнил анализ современного состояния проблемы по теме работы, сформулировал цель и задачи исследований, разработал рекомендации по уменьшению погрешности преобразования.

Чеховский В. А. выполнил измерения и схемотехническое моделирование.

Authors' contribution

Galkin Y. D. has developed a model of a thermoelectric converter and performed the identification of its parameters.

Dvornikov O. V. has analyzed the current state of the problem, formulated the goal and objectives of the work, developed recommendations for reducing the conversion error.

Tchekhovski V. A. has performed measurements and IC simulation.

Сведения об авторах

Галкин Я. Д., асп., Белорусский государственный университет информатики и радиоэлектроники; мл. науч. сотр. лаб. электронных методов и средств эксперимента, Институт ядерных проблем Белорусского государственного университета

Дворников О. В., д-р техн. наук, доц., гл. науч. сотр., ОАО «Минский научно-исследовательский приборостроительный институт»

Чеховский В. А., зав. лаб. электронных методов и средств эксперимента, Институт ядерных проблем Белорусского государственного университета

Адрес для корреспонденции

220013, Республика Беларусь, г. Минск, ул. П. Бровки, 6 Белорусский государственный университет информатики и радиоэлектроники Тел.: +375 25 725-07-75 E-mail: galkinyaroslav@gmail.com Галкин Ярослав Денисович

Information about the authors

Galkin Y. D., Postgraduate, Belarusian State University of Informatics and Radioelectronics; Junior Researcher of Electronic Methods and Experiment Means Laboratory, Institute for Nuclear Problems of Belarusian State University

Dvornikov O. V., Dr. of Sci. (Tech.), Associate Professor, Principal Researcher, JSC "Minsk Research Instrument-Making Institute"

Tchekhovski V. A., Head of the Electronic Methods and Experiment Means Laboratory, Institute for Nuclear Problems of Belarusian State University

Address for correspondence

220013, Republic of Belarus, Minsk, P. Brovki St., 6 Belarusian State University of Informatics and Radioelectronics Tel.: +375 25 725-07-75 E-mail: galkinyaroslav@gmail.com Galkin Yaroslav Denisovich