
45 

Neural Networks Interpretation Improvement 

Aliaksandr Kroshchanka  

Brest State Technical University 

Brest, Belarus 

kroschenko@gmail.com 

Vladimir Golovko 

Brest State Technical University 

Brest, Belarus 

vladimir.golovko@gmail.com

Abstract— The paper is devoted to studying the issues of 

interpretability of neural network models. Particular attention 

is paid to the training of heavy models with a large number of 

parameters. A generalized approach for pretraining deep 

models is proposed, which allows achieving better performance 

in final accuracy and interpreting the model output and can be 

used when training on small datasets. The effectiveness of the 

proposed approach is demonstrated on examples of training 

deep neural network models using the MNIST dataset. The 

obtained results can be used to train fully connected type of 

layers and other types of layers after applying of flatting 

operation. 

Keywords— deep neural network, pretraining, Explainable 

AI, Restricted Boltzmann Machine. 

I. INTRODUCTION 

Neural network models are used in various areas of human 
life, often associated with critical infrastructure and 
healthcare. Under such conditions, the ability to explain the 
operation of the model determines the level of confidence in 
the results obtained by it. A model that can “tell” about what 
particular features of the input data were used to obtain the 
final results is easier to control for human experts, who, if 
necessary, can cross-check the results of the neural network 
model. 

On the other hand, modern neural network models have a 
large number of parameters that are adjusted during training. 
Unfortunately, the conventional training of such models on 
large datasets is in most cases inaccessible to most 
researchers, and the use of small datasets leads to the effect of 
overfitting the model and, as a result, to unsatisfactory results 
obtained during testing. 

A possible way to overcome this problem is to use 
pretraining. It is necessary to distinguish between pretraining 
as a stage of preparing a neural network model on one training 
dataset and pretraining as a process of training a model on a 
large dataset and its additional finetuning for solving other 
problems. In the first case, training can be carried out on small 
datasets and, in general, is not resource-intensive [1]. In the 
second case, it is necessary to use special hardware to 
complete the training within the specified time limits and 
dataset size. 

Combining the interpretability of the model with the 
ability to train it on a small dataset in reasonable time limits 
opens up opportunities for a wider application of neural 
networks in real-time applications in which fast decision 
making with the ability to easily explain the results is critical. 
These qualities make it possible to obtain easily interpretable 
large models in the presence of severe limitations of the 
hardware capabilities of the systems used to prepare such 
neural networks. 

On the other hand, interpretability opens door to using 
methods from different paradigm of AI (for example, 
semantic webs). New intelligent systems that will be 
developed in the next few years will most likely be developed 
using hybrid methods [2]. These systems will be more flexible 

and will get new possibilities and advantages from other 
approaches, which exist in artificial intelligence science.  

This article is organized as follows. Part II provides an 
overview of the main methods for interpreting neural 
networks. Part III discusses the pretraining of deep neural 
network models. Part IV describes the proposed approach. 
Part V describes the numerical experiments and the obtained 
results. The article ends with a conclusion. 

II. NEURAL NETWORKS INTERPRETATION 

The issue of interpretability in neural network models has 
been effectively addressed by Explainable AI (XAI) methods 
[3]. In XAI approaches like LIME [4] and SHAP [5], the 
analysis relies solely on the model's input and output. These 
model-agnostic methods can be applied to neural network 
models with varying architectures. 

The SHAP method aims to explain changes in model 
predictions resulting from alterations in input features. It 
quantifies the contribution of each feature to the model's 
prediction. Grounded in game theory, SHAP employs Shapley 
values as key metrics to assess the contribution of individual 
features to the overall model output. Features are considered 
players, where their presence indicates a specific value in the 
example x, while absence denotes an undefined value. 
Together, these features form a coalition of players. 

Let :f X Y →  represent the studied model, x X  

denote the selected test example for which the model's output 

is interpreted, 
NX R  represent the feature space, N be the 

number of players (features), and Y be the output space of the 
model. Assuming that some features in x are known while 

others remain undefined, we obtain a vector 
Sx  containing the 

known feature values. 

The Shapley values for each player are calculated using 
the following formula: 

1,2,...,

| | !(| | | | 1)!
( ) ( , )

!S N

S N S
i i S

N




− −
=   

Here, S represents the coalition of players, and ( , )i S is 

the efficiency gained by adding player i to the coalition S: 

( , ) ( ) ( )i S S i S  =  −  

The efficiency ( , )i S  is determined by a characteristic 

function   that assigns a numerical value to each coalition of 

players. In the SHAP method, the characteristic function for 
the feature set S of example x is given by the conditional 
expectation: 

( ) [ ( ) | ]SS E f x x =  

In practice, simplifications are often applied when 
calculating the characteristic function, such as the Kernel 



46 

SHAP modification. This method builds upon LIME and 
Shapley values. 

III. PRETRAINING OF DEEP NEURAL NETWORKS 

Pretraining can be conditionally classified into two main 
types – type I – this is pretraining on small datasets using a 
special algorithm that allows you to get a good initialization 
of the parameters of the neural network model and type II – 
pretraining on a large dataset using the backpropagation 
method. 

Until the mid-2000s, training large neural networks was 
not seen as a promising area of research. The reasons for this 
were, on the one hand, the lack of special approaches to 
training “heavy” models and the impossibility of obtaining 
good results due to the problems of vanishing and exploding 
gradients, and on the other hand, insufficient technical 
capabilities for training such models. Thanks to the results 
obtained by G. Hinton and Y. Bengio, significant progress has 
been made in training “heavy” models. Also, since the 
beginning of the 2010s, there has been significant progress in 
the use of technical means for working with such models, in 
particular, video cards and video accelerators have become 
more widely used, which made it possible to speed up the 
training process, reducing it by several times compared to 
training only using a processor. 

At the moment, the simplest strategy for applying neural 
network models has become the use of libraries of pretrained 
networks. This approach simplifies the preparation of models 
for custom data, saving time for additional finetuning on user 
datasets. However, it also has a number of disadvantages. One 
of them is the need to use a given network configuration 
without the possibility of its significant change. In other 
words, when retraining a model, researchers add or remove 
the last layers of the model, but they cannot globally influence 
its structure anymore (for example, by increasing or 
decreasing the number of neural network units in layers), 
because this will negatively affect the distribution of model 
parameter values and lead to poor initialization. 

These problems are solved by using pretraining of type I, 
which is based on the use of special methods of layer-wise 
unsupervised learning. One of such methods is an approach 
for which a network consisting of fully connected layers is 
considered as a sequence of independent restricted Boltzmann 
machines that are trained sequentially in accordance with a 
“greedy” algorithm. 

IV. PROPOSED APPROACH 

The approach we propose is based on the use of type I 
pretraining and generalizes the method of layer-wise greedy 
training proposed by G. Hinton earlier [1]. 

The layers of deep neural network can be trained in a 
sequential mode, if each layer is represented as the Restricted 
Boltzmann machine – RBM [6-9] (Fig. 1). RBM is a 
stochastic neural network with two layers – visible (X) and 
hidden (Y). The input data for each RBM model is the data 
obtained by passing through the previous pretrained layers.  

For the first RBM, the initial data is taken from the training 
dataset, for the second, the data obtained after applying the 
first pretrained layer, and so on. After performing layer-wise 
pretraining, the model is finetuned by training it by the method 
of error back propagation.  

 

 

Fig. 1. Architecture of Restricted Boltzmann Machine 

Classical rules for RBM training can be obtained by 
maximization of logarithm of likelihood function: 

( ) ( , )
y

P x P x y=   

where P(x, y) is the probability for neurons state (x, y). 

P(x, y) can be obtained as 
( , )

( , )
E x ye

P x y
Z

−

= , where 

( , )

,

E x y

x y

Z e−=   – probability normalization parameter, E – the 

energy of the system in given state (x, y). 

Classical rules to train such network have next view (batch 
learning case): 

1

( 1) ( ) ( (0) (0) (1) (1))
L

l l l l

ij ij i j i j

l

w t w t x y x y
L



=

 
+ = + − 

 


1

( 1) ( ) ( (0) (1))
L

l l

i i i i

l

T t T t x x
L



=

 
+ = + − 

 
  

1

( 1) ( ) ( (0) (1))
L

l l

j j j j

l

T t T t y y
L



=

 
+ = + − 

 
  

In contrast to the classical method, we used a simple 
function representing the mean square error (MSE) of data 
reconstruction on the visible and hidden layers of the restricted 
Boltzmann machine [10-11]: 

( ) ( )
2 2

1 1 1 1

1
(1) (1)

2

L m L n
l l

s j i

l j l i

E y x
L = = = =

=  +    

where (1) (1) (0)l l l

j j jy y y = − , (1) (1) (0)l l l

i i ix x x = − , (0)l

ix , 

(0)l

jy  – original data on visible and hidden layers of RBM, 

(1)l

ix , (1)l

jy  – reconstructed data on visible and hidden layers 

of RBM, L – size of the training dataset. 

Based on the idea of minimizing this function, the 
following rules can be obtained (batch learning case): 



47 

1

(1) (1) '( (1))
( 1) ( )

(1) (0) '( (1))

L
l l l

j i j

lij ij

l l l

i j i

y x F S
w t w t

L
x y F S


=

 
 + 

+ = −  
  


 

1

( 1) ( ) (1) '( (1))
L

l l

i i i i

l

T t T t x F S
L



=

+ = −   

1

( 1) ( ) (1) '( (1))
L

l l

j j j j

l

T t T t y F S
L



=

+ = −   

where ( 1)ijw t +  - next step weights, ( 1)iT t + - next step 

thresholds for visible layer, ( 1)jT t + - next step thresholds for 

hidden layer,  - learning rate, (1)l

iS - weighted sums for 

visible layer, (1)l

jS  - weighted sums for hidden layer, 'F - 

derivative of activation function. 

It can also theoretically be proven that maximizing the 
likelihood function of data distribution P(x) is equivalent to 
minimizing the MSE function in the context of using RBM 
with linear neural units. These results make it possible to 
expand the classical approach by adding alternative learning 
rules for non-linear types of neural units, which can also be 
successfully applied to rectified linear units. 

V. EXPERIMENTS AND MAIN RESULTS 

The experiments were carried out on well-known 
computer vision dataset MNIST [12]. 

The main parameters for all datasets are shown in Table I. 
We varied parameters such as mini-batch size and learning 
rate, fixing the best resulting results, shown in Table II. The 
following image (Fig. 2 and 3) shows the evolution of the error 
when training with three different methods - 1. Classical 
pretraining + BP finetuning (PBP), 2. Proposed pretraining + 
BP finetuning (PPBP), 3. No pretraining, only using the 
backpropagation method (BP) and 4. Hybrid training, based 
on the use of a combination of classical and proposed methods 
+ BP finetuning (HPBP). For such combination we used 7 
epochs of classic method and 3 epochs of proposed method. 

TABLE I.  MAIN PARAMETERS 

Pretraining phase Training phase 

Parameter Value Parameter Value 

Epochs count 10 Epochs count 90 

Momentum 0.5…0.9 Momentum 0.9 

Learning rate 0.01…0.04 Learning rate 0.1 

Batch size 128 Batch size 128 

TABLE II.  RESULTS OF MODELS TRAINING 

Network 

architecture 

Activation 

functions 

Accuracy on test dataset, % 
PBP PPBP BP HPBP 

784-800-800-

10 

ReLU 98.62 98.81 98.64 98.51 

784-1600-
1600-800-

800-10 

ReLU 98.58 98.7 98.56 98.68 

784-800-800-

10 

Sigmoid 98.47 98.36 98.18 98.43 

784-1600-

1600-800-
800-10 

Sigmoid 98.54 98.47 98.0 98.46 

 

Fig. 2. Evolution of MSE for tested methods (ReLU activation function, 

architecture 784-800-800-10, first 10 epochs) 

 

Fig. 3. Evolution of MSE for tested methods (sigmoid activation function, 

architecture 784-800-800-10, first 30 epochs) 

From the obtained data, the following conclusions can be 
drawn: 

1. Increasing the network depth does not always lead to 
better results with the same experiment parameters 

2. The results obtained for different pretraining 
methods can vary greatly depending on the activation 
functions used. 

3. Actually in some cases pure backpropagation gets 
better results in compare with approach with 
pretraining phase (for example, if used ReLU 
activation function).  

After training the models, we used the XAI method to 
interpret instances from the original datasets (from their test 
parts). To do this, we used the models with the best final 
results. 

The interpretation results are shown in the image (Fig. 4).  

On this image we can seen extraction of main features, 
which are used by neural network model to define which class 
this number has. The greater the SHAP-value, the stronger the 
impact on the result has a given feature. 

VI. CONCLUSION 

In this paper, we propose a approach for layer-wise 
pretraining of deep neural networks based on the use of a 
sequence of restricted Boltzmann machines. The practical 



48 

results obtained by us confirm the effectiveness of the 
proposed training method. This approach allows using small 
dataset to pretrain “heavy” neural networks models. The 
trained model was used as basis to perform the interpretation 
of the input data.  

The authors see the expansion of the theoretical and 
experimental part of the research to the area of convolutional 
and recurrent neural networks, as well as the interpretation of 
models that have layers of these types in their architectures, as 
the main direction of further work. 

This work was supported by the Belarusian Republican 
Foundation for Basic Research BRFBR, project F22KI-046. 

REFERENCES 

[1] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006b). A fast learning 
algorithm for deep belief nets. Neural Computation, 18:1527–1554. 

[2] Kovalev, M. Convergence and integration of artificial neural networks 
with knowledge bases in next-generation intelligent computer systems 
/ M. Kovalev, A. Kroshchanka, V. Golovko // Open Semantic 
Technologies for Intelligent Systems (OSTIS 2022). – BSUIR, 2022. – 
P. 173-186. 

[3] A. Thampi, Interpretable AI: Building Explainable Machine Learning 
Systems. Manning, 2022. [Online]. Available: 
https://books.google.by/books?id=ePN0zgEACAAJ  

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust You?: 
Explaining the Predictions of Any Classifier,” 2016. [Online]. 
Available: https://arxiv.org/abs/1602.04938 

[5] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting 
Model Predictions,” in Advances in Neural Information Processing 
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, 
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 
2017. [Online]. Available: 
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c
43dfd28b67767-Paper.pdf 

[6] Hinton, G. and Sejnowski, T. (1986). Learning and relearning in 
Boltzmann machines. In Rumelhart, D. E. and McClelland, J. L., 
editors, Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition. Volume 1: Foundations, pages 282–317. 
MIT Press, Cambridge, MA. 

[7] Geoffrey E Hinton. Training products of experts by minimizing 
contrastive divergence. Neural Computation, 14(8):1771–1800, 2002 

[8] Hinton, G. E. A practical guide to training restricted Boltzmann 
machines: Tech. Rep. 2010-000 / G. E. Hinton: University of Toronto, 
2010. 

[9] Liao, Renjie & Kornblith, Simon & Ren, Mengye & Fleet, David & 
Hinton, Geoffrey. (2022). Gaussian-Bernoulli RBMs Without Tears. 
10.48550/arXiv.2210.10318. 

[10] V. Golovko, A. Kroshchanka, and E. Mikhno, “Deep Neural Networks: 
Selected Aspects of Learning and Application,” in Pattern Recognition 
and Image Analysis. Cham: Springer International Publishing, 2021, 
pp. 132–143. 

[11] Kroshchanka, A. Deep neural networks application in next-generation 
intelligent computer systems / A. Kroshchanka // Open Semantic 
Technologies for Intelligent Systems (OSTIS 2022). – BSUIR, 2022. – 
P. 187-194. 

[12] LeCun, Y. The mnist database of handwritten digits. — 
http://yann.lecun.com/exdb/mnist/. — Accessed: 2023-08-01. 

 

 

 

Fig.4. Model input interpretation 

 

https://books.google.by/books?id=ePN0zgEACAAJ
https://arxiv.org/abs/1602.04938
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

