УДК 621.382

СХЕМОТЕХНИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПОДГОТОВКА ИНЖЕНЕРНЫХ КАДРОВ В ЭПОХУ ЦИФРОВИЗАЦИИ

Макаревич А.Л.¹, Матына Л.И.², Соковнич С.М.¹

 1 Приднестровский государственный университет им. Т.Г. Шеченко, Тирасполь, Приднестровье, mccar-bendery@mail ru

Аннотация. Предложены примеры выполнения лабораторных работ по схемотехническому моделированию работы простейших аналоговых устройств - усилителей. Используется программа LTSpice, которая свободно распространяется и широко используется профессионалами и особенно удобна при подготовке студентов по инженерным направлениям.

Ключевые слова. Схемотехническое моделирование, параметры усилителей, нелинейные искажения, амплитудно- и фазочастотные характеристики, обучение схемотехнике.

Подготовка специалистов по направлению «Электроника и наноэлектроника» в ПГУ началась еще в середине 90-х гг прошлого века, а по направлению «Инфокоммуникационные технологии и системы связи» — в 2001 г. Причем, подготовка велась на физико-математическом факультете в рамках специальности «Физика», и учебно-методическое руководство осуществлял тогда Физический факультет МГУ. Учебные планы регламентировались образовательными стандартами направления «Физика» с присвоением дополнительной квалификации «Учитель физики», а также стандартами в направлениях упомянутых выше.

Стандарт в направлении «Физика» предусматривает изучение 6 разделов «Общей физики» и 6 разделов «Теоретической физики». При этом перечни дисциплин специализаций был взяты из соответствующих стандартов по подготовке инженеров. Естественно, что достаточно напряженно решался вопрос с общим количеством часов, которое не должно превышать определенного их числа. В дальнейшем, примерно с 2014г., было принято решение о подготовке специалистов с инженерной квалификацией по перечисленным направлениям и уже при двухуровневым образовании, т.е. бакалавров и магистров.

И в первом, и во втором направлении дисциплины, связанные со схемотехникой, имели различные варианты названий, но относились к базовому блоку Б1 в учебных планах [1, 2].

Считаем, что для качественного изучения схемотехники требуется не только учебная литература таких авторов как П. Хоровиц, У. Хилл [3], У. Титце, К. Шенк [4] и И.П. Степаненко [5], а требуется обязательная практика самостоятельного схемотехнического моделирования типовых конфигураций схем усилителей, фильтров и цифровых устройств с созданием собственных рабочих библиотек, и затем уже выполнение экспериментальных лабораторных работ с использованием измерительных приборов и стендов.

Такой подход к изучению схемотехники делает студентов более подготовленными к экспериментальным исследованиям работоспособности электронных устройств.

Для примера приведем 3 лабораторные работы по изучению принципов работы и характеристик усилителей.

Первая работа связана с изучением принципов работы и характеристик усилителя по схеме с ОЭ.

Основные теоретические положения.

Работа выполняется в программе схемотехнического моделирования LTSpice или любой другой «SPICE – совместимой» программе. В процессе работы выполняются следующие виды анализа: выбор рабочей точки (анализ .OP), анализ переходного процесса при усилении синусоидального сигнала (анализ .TRAN), частотный анализ для получения амплитудно-частотной и фаза-частотной характеристик (анализ .AC) и анализ по постоянному току (.DC) для получения передаточных характеристик.

Схема усилителя и назначение ее элементов

Усилитель, собранный по схеме с ОЭ представляет собой однокаскадный усилитель, состоящий из четырех резисторов и транзистора. Схема такого каскада, выполненного на биполярном транзисторе приведена на рисунке 1.

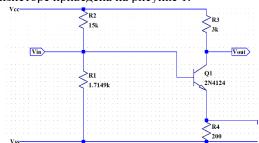


Рисунок 1 – Схема усилителя по схеме с ОЭ

Такой усилитель обычно предназначен для предварительного усиления непрерывных или гармонических синусоидальных сигналов по напряжению.

Основными элементами каскада являются: делитель напряжения на резисторах R1 и R2, нагрузочный резистор R3, резистор R4, стабилизирующий работу биполярного транзистора n-p-n типа (Q1). Входной сигнал Vin подается на базу транзистора, а выходной сигнал Vout определяется падением напряжения на резисторе R3. Эти элементы образуют усилительный каскад. Кроме этого, за счет включения в эмиттерную цепь резистора R4, в схеме возникает отрицательная обратная связь по постоянному и переменному току. Она осуществляет температурную стабилизацию рабочей точки транзистора. Полярность напряжения источника питания Vcc положительна.

² НИУ МИЭТ, г. Москва, Россия

Это обеспечивает для транзистора n-p-n типа смещение коллекторного перехода в обратном, а эмиттерного перехода в прямом направлении, т.е. активный (усилительный) режим работы транзистора Q1.

Для проверки работы усилителя необходимо собрать соответствующую схему, показанную на рисунке 2.2.

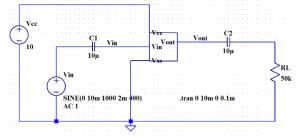


Рисунок 2 – Схема проверки работы усилителя с ОЭ

Здесь конденсаторы С1 и С2 называются разделительными. Они обеспечивают изоляцию (разделение) источника сигнала и нагрузки от каскада по постоянному току и соединение (связь) их по переменной составляющей между собой. Кроме перечисленных элементов принципиальной схемы, при усилении синусоидального сигнала от источника Vin необходим источник постоянного напряжения Vcc вырабатывающий 10 В и нагрузочный резистор RL.

Идеальный усилитель должен увеличивать входной сигнал в заданное число раз без изменения формы сигнала. Причем усилитель с ОЭ инвертирует входной сигнал. При усилении синусоидального сигнала могут возникать искажения, которые бывают двух видов: линейные и нелинейные.

На рисунке 3 показаны осциллограммы входного и выходного сигналов исследуемого усилителя.

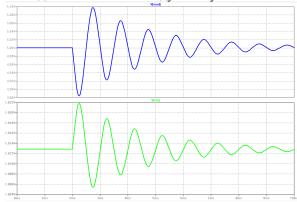


Рисунок 3 — Осциллограммы входного и выходного сигналов усилителя с ОЭ

Приведенный результат моделирования показывает отсутствие нелинейных искажений в усиливаемом сигнале при коэффициенте усиления порядка 10. При увеличении амплитуды входного сигнала до 500мВ можно увидеть появление нелинейных искажений в первом периоде выходного сигнала, приведенного на рисунке 4.

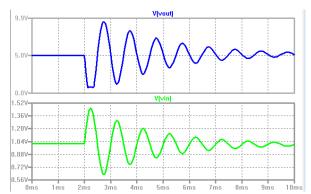


Рисунок 4 – Появление нелинейных искажений в выходном сигнале усилителя

Для снижения эффективности отрицательно обратной связи по току, протекающему через резистор R4 обычно используют конденсатор, включаемый параллельно резистору.

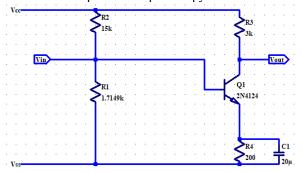


Рисунок 5 – Подключение конденсатора C1 параллельно резистору R4

Подключение конденсатора привело к увеличению коэффициента усиления с 10 до 120 т.е. примерно в 10 раз.

Исследования частотных характеристик усилителя Для получения амплитудно-частотной и фазочастотной характеристик усилителя необходимо провести частотный анализ .AC. Схема, приведенная на рисунке 3.2 позволяет это сделать перейдя от анализа .TRAN к анализу .AC, задав при этом вид шкалы изменения частоты (декадно), число точек на декаду и необходимый диапазон частот.

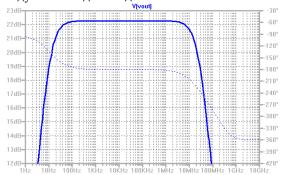


Рисунок 6 – Амплитудно-частотная и фазо-частотная (пунктиром) характеристики

Эти характеристики получены при отсутствии конденсатора С1, подключаемого параллельно резистору R4. При наличии конденсатора коэффициент усиления значительно выше, а частотный диапазон уже (см. рисунок 7).

Рисунок 7 – Амплитудно-частотная и фазо-частотная (пунктиром) характеристики усилителя с конденсатором C1.

Диапазон рабочих частот усилителя по схеме с ОЭ с конденсатором С1 составил от 500 Γu до 15 $M\Gamma u$.

Полученные результаты частотного анализа подтверждают результаты, полученные при анализе .TRAN.

Для получения передаточных характеристик усилительного каскада, построенного по схеме с ОЭ необходимо провести анализ по постоянному току .DC. Для этого необходимо задать диапазон изменений входного сигнала от источника Vin и исключить из схемы конденсатор C1. И в результате получим статические передаточные характеристики (СПХ) тока и напряжения усилительного каскада.

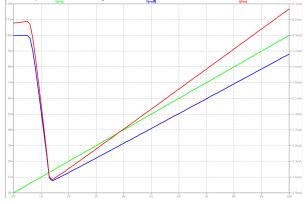


Рисунок 8 – СПХ напряжения и тока усилительного каскада с ОЭ

Вторая работа связана с изучением принципа работы усилительного каскада, собранного на биполярном транзисторе по схеме с общей базой (ОБ) и исследование влияния элементов принципиальной схемы на его частотные и временные характеристики.

Основные теоретические положения

Работа выполняется в программе схемотехнического моделирования LTSpice или любой другой «SPICE – совместимой» программе. В процессе работы выполняются следующие виды анализа: выбор рабочей точки (анализ .OP), анализ переходного процесса при усилении синусоидального сигнала (анализ .TRAN), частотный анализ для получения амплитудно-частотной и фаза-частотной характеристик (анализ .AC) и анализ по постоянному току (.DC) для получения передаточных характеристик.

Схема усилителя и назначение ее элементов

Усилитель, собранный по схеме с ОБ представляет собой однокаскадный усилитель, состоящий из четырех резисторов и транзистора. Схема такого каскада, выполненного на биполярном транзисторе приведена на рисунке 9.

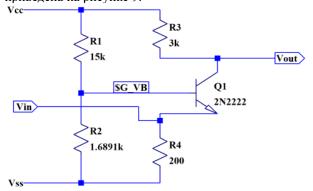


Рисунок 9 – Схема усилителя с ОБ

Такой усилитель обычно используют для усиления непрерывных или гармонических синусоидальных сигналов по напряжению или току в устройствах, работающих на высоких частотах.

Основными элементами каскадаявляются: делитель напряжения на резисторах R1 и R2, нагрузочный резистор R3, резистор R4, стабилизирующий работу биполярного транзистора n-p-n типа (Q1). Эти элементы образуют усилительный каскад. Входной сигнал Vin подается на эмиттер транзистора, а выходной сигнал Vout определяется падением напряжения на резисторе R3. Кроме этого, резистор R4 является нагрузкой для входного сигнала. Полярность напряжения источника питания Vcc положительна. Это обеспечивает для транзистора n-p-n типа смещение коллекторного перехода в обратном, а эмиттерного перехода в прямом направлении, т.е. активный (усилительный) режим работы транзистора Q1.

Для проверки работы усилителя необходимо собрать соответствующую схему, показанную на рисунке 10

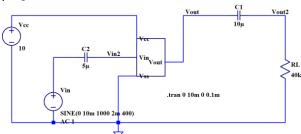


Рисунок 10 – Схема проверки работы усилителя с ОБ

конденсаторы C2C3 Здесь И являются разделительными, T.K. блокируют прохождения постоянного напряжения, задающего рабочий режим транзистора. Они обеспечивают изоляцию (разделение) источника сигнала и нагрузки от каскада по постоянному току и соединение (связь) их по переменной составляющей между собой. перечисленных элементов принципиальной схемы, при усилении синусоидального сигнала от источника Vin необходим источник постоянного напряжения Vcc вырабатывающий 10 В и нагрузочный резистор RL.

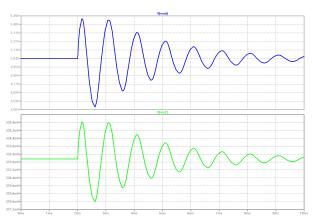


Рисунок 11 – Осциллограммы входного и выходного сигналов усилителя с ОБ

Приведенный на рисунке 11 результат моделирования показывает отсутствие нелинейных искажений в усиливаемом сигнале при коэффициенте усиления порядка 50 и отсутствие инверсии фазы сигнала при его усилении, в отличии от схемы с ОЭ.

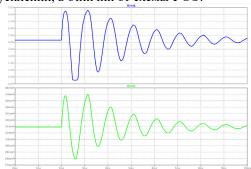


Рисунок 12 — Осциллограммы входного и выходного сигналов усилителя с ОБ

Появление нелинейных искажений в усиливаемом сигнале имело место уже при увеличении амплитуды входного сигнала до 100 мВ.

Исследования частотных характеристик усилителя *ОБ*

Для получения амплитудно-частотной и фазочастотной характеристик усилителя необходимо провести частотный анализ .AC. Схема, приведенная на рисунке 2 позволяет это сделать перейдя от анализа .TRAN к анализу .AC, задав при этом вид шкалы изменения частоты (декадно), число точек на декаду и необходимый диапазон частот.

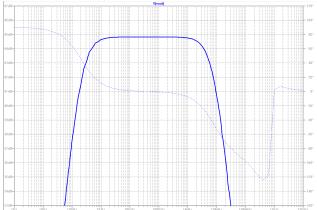


Рисунок 13 — Амплитудно-частотная и фазо-частотная (пунктиром) характеристики усилителя с ОБ

Диапазон рабочих частот усилителя по схеме с ОБ составил от 200 Гц до 9 МГц, что сравнимо с частотным диапазоном усилителя, собранного по схеме с ОЭ при включении конденсатора С1 параллельно резистору R4. При этом коэффициент усиления составлял величину порядка 44 дБ в обоих случаях.

Последняя работа связана с изучением принципов работы и характеристик инвертирующего усилителя на операционном усилителе (OY).

Основные теоретические положения

Эта работа, как и предыдущие, выполняется в программе схемотехнического моделирования LTSpice или любой другой «SPICE – совместимой» программе. В процессе работы выполняются следующие виды анализа: выбор рабочей точки (анализ .OP), анализ переходного процесса при усилении синусоидального сигнала (анализ .TRAN), частотный анализ для получения амплитудно-частотной и фаза-частотной характеристик (анализ .AC) и анализ по постоянному току (.DC) для получения передаточных характеристик.

Номенклатура микросхем ОУ очень большая: от прецизионных, т.е. позволяющих создавать высокоточные преобразователи сигналов до быстродействующих, т.е. применяемых в высокоскоростных преобразователях данных. А каждое применение требует своей схемы включения ОУ. Поэтому в данной работе мы проанализируем простейшую схему усилителя на ОУ. У любого ОУ всегда имеется два входа, т.к. входным каскадом является дифференциальный, который способен усиливать разницу напряжений на входах с очень высоким коэффициентом усиления, значительно превышающим усиление обычного каскада усилителя с ОЭ. При этом, каждое «плечо» дифференциального каскада построено аналогично усилителю с ОЭ, но при этом они взаимодействуют друг с другом, т.к. питаются от одного ограниченного и стабилизированного источника тока. Т.е. при открытии любого из транзисторов, выходное напряжение, определяемое падением напряжения в нагрузочных резисторах будет, как минимум, в 2 раза превышать выходной сигнал обычного каскада с ОЭ. Теоретический анализ работы дифференциального каскада изложен в учебнике И.П. Степаненко «Основы микроэлектроники» [5].

Схема усилителя и назначение ее элементов Схема инвертирующего усилителя на ОУ показана на рисунке 14.

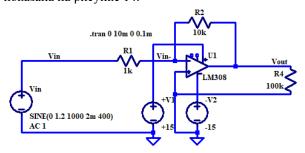


Рисунок 14 — Схема анализа работы инвертирующего усилителя на ОУ

Здесь резисторы R1 и R2 задают коэффициент усиления. Резистор R4 является нагрузкой усилителя. Источники +V1 и -V2 подают питание, необходимое для работы усилителя. Vin – источник входного синусоидального сигнала, с теми же параметрами, что и проверке работы всех предыдущих усилителей: ОЭ, ОБ и ОК. Результаты анализа приведены на следующем рисунке.

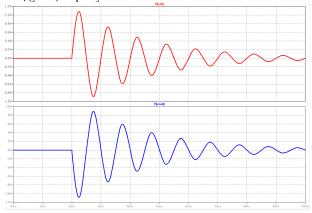


Рисунок 15— Осциллограммы входного (Vin) и выходного (Vout) сигналов инвертирующего усилителя на ОУ

Приведенные примеры выполнения лабораторных работ достаточно просты, но решение таких задач и необходимо на начальном этапе изучения схемотехники при подготовке инженерных кадров в обоих направлениях. Имен такие работы и выполняют наши студенты при изучении дисциплин «Схемотехника телекоммуникационных устройств» [6], «Микросхемотехника» и «Схемотехника».

Изучение усилительных устройств и других схем обработки аналоговых сигналов: фильтров, компараторов и др. обычно предшествует изучению цифровой схемотехники, которую начинаем с изучения простейших логических элементов типа: И, ИЛИ, НЕ. Причем элементы строим как на биполярных, так и обязательно на КМОП транзисторах с проектными нормами в единицы микрон. А затем уже приступаем к изучению работы схем сумматоров, декодеров, кодеров, мультиплексоров и демультиплексоров. После них следуют триггеры и устройства на их основе: регистры и счетчики. При этом каждый обучаемый создает собственную библиотеку аналоговых и цифровых элементов. Но собственная библиотека элементов на КМОП транзисторах может быть использована в дальнейшем при моделировании работы сложных функциональных

узлов, необходимых для построения специализированных микросхем, предназначенных для работы в микроэлектронной аппаратуре самого различного применения: от бытовой техники до систем вооружений.

Вывод

Считаем, что успешная подготовка инженерных кадров по направлениям «Электроника и наноэлектроника» и «Инфокоммуникационные технологии и системы связи» возможна при комплексном подходе к изучению дисциплин, связанных со схемотехникой и анализам работоспособности электронных устройств, при котором до начала экспериментальных работ по исследованиям работы электронных схем будет проведено схемотехническое моделирование их работы в любой SPICEсовместимой программе. Тогда полученные результаты позволят проводить экспериментальные работы с большим пониманием их сути. А также это поможет сохранить в рабочем состоянии измерительные приборы и саму электронно-компонентную базу, уберегая их от неизбежных ошибок начинающих экспериментаторов.

Литература

- 1. Макаревич А.Л. Изучение схемотехники и практические навыки работы в системах проектирования в образовательном процессе в направлениях «Электроника и наноэлектроника» и «Инфокоммуникационные технологии и системы связи» / Методические вопросы преподавания инфокоммуникаций в высшей школе. №1-2016 стр. 4 9.
- 2. Макаревич А.Л., Матына Л.И., Петренко И.В. Трансформация образовательного процесса подготовки инженерных кадров в условиях смены технологической парадигмы / Методические вопросы преподавания инфокоммуникаций в высшей школе. №4-2020 стр. 25 30.
- 3. Хороваиц П., Хилл У. Искусство схемотехники: В 2-х т. М.: Мир, 1986.
- 4. Титце У., Шенк К. Полупроводниковая схемотехника: в 2т. М.: Додэка XXI, 2008.
- 5. Степаненко И.П. Основы микроэлектроники. Учебное пособие для вузов. М.: Сов. радио. 1980 424с.
- 6. Макаревич А.Л., Соковнич С.М., Бочарова В.М. Лабораторный практикум «Схемотехника телекоммуникационных устройств» / Тирасполь, ПГУ им. Т.Г. Шевченко. 2024 72с.

CIRCUIT MODELING AND ENGINEERS STAFF TRAINING IN THE DIGITAL ERA

A.L. Makarevich¹, L.I. Matyna², S.M. Sokovnich¹

Abstract. Examples of laboratory work on circuit engineering modeling of the simplest analog devices - amplifiers are proposed. The LTspice program is used, which is freely distributed and widely used by professionals and is especially convenient for preparing students in engineering fields.

Keywords. Circuit modeling, amplifier parameters, nonlinear distortions, amplitude and phase-frequency characteristics, circuit engineering training.

¹ Pridnestrovian State University named after T.G. Shevchenko, MD 3300, st. The 25th of October, 128, Tiraspol, Pridnestrovye, mccar-bendery@mail.ru

² National Research University of Electronic Technology(MIET). Moscow