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Abstract: The charge properties and regularities of mutual influence of the electro-physical parameters
in a metal (M)/insulator (I)/two-dimensional crystal heterostructure were studied. In one case, the
transition metal dichalcogenide (TMD) MoS2 was considered as a two-dimensional crystal, and in
another the Weyl semi-metal (WSM) ZrTe5, representative of a quasi-two-dimensional crystal was
chosen for this purpose. By self-consistently solving the electrostatic equations of the heterostructures
under consideration and the Fermi–Dirac distribution, the relationship between such parameters
as the concentration of charge carriers, chemical potential, and quantum capacitance of the TMD
(WSM), as well as the capacitance of the I layer and the interface capacitance I–TMD (WSM), and their
dependence on the field electrode potential, have been derived. The conditions for the emergence of
charge instability and the critical phenomena caused by it are also determined.

Keywords: field heterostructure; transition metal dichalcogenides; Weyl semi-metals; charge proper-
ties; charge instability; quantum capacitance; self-consistent solution

1. Introduction

Currently, the search for and study of promising materials with new properties for
solid-state information storage and processing devices is actively underway. These include
both two-dimensional (2D) semi-conductors [1–4] and materials with unusual electronic
states, such as topological insulators and topological semi-metals [5–9]. Currently, 2D
semi-conductors, with a particular focus on transition metal dichalcogenides (TMDs) and
heterostructures on this basis, are emerging as serious candidates for future solid-state infor-
mation processing and storage device technology [10]. Their potential consists in improved
device scaling and energy-efficient switching compared to traditional bulk semi-conductors,
such as Si, Ge and AIII-BV compounds [2]. These materials offer significant advantages,
especially in ultra-thin devices of atomic thickness. Their unique structure makes it possible
to create monatomic nano-ribbons, as well as vertical and lateral heterostructures. This
versatility in design, combined with their distinctive properties, paves the way to efficient
energy control in electronic devices.

Considerable attention has been drawn to topological semi-metals, which can be
divided into three main groups: Weyl semi-metals (WSMs), Dirac semi-metals [7–9] and
topological semi-metals with nodal lines [11–13]. In Dirac and Weyl semi-metals, two
doubly degenerate bands or two non-degenerate bands, respectively, intersect at singular
points or nodes near the chemical potential, forming four-fold degenerate Dirac points or
doubly degenerate Weyl points, and diverge linearly in all three momentum directions.
These correspond to low-energy excitations. The scale of self-energy is small, which creates
prospects for the development of both energy-efficient information processing elements
and ultra-sensitive sensors [7–9]. The features of the electronic structure of the topological
materials are reflected in the electronic properties and lead to a number of unusual effects,
such as extremely high magneto-resistance without a tendency to saturation, high mobility
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and low effective mass of current carriers, non-trivial Berry phase, chiral anomaly and
anomalous Hall effect, and special behavior regarding optical conductivity [8,9]. The
prospects of using TMD and magnetic WSM for spin-to-charge conversion, an important
effect for spintronics [14,15], is also worth noting.

Along with numerous studies of the properties of the above materials, including ab
initio calculations [6,10], little attention has previously been paid to the study of their charge
properties, manifested in field heterostructures. Investigation of charge phenomena in metal
M (field electrode)/insulator I/semi-conductor S field heterostructures (FHS MISs) is highly
relevant, since they form the root of the elemental base of modern information processing
and storage devices. 2D TMDs are promising in terms of replacing traditional silicon MIS
transistors in information processing devices. Weyl semi-metals are of additional interest in
terms of the study of non-trivial physical effects and phenomena in FHS MISs, which can be
used to create information processing devices. In FHS MIS with 2D or quasi-2D materials,
issues related to the study of electro-physical parameters, such as chemical potential,
charge carrier concentration, quantum capacitance, and boundary state capacitances, as
well as their mutual influence on each other, are important. The inter-relationships between
electro-physical parameters with the parameters of heterostructures, as well as with the
potential of the field electrode, are also very relevant. The influence of various factors
on the electro-physical parameters will be significantly different compared to FHS MISs
based on bulk semi-conductors. Such effects will be significantly more sensitive to the
properties of materials and interfaces in the TMD-based FHS MISs [16]. This contributes
to the manifestation of charge instability effects, hysteresis phenomena [16–19] caused by
charge localization on defect states, and phase transitions [20]. On the one hand, this will
affect the stability of FHS MISs, and on the other, it will contribute to the identification of
new effects that can be exploited in the development of future generations of solid-state
information processing devices. As for the studies of charge instabilities in FHS MISs with
WSM, there are currently no systematic studies on this issue to the best of our knowledge.
However, it is worth noting that, due to the presence of low energy electronic excitations in
WSMs, similar effects in WSM-based FHS MISs should be manifested with a high degree
of probability.

Thus, investigation of the mutual influence of the electro-physical parameters of FHS
MISs with 2D TMDs and WSMs, considering the possibility of the occurrence of charge
instabilities, is relevant. In this work, for the first time, the modeling of charge properties
and charge instability in the M/I/2D TMD and quasi-2D WSM field heterostructures was
carried out. The simulation was performed by self–consistent solution of the electrostatic
equations and the Fermi–Dirac distribution. Self-consistent solutions have been obtained
that relate the electrochemical potential, the concentration of conduction electrons and
TMD (WSM) quantum capacitance as a function of the field electrode potential, insulator
capacitance, and spectrum of the interface trap states. The occurrence of instability of
quantum capacity and the critical phenomena caused by it are predicted.

2. Charge Properties. The Model

The electron concentration ne in a 2D TMD per unit area is determined by the density
of electronic states (DOSs) D(E) in the conduction band and chemical potential χ, in
accordance with the Fermi–Dirac statistics [16,21]

ne(χ) =
∫ ∞

0
D(E) f (E − χ)dE, (1)

where f is the Fermi–Dirac function and D(E) follows from ab initio calculations of band
energy diagrams, and χ = qUc is the chemical potential defined from the electrostatic
equation (see below). Here, q is the elementary charge, and the parameter Uc represents
the voltage drop across the quantum capacitance CQ [22]. The reference level for χ is the
middle of the semi-conductor band gap. Currently, to calculate the charge properties and
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parameters of FHS MISs with 2D TMD, the following model density of electronic states of
TMD is used [6,22,23]

D(E) =
4πmn

h2 ∑n Θ(E − En), (2)

where Θ is the Heaviside function, mn is the effective mass of electrons, En is the energy of
the nth sub-band (the main contribution to the concentration of charge carriers comes from
the ground state with n = 0), and h is the Planck’s constant.

For the concentration of conducting electrons in WSMs, we use Equation (1) and, for
the DOS, we apply a two-band model with a negative band gap, described in [24,25]

D(E) =
1

π2h3v2
Fc

{Λ(E,−∆)Θ(E − ∆) + [Λ(E,−∆) + Λ(−E,−∆)]Θ(∆ − E)}, (3)

where Λ(E, ∆) = E
√

E − ∆, 2∆ is the energy band gap, vF is the effective Fermi velocity, and
c = (1/2mn)1/2 is the parameter. The model described in [24,25] belongs to the minimum
WSM model class [26]. For convenience of calculation, Equation (3) is transformed in such
a way that the initially negative value ∆ is assumed to be positive.

Based on the condition of electro-neutrality of FHS MISs, the relationship between
the chemical potential of a 2D semi-conductor or semi-metal, the concentration of charge
carriers in them, the capacitance of the insulator, and the charge at the interface states, the
potential of the field electrode is determined by the electro-statics equation, which for this
case is written as [27–29]

qUG = Fm − ζs + χ +
q

Cox
[qne(χ) + qnt(χ)], (4)

where UG is the potential of the field electrode, Fm is the work function of the field electrode
material, ζS is the electron affinity of the TMD (WSM), qnt is the charge on trap states and
Cox is the capacitance of the insulating layer.

The relation between qnt and the specific capacitance of trap states Cit has the well-
known form [30,31],

Cit =
d

dχ

(
q2nt(χ)

)
(5)

At Fm − ζS = 0 and constant density of trap states [27]

χ

(
1 +

Cit
Cox

)
+

q2ne(χ)

Cox
= qUG (6)

The dependence of the charge of the trap states on the chemical potential is determined
by the concentration of the occupied trap states nt and their energy spectrum. In the case of
a single energy level [31]

nt(χ) =
∫ Ntδ(E − Et)dE

1 + g−1
n exp

(
E−χ
kT

) =
Nt

1 + g−1
n exp

(
Et−χ

kT

) , (7)

where Nt is the total concentration of traps, gn is the degeneracy factor of trap state, Et is
the energy of trap state, k is the Boltzmann constant, T is the temperature, and δ(E − Et) is
the Dirac delta function. In the case of Gauss distribution of trap energies [31]

nt(χ) =
∫ NtdE

1 + g−1
n exp

(
E−χ
kT

) 1

(2π)1/2σt
exp

[
− (E − Etm)

2

2σ2
t

]
, (8)

where Etm is the energy corresponding to the maximum density of traps, and σt is the
dispersion of distribution of traps energy.
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The system of Equations (1)–(8) self-consistently determines the dependence of the
concentration of charge carriers and χ on UG, Cox and Cit. Ultimately, it determines the
self-consistent relationship of all electrical parameters of the FHS MIS with TMD or WSM.
The quantum capacitance CQ, in turn, is determined by the DOS and χ according to [32].

CQ =
∫ +∞

0
D(E)

(
−d f (E − χ)

dE

)
dE, (9)

In addition to quantum capacitance, important parameters are the field electrode-
related capacitance CG and the TMD (WSM)-related capacitance CCH, which are also
interrelated with charge carrier concentration and CQ. In the low-frequency region, the
indicated capacitances are expressed as follows [27]

CG =
CQ + Cit

1 +
(
CQ + Cit

)
/Cox

(10)

CCH =
CQ

1 +
(
CQ + Cit

)
/Cox

(11)

The joint solution of the system of Equations (1)–(11) allows us to trace the mutual
influence of the electro-physical parameters of FHS MIS with a 2D semi-conductor or
semi-metal and to identify the specific features of such mutual influence under conditions
of charge instability.

3. Results and Discussion
3.1. FHS MIS with TMD. Monoenergetic Traps

First, we consider the case of undoped TMD with monoenergetic traps characterized
by a single energy level Et located in the TMD band gap. The energy is measured from
the top of the valence band. MoS2 with a band gap of 1.86 eV is selected as TMD for
calculations in this section. The total concentration of monoenergetic traps is defined as Nt.
Self-consistent calculations of χ, ne, CQ, Cit, CG, CCH and electron charge on traps Qt were
carried out. Calculation of the above parameters of FHS MIS were performed depending
on UG and Cox = εε0/d. Here ε is the relative dielectric permittivity, ε0 is the vacuum
permittivity and d is the insulating layer thickness. The Cox value was chosen as equal to
2 × 10−3 F/m2 (which corresponds to ε = 7, d = 30 nm), Nt = 2 × 1016 m−2, the Et varied
between 1.0 and 1.8 eV and the potential UG between 0 and 5 V. Room temperature was
considered, T = 300 K.

The D(E) obtained from ab initio calculations was used to evaluate the ne. For this
structural optimization and electronic properties, calculations were performed employing
the Vienna ab initio simulation package (VASP) [33] with the Perdew–Burke–Ernzerhof
(PBE) exchange-correlation function [34]. A hybrid functional in the Heyd–Ernzerhof
(HSE06) form was used to obtain more accurate band gaps [35]. The obtained DOS of the
atomic monolayer MoS2, calculated with the approach developed in [33–35], is shown in
the inset to Figure 1.

The results of self-consistent calculations revealed the following. Figure 1 shows the
χ(UG) dependences at different states of Et. As can be seen at Et ≤ 1.5 eV, to achieve a
self-consistent solution for the chemical potential of TMD in FHS MIS, the UG value must
be at least 1.1–1.6 V. Therefore, at Et ≤ 1.5 eV and for UG < 1.1 V, there is no possibility of
achieving any stable charge state of FHS MIS. The reason is an imbalance of local charges
arising in the HS MIS, which does not allow achievement of the condition of electrical
neutrality. This is since, to obtain the concentration of conduction electrons in MoS2, the
chemical potential must be no lower than the middle of the band gap. Stable self-consistent
solutions in this case exist at UG > 1.1–1.6 V, when χ exceeds a certain critical or threshold
value (1.53 eV at Et = 1.0 eV and 1.6 eV at Et = 1.5 eV). Here, the chemical potential increases
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non-linearly and monotonically, reaching the value of 1.75 eV with an increase in UG to
4.0–4.5 V.
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Figure 1. Chemical potential χ of MoS2 versus UG of FHS MIS at different energy levels Et of
monoenergetic traps. Inset: DOS of the atomic monolayer MoS2.

With increasing energy of the monoenergetic trap, starting from Et = 1.6 eV, self-
consistent solutions for χ appear already from almost zero UG. As can be seen from Figure 1,
there is an increase in χ at Et = 1.6 eV and 1.65 eV. Its values increase monotonically with
increasing UG, approaching the values of χ for Et = 1.0 and 1.5 eV. At Et ≥ 1.75 eV, the χ
values increase, and their maximum is achieved at lower UG with respect to the case of
smaller Et. Further increase in the Et (up to 1.8 eV) does not cause an increase in χ.

The latter is associated with the approaching saturation of ne, as follows from Figure 2a,
where the dependences ne versus UG are shown. They are qualitatively similar to the
dependences of χ versus UG and are characterized by an upward shift in UG at Et ≤ 1.5 eV.
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duction electrons, the charge localized on traps decreases with increasing trap energy, 
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Figure 2. (a) Density of conduction electrons ne versus UG of FHS MIS at different energy levels Et of
monoenergetic traps; (b) electron charge on traps Qt versus UG of FHS MIS at different energy levels
of Et of monoenergetic traps.

Figure 2b shows the Qt(UG) dependences. In contrast to the charge created by conduc-
tion electrons, the charge localized on traps decreases with increasing trap energy, which is
associated with the degree of occupation of trap states, which decreases when the trap is
shallow relative to the bottom of the conduction band.

Figure 3a,b show the results of calculations of the dependences of the CQ, CG and CCH
on UG at two different values of Et (1.5 eV, Figure 3a and 1.6 eV, Figure 3b). The CQ(UG)
dependences are monotonic for both values of Et. An increase in CQ is observed with
increasing UG in accordance with the increase in ne (see Figure 2a). The range of CQ is 3–4
orders of magnitude.
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At Et = 1.0 eV, the capacitance of the interface states that Cit sharply decreases, because
the charge localized on the traps Qt ceases to depend on potential UG (see Figure 2b). In this
case, as follows from Equations (10) and (11), the capacitance of the interface states does
not affect the capacitances CG and CCH, which are now determined only by CQ and Cox.

As Et approaches a value of 1.5 eV, Cit begins to influence the CG and CCH capacitances.
From Figure 3a, it follows that, at Et = 1.5 eV, the Cit affects CG and CCH only in the region
UG = 1.5–1.7 V. In this region, we can assume that the charge system is not stable due
to significant fluctuations in capacitances with a slight change in UG. At Et = 1.6 eV, Cit
increases significantly, becomes comparable to CQ, and its dependence on UG becomes
non-monotonic with a maximum at UG = 0.5–1.0 V (Figure 3b). This result is explained by
the fact that the trap energy becomes comparable to the chemical potential. Therefore, at
χ ≈ Et, there is an increase in Cit with an increase in UG. We also demonstrated that, at
Et > 1.7 eV, there is a sharp decline in Cit.

Thus, in the presence of electronic trap states with a monoenergetic level, their in-
fluence on the stability of the charge state of FHS MIS is determined by the relationship
between the chemical potential and the energy of the traps. For the case of relatively deep
traps with an energy of 1.0–1.5 eV, unstable charge states arise in the UG range up to a cer-
tain threshold value. This is because there are no conditions for the emergence of a charge
balance, determined by the electrical neutrality condition of FHS MIS and the Fermi–Dirac
statistics, which determine the ne(χ) dependence. The χ value in turn is determined by UG,
Cox and Qt. Such an imbalance does not allow self-consistency of the chemical potential,
the concentration of conduction electrons, the charge on the traps, and the charge created
by the field electrode. With increasing Et, when the energy of traps becomes comparable
to the value of χ, non-linear charge effects arise, which also lead to instability of charge
properties in the UG range up to 2 V. This is due to an increase in the Cit which, in turn, is
caused by the charge localized on the traps.

Finally, we should stress that the results obtained in this section for FHS MIS with
MoS2 as TMD are qualitatively valid for other TMDs, such as, e.g., MoSe2, MoTe2, WS2,
WSe2 and WTe2.

3.2. FHS MIS with TMD. Gauss Distribution for Trap Energies at the TMD–I Interface

In this section we consider the spectrum of trap states at the TMD–I interface, assuming
that the energy of the states is distributed according to the Gaussian law (Equation (8)).
Calculations of χ, ne, nt, CQ, CG, CCH were carried out for traps in molybdenum sulfite with
the following parameters: T = 300 K, Etm = 0.8–1.2 eV, σt = 0.5–1.5 eV, Nt = 2 × 1016 m−2.

Figure 4 shows the χ(UG) and Figure 5 the dependences of ne and nt on UG at
Etm = 1.0 eV. In this case, self-consistent solutions for χ and ne exist within a certain
range of UG. They arise only when UG is greater than a threshold value UGth. Thus, at
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σt = 0.8–1.5 eV, UGth is 0.7–1.53 V, and at σt = 0.5 eV, the UGth shift reaches 4 V. Below these
thresholds, there is no self-consistent solution and thus charge balance is not achieved.
Therefore, we can consider the range UG ≤ UGth to be a range of charge instability. A
decrease in σt shifts χ and ne towards higher UG values. A decrease in Etm, on the contrary,
shifts these quantities towards lower UG.
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Figure 4. Chemical potential χ of MoS2 versus UG of FHS MIS at different dispersion σt of Gauss
distribution of traps energy.
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Figure 5. Density of conduction electrons ne (solid lines) and density of electrons localized in traps nt

(dashed lines) versus UG of FHS MIS at different dispersion σt of Gauss distribution of traps energy.

The values of χ are in the range 1.5–1.8 eV, and the range of ne is 1013–5 × 1016 m−2.
The latter can be considered as a saturation value for ne. In addition, a sharp rise occurs in
the region of 0.5–2.0 V (at σt = 0.8–1.5 eV), followed by a smoother transition to saturation.
The concentration of electrons localized in traps changes slightly with increasing UG; it
increases with a decrease in σt at a constant value of Etm, from 0.9 × 1016 to 2 × 1016 m−2.

Figure 6a,b show the dependences of CQ, CG and CCH on UG. The results of Figure 6a
were obtained for the following set of the model parameters: σt = 0.8 eV, Etm = 1.0 eV,
Cox = 2 × 10−3 F/m2. In Figure 6b, these parameters were slightly changed, namely,
σt = 0.75 eV, Etm = 1.05 eV, Cox = 3.54 × 10−3 F/m2. Two types of behavior of CQ ver-
sus UG have been identified: monotonic change and abrupt change. The first type is
observed in the region UG = 1.5–2.0 V and is associated with the presence of an exponential
change in CQ, leading to modulation of capacitances CG and CCH (Figure 6a). At the same
time, the capacitance Cit does not practically change with increasing UG. However, its
contribution significantly affects the change in CG and CCH in the range UG = 1.5–2.0 V. For
these UG values, the change in CG and CCH reaches several times, which indirectly confirms
the presence of charge instability.
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Our calculation also revealed that, for larger values of σt = 1.5 eV, the value of Cit
does not exceed 10−3 F/m2 and the capacitances CG and CCH are determined only by CQ.
Moreover, they are close in value to each other in the entire UG range. This is due to a
decrease in concentration nt at σt = 1.5 eV (see Figure 5).

The second type of dependence is shown in Figure 6b. Slight variation in the param-
eters of the model leads, at UG = 2.43 V, to the appearance of two roots for CQ in solving
the system of Equations (1), (4), (5), (8) and (9). This causes a jump-like dependence of
CQ at UG = 2.43 V, and the value of CQ changes by almost two orders of magnitude (from
5.1 × 10−4 to 0.044 F/m2). The capacitance CQ also shifts towards larger UG at small values
below 10−3 F/m2 and then, due to a jump, its value is restored, reaching a value with
exponential growth, compared with Figure 6a. A reverse calculation of the electron concen-
tration based on the jump-like dependence CQ(χ) showed that a similar jump occurs for
the dependence ne(χ) (see inset to Figure 6b). This also confirms the conclusion regarding
the instability of the charge in FHS MIS with MoS2 at some critical relationships of its
electro-physical parameters.

Note that, in the case of Gaussian distribution, in contrast to the monoenergetic traps,
when instability arises due to a decrease in Et, the presence of a broadening of the energy
spectrum of trap states leads practically to insensitivity of the capacitance Cit to the growth
of UG, remaining almost constant under the conditions considered. This leads to the fact
that the capacitances CG and CCH are determined mainly by the behavior of CQ. The
situation becomes different when an abrupt change in CQ and, accordingly, in the electron
concentration occurs. If, in the previous cases, a self-consistent solution was absent at
certain values of UG and this was associated with the presence of instability, then here
the manifestation of instability may mean that the relationships and mutual influence
of the electro-physical parameters of FHS MIS are characterized by the presence of bi-
stable states. This bi-stability characterizes the insulator–semi-conductor transition. Its
mechanism is associated, in our opinion, with the influence of charge fluctuations leading
to a transition between two states of a bi-stable system at a critical (threshold) value of UG.
An increase in charge fluctuations at a critical value of UG in this case leads to a switching of
states of the bi-stable system by analogy with the phenomenon of noise-induced stochastic
resonance [36].

The results obtained for two types of trap states described in Sections 3.1 and 3.2 in
the general case can be explained as follows. Self-consistent solutions for χ and ne arise at
certain threshold values of UG, when a charge balance in the heterostructure determined
by the Fermi–Dirac statistics and the electrical neutrality condition considering the charge
on trap states is achieved. For UG = 0 V, when there is no positive charge created by the
field electrode potential, the chemical potential is in the middle of the band gap. In this
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case, in the presence of traps that capture only electrons, charge balance is not achieved,
since the presence of a positive charge created by the field electrode is necessary. Physically,
this is because an increase in the charge on traps leads to a mismatch between the electrical
neutrality condition and the Fermi–Dirac statistics at a certain value of the potential UG,
due to the absence of an increase in the DOS with energy. This is why charge imbalance
arises. Self-consistency is reached only with a certain increase in χ above the energy of
the middle of the band gap due to the action of the field electrode charge. This threshold
effect is similar to the insulator–semi-conductor transition. Such transitions belong to the
critical phenomena. They occur at critical values of some parameters of FHS MISs with
TMD. In other words, we can assume the existence of critical points at which the charge
balance is disrupted and the relationships between electro-physical parameters undergo
qualitative changes.

3.3. FHS MIS with WSM

Weyl semi-metals are materials in which the valence band and conduction band
intersect at separate points called Weyl nodes, causing a negative band gap. When the
Fermi energy is near these nodes, the electrons effectively behave as relativistic Weyl
fermions with linear energy dispersion and well-defined chirality. At present, a sufficient
number of materials related to WSM is already known. It is worth mentioning that these
include TaAs, NbAs, TaP, NbP, WTe2, MoTe2 [6,7,37–39], a magnetic WSM SrRuO3 [40–42],
etc. In this work, we chose ZrTe5, which is considered as a WSM [24,25,37]. Like many
other topological semi-metals, ZrTe5 possesses small intrinsic energy scales.

The case of low temperature due to the presence of low-energy excitations in the WSM
is discussed. In the region of high temperatures, the features are leveled out by thermal
fluctuations. Anisotropic ZrTe5 material with an orthorhombic Cmcm phase of ZrTe5,
characterized by a parabolic dispersion around the 2∆ band gap, which transforms into a
linear dispersion at higher energies, corresponds to the a–c plane. The dispersion along the
b direction remains parabolic at all energies. Free electron-like behavior is assumed in the b
direction. In addition, ZrTe5 is characterized by the following parameters: vF = 4.9 × 105

m/s, ∆ = 3 meV, mn = mb = (1.8–2.0) m0 [24,25]. This semi-metal is also characterized by
high mobility (1–4.5) × 105 cm2/V·s at low temperature, and effective masses in various
directions are ma = ∆/va

2 = 0.001 m0, mc = ∆/vc
2 = 0.0025 m0. Here, m0 is the mass of a free

electron, the masses ma, mc and velocities va, vc correspond to directions in the a-c planes,
and the mass mb corresponds to the direction along the b axis.

For FHS MIS with ZrTe5, the case of distribution of trap states with a constant density
according to Equation (6) was considered. Then, the capacitance of interface states Cit acts
as a model parameter. Its value varied in the range Cit = (0–3)Cox. In addition to those
indicated above for ZrTe5, the following parameters were used for simulation: T = 0.2 K
and 0.8 K, ε = 16, d = 40 nm, Cox = 3.54 × 10−3 F/m2, UG = 0.002–0.5 V. Note also that the
calculations were carried out for quasi-2D ZrTe5.

Figure 7 shows the DOS calculated from Equation (3) for ∆ = 3 and 6 meV. In this
model, the WSM phase has two Weyl points in the Brillouin zone, where the energy
disappears, (ka, kc, kb) = (0, 0, ±∆1/2/h̄c) and, for negative band gap, the conditions for the
minimal WSM model are fulfilled [26]. As follows from Figure 7, the DOS are monotonic
and are characterized by the presence of kinks, at which the form of the D(E) dependence
changes. Calculation of the χ(UG) dependences for various values of Cit revealed that they
are qualitatively similar to the DOS, i.e., are also characterized by the presence of kinks
(see inset to Figure 8). The value of χ varies in the range 5 × 10−4–0.5 eV depending on
the UG potential and increases with its growth. The kink point shifts towards larger UG as
Cit increases.
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Figure 7. Density of states DOS of ZrTe2 at two energy gap values. Inset: The first derivative of DOS
versus energy for ZrTe5 at ∆ = 3 meV.
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Figure 8. Density of conduction electrons ne versus UG of FHS MIS at different values of the
capacitance of the I–WSM interface Cit. Inset: Chemical potential of ZrTe5 versus UG of FHS MIS at
different values of the capacitance of the I–WSM interface Cit.

Figure 8 shows the concentration of conduction electrons as a function of UG. As
can be seen, they are characterized by an exponential rise to a threshold value UGth, after
which they sharply move to saturation, at around 1015 m−2. The capacitance Cit affects the
threshold value UGth. With increasing Cit, the UGth value shifts towards higher UG, similarly
to the χ(UG) dependence. The saturation of ne(UG) in this case is associated with the fact
that, after the break point, the DOS of the WSM depends linearly on energy. This leads,
in the region of ultra-low temperatures, where the Fermi–Dirac function has a stepwise
character, to the fact that, at UG > UGth, when the chemical potential exceeds the energy,
linear increase in DOS is compensated. As a result, the concentration is saturated with an
almost constant value. At UG < UGth, where there is an increase in ne, the DOS depends
parabolically on the energy E and χ becomes comparable to E.

Figure 9 shows the results of calculations of CQ and CG at T = 0.2 K and Cit = 3.0
Cox. The calculations of CQ revealed the presence of oscillations accompanied by their
compaction near UGth and a decrease in amplitude for CG to (2.9 ± 0.3) × 10−3 F/m2. Our
results also revealed that oscillations of CQ are observed at any values of Cit, and their
amplitude reaches 4 orders of magnitude (10−6–10−2 F/m2). As Cit increases, the frequency
of oscillations along UG increases, and a compaction in oscillations is observed closer to
the UGth. When the electron concentration reaches saturation, CQ drops sharply to almost
zero. This affects the CG and CCH capacitances. In this case, the capacitance CG stabilizes at
UG > UGth due to the prevalence of constant capacitance Cit. A decrease in the amplitude
of CG oscillations is also observed at UG < UGth: up to (2 ± 1) × 10−3 F/m2 at Cit = 0.5 Cox
and up to (2.13 ± 0.87) × 10−3 F/m2 at Cit = 1.0 Cox.
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Figure 9. Quantum capacitance CQ of ZrTe5 and field electrode–WSM capacitance CG versus UG of
FHS MIS. T = 0.2 K.

The occurrence of such CQ oscillations, which characterizes the presence of charge
instability in the FHS MIS with WSM, can be associated with low excitation energies of
the electronic system, the non-linearity of the dependence of the concentration of electrons
excited by the UG field, and the presence of a dispersion transition from a parabolic behavior
to a linear one, which leads to the emergence of additional relatively small kinks in the
χ(UG) and ne(UG) dependences.

When the temperature increases to 0.8 K, leveling of oscillations of CQ and, accordingly,
of CG and CCH is observed (Figure 10). In this case, CQ, CG, CCH versus UG values grow
up to a certain threshold value of UG, after which the CQ and CCH disappear, and the CG
stabilizes at Cit > 0.
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Such radical change of CQ(UG) dependence with temperature ais most likely due to a
change of the Fermi–Dirac distribution. In fact, the broadening of the Fermi–Dirac function,
f [(E–χ)/kT], and, accordingly, its derivative with respect to energy, which determines CQ,
significantly depends on T. At T = 0.2 K, the broadening is very small and approaches the
δ-function, which contributes to the formation of a set of discrete, non-overlapping bursts
of the derivative f [(E–χ)/kT] in energy. This peculiar spectrum of the derivative ultimately
leads to CQ oscillations. With increasing temperature, the broadening of the derivative
df [(E–χ)/kT]/dE increases and such bursts overlap, smoothing out the discrete spectrum,
which leads to the suppression of CQ oscillations.
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The obtained behaviors for FHS MIS with WSM can be associated primarily with the
features of the band structure of ZrTe5, i.e., the presence of energy bands with linear and
parabolic dispersion [24].

Currently, various mechanisms for instabilities in WSM have been proposed [42–47].
In the systems in which the filled valence band is in contact with the conduction band,
the instability can be caused by gapless excitations around the zero-energy manifold,
which are characterized by a smaller dimension compared to the spatial dimension of
the system itself [43]. Instabilities induced by a magnetic field are also considered [44,45]
and, in addition to the traditional Dyakonov–Shur instability for plasmons, entropy wave
instability was discovered [46]. Instability of Weyl semi-metals against Coulomb interaction
could also contribute [47,48].

However, in the case under consideration, within the framework of the model used,
the occurrence of charge instability, in our opinion, should be associated with the influence
of the following factors. The first issue is the presence of a kink at E = ∆ in the DOS, caused
by a change in the dispersion law. This leads to the appearance of fluctuations of CQ due to
the transition from one dispersion law to another, which has a jump-like character. This
fact is illustrated in the inset to Figure 7, which shows the derivative of the DOS versus the
energy for ∆ = 3 meV. As can be seen at E = ∆, a discontinuity of the derivative is observed,
which indicates a significant increase in fluctuations when approaching the E = ∆ region.
This is also indicated by the derivative of the electron concentration versus the chemical
potential, which is characterized by the presence of sharp rises and falls.

The second issue is that, when approaching T = 0, at which the Fermi–Dirac function
tends to a stepwise form, but has not yet become so strict, the FHS MIS with ZrTe5 charge
system may lose stability due to the fact that an increase in the interface capacitance leads
to a mismatch between the electrical neutrality condition and the Fermi–Dirac statistics at
an energy close to the χ value. This is since, near E = ∆, the dispersion law will deviate
from the parabolic towards a sharper increase in the DOS with energy. Therefore, as the
Cit increases, the effect of increasing the oscillation frequency occurs when approaching
the threshold value of the field electrode potential, at which saturation emerges, and the
quantum capacitance decreases to zero.

4. Conclusions

Simulation of the charge properties of FHS MIS with undoped monolayer MoS2 with
electron traps, characterized by such electro-physical parameters as chemical potential,
conduction electron concentration, quantum capacitance, the capacitance of the TMD–I
interface, the capacitance of the M–TMD and capacitance of the TMD, revealed the presence
of charge instability in certain ranges of the field electrode potential. Regularities of changes
in these parameters depending on the potential of the field electrode have been established
for monoenergetic and Gaussian energy distributions of traps at the TMD–I interface. It
is shown that, in the presence of electronic trap states with a monoenergetic level, their
influence on the stability of the charge state of FHS MISs with MoS2 is determined by the
relationship between χ and Et. For the case of relatively deep traps with Et = 1.0–1.5 eV,
unstable charge states arise, which disappear when UG > UGth. For shallow traps this
threshold disappears, and an unstable charge state does not arise for all positive UG. Such
behavior is associated with the dependence of Cit on UG; it decreases along with increase in
UG in the case of deep traps and increases in the case of relatively shallow traps.

With the Gaussian distribution, due to the presence of broadening of the energy
spectrum of trap states, Cit does not change significantly with UG in the studied range,
which determines the effect on the charge properties of FHS MIS with MoS2. It has been
established that, in this case, an abrupt change in CQ and ne is also possible. We explain
this instability by the emergence of bi-stability in the system. This bi-stability characterizes
the insulator–semi-conductor transition. Its mechanism is associated, in our opinion, with
the influence of charge fluctuations leading to a transition between two states of a bi-
stable system at a critical (threshold) value of the field electrode potential. An increase in
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charge fluctuations leads to a switching of states of a bi-stable system by analogy with the
phenomenon of noise-induced stochastic resonance.

The results obtained for two types of trap states are explained by the fact that self-
consistent solutions for χ and ne arise at certain threshold values of UG, when the charge
balance in the heterostructure is achieved, determined by the Fermi–Dirac statistics and the
electrical neutrality condition, considering the charge on the trap states. Physically, this
is because an increase in the charge on traps leads to a mismatch between the electrical
neutrality condition and the Fermi–Dirac statistics at a certain value of the potential UG
due to the absence of an increase in the DOS with energy. As a result, a charge imbalance
arises, and self-consistency is reached only at a certain growth of χ above the energy of
the middle of the band gap, due to the action of the field electrode charge. This threshold
effect is similar to the insulator–semi-conductor transition. Such transitions belong to
critical phenomena in which the charge balance is disrupted and the relationships between
electro-physical parameters undergo qualitative changes. Our results correlate qualitatively
with available experimental data, which show the presence of instability and hysteresis
phenomena in transistor structures based on 2D TMD [49–53].

For FHS MIS with ZrTe5, the case of low temperature and a uniform energy spectrum
of trap states, characterized by their capacitance, was considered. The presence of kinks in
the dependence of χ and ne versus UG in the range 0.05–0.09 V was revealed, arising due
to a peculiarity in the DOS, which is characterized by a change in the dispersion law for
electronic states from parabolic to linear. The ne is characterized by reaching saturation at
the kink point. The capacitance of the trap states in this case leads to a shift in the kink
point along the field electrode potential.

The regularities of the influence of the Cit on the CQ(UG) dependence have been
established. It is shown that, at T = 0.2 K, oscillations of CQ are observed at any values of
the capacitance of interface states, the amplitude of which reaches four orders of magnitude,
as well as a sharp drop in the region where ne reaches saturation. With Cit increase, an
increase in the frequency of CQ oscillations is observed. The occurrence of such oscillations
is associated with the non-linearity of the ne(UG) dependence, the presence of a transition
of dispersion from parabolic to linear, which leads to the occurrence of charge fluctuations
against the background of low excitation energies of the electronic system. An increase in
temperature to 0.8 K leads to the disappearance of CQ oscillations.

Thus, within the framework of the model used, the obtained behavior for FHS MIS
with ZrTe5 is associated with the peculiarities of its band structure, namely, the presence of
energy bands with transitions between linear and parabolic dispersion. The obtained charge
instability is due to two reasons. The first is the presence of a break in the DOS caused
by a change in the dispersion law. This leads to the appearance of charge fluctuations
of CQ due to the transition from one dispersion law to another, which has a jump-like
character. This is confirmed by the presence of discontinuity of the derivative of the DOS,
leading to a significant increase in such fluctuations in the break region. The second issue
is determined by the stepwise form of the Fermi–Dirac function, due to which an increase
in the interface capacitance leads to a mismatch between the electrical neutrality condition
and the Fermi–Dirac statistics at an energy close to the value of χ, since near the break in
the DOS the dispersion law will deviate from the parabolic law towards a sharper increase
in the DOS, which leads to a charge imbalance, accompanied by the effect of compaction
of oscillations.
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