УДК 669.018.6

№ 8(94)

ФИЗИЧЕСКИЕ ОСНОВЫ РАДИАЦИОННОЙ СТОЙКОСТИ МАТЕРИАЛОВ

Н.Т. КВАСОВ, В.В. УГЛОВ, И.Л. ДОРОШЕВИЧ*

Белорусский государственный университет Независимости, 7, Минск, 220072, Беларусь

*Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 5 июня 2015

Работа посвящена выяснению физической природы пороговой энергии смещения E_d – одной из важнейших характеристик радиационной стойкости материалов. Физическим объектом, на котором построен физико-математический формализм E_d , является неустойчивая пара «вакансия – междоузельный атом», так называемый динамический дефект, время существования которого в облучаемом материале составляет $10^{-12}...10^{-11}$ с. В рамках закона сохранения энергии получено аналитическое выражение для E_d и установлена его структура на основе анализа процессов, сопровождающих подпороговое движение выбитого из узла решетки атома: электростатического и упругого взаимодействия с собственной вакансией междоузельного атома, а также диссипативными потерями его энергии при движении в области зоны неустойчивости. Имеет место удовлетворительное соответствие результатов расчета с данными эксперимента.

Ключевые слова: радиационная стойкость материалов, пороговая энергия смещения, радиационные дефекты, неустойчивая пара «вакансия – междоузельный атом», внутрикристаллическое трение.

Введение

Обеспечение высокой стабильности свойств материалов при радиационном воздействии является одной из актуальных проблем в ядерной и термоядерной энергетике, космической технике и других областях. Можно указать два основных направления повышения радиационной стойкости материалов.

1. Увеличение пороговой энергии смещения *E*_d (это минимальная энергия, необходимая для создания устойчивой пары Френкеля).

2. Создание материалов, обладающих свойством «самозалечивания»: твердых растворов вычитания (имеющих исходную дефектность), наноструктурированных материалов.

Наноструктурирование материалов предполагает «включение» новых физических процессов и явлений, сопровождающих взаимодействие ионизирующих излучений с веществом, и позволяющих уменьшить уровень радиационного повреждения. Это, в первую очередь, динамические эффекты, обусловленные реакцией решетки на внедрение ускоренных ионов и приводящие к перераспределению дефектов в наночастице. Границы нановключений и наночастиц являются эффективными стоками для радиационных дефектов. В таких материалах имеют место также интересные коллективные эффекты, связанные с передачей энергии первично выбитого атома совокупности окружающих его атомов (небинарность столкновений). В этом случае повреждаемость материала существенно снижается.

Несмотря на большое количество теоретических и экспериментальных исследований по определению одного из основных параметров в радиационной физике кристаллов – пороговой энергии смещения E_d для различных материалов, – физическая природа этой величины

окончательно не выяснена, что, в свою очередь, затрудняет поиск способов ее повышения. Решению проблемы структуры пороговой энергии смещения и физической природы ее слагаемых может способствовать анализ динамики подпорогового движения междоузельного атома (i), когда он не покидает пределы зоны неустойчивости – области, находясь в пределах которой междоузельный атом безактивационно аннигилирует с собственной вакансией (v). Изучение подпорогового движения выбитого из узла атома представляется значимым не только в теоретическом аспекте, но и практическом, поскольку размер зоны неустойчивости *R* наряду с пороговой энергией смещения является одним из основных критериев оценки радиационной стойкости: чем больше R материала, тем выше его радиационная стойкость. Согласно [1], причиной возникновения зон неустойчивости в металлах является упругое, а в диэлектриках и – электростатическое взаимодействие полупроводниках вакансии собственного И междоузельного атома. При этом размеры зоны неустойчивости определяются потенциалом взаимодействия этих дефектов и энергиями миграции междоузельных атомов.Следует отметить, однако, что для интервалов времени 10⁻¹³...10⁻¹¹ с, характерных для динамики неустойчивых пар, такое разделение взаимодействий весьма условно. Ведь очевидно, что за время жизни динамического дефекта в металле вакансия своим электрическим полем будет препятствовать релаксационным процессам в электронной подсистеме в области зоны неустойчивости, в связи с чем здесь необходимо учитывать также и электростатическое взаимодействие. Кроме этого, численные оценки свидетельствуют, что упругое взаимодействие «включается» лишь на значительных расстояниях r между вакансией и движущимся междоузельным атомом – более постоянной решетки a. Вместе с этим при r > a сила упругого взаимодействия, пропорциональная r⁻⁴, крайне мала и недостаточна для возврата междоузельного атома в свою вакансию. В этой связи утверждение об определяющей роли этого взаимодействия между компонентами неустойчивой пары v-i в металлах [1] вызывает сомнения. Следует отметить также, что электростатическое поле между v и i в неустойчивой паре энергетически поднимает «летящий» междоузельный атом над потенциальным рельефом, поэтому его движение можно рассматривать как движение в среде с сопротивлением.

Результаты и их обсуждение

В предлагаемой модели подпороговое движение выбитого из узла решетки иона (атома) обусловлено его кулоновским и упругим взаимодействием с собственной вакансией, а такжевнутрикристаллическим трением. Пусть атом массы m в узле решетки получает от налетающей частицы (или другого смещенного атома) энергию W, не превышающую пороговую энергию смещения E_d . Движение такого атома можно описать следующим динамическим уравнением:

$$m\frac{d^2r}{dt^2} = -m\xi\frac{dr}{dt} + F_r(r)\cdot\Theta\left(F_r(r) - \frac{2U_m}{a}\right),\tag{1}$$

где ξ – коэффициент внутрикристаллического трения, Θ – функция Хевисайда, U_m – энергия миграции ($U_m = 0,01...0,1$ эВ),

$$F_r(r) = -\frac{dU(r)}{dr},$$

$$U(r) = -\frac{1}{|q_i \cdot q_v|} \frac{|B|\Delta V_i \cdot \Delta V_v|}{|B|\Delta V_i \cdot \Delta V_v|} \Theta(r - r)$$
(2)

$$U(r) = -\frac{1}{4\pi\varepsilon\varepsilon_0} \cdot \frac{|q_i \cdot q_v|}{r} - \frac{B|\Delta v_i \cdot \Delta v_v|}{r^3} \cdot \Theta(r-a),$$
(3)

где є – диэлектрическая проницаемость (для металлов є полагается равным единице), є₀ – электрическая постоянная, q_i и q_v – электрический заряд междоузельного атома и его вакансии; *В* – модуль всестороннего сжатия, ΔV_i и ΔV_v – объем упругой дилатации междоузельного атома и его вакансии.

Первое слагаемое в уравнении (3) учитывает кулоновское взаимодействиевыбитого из узла решетки атома с собственной вакансией.Непростой задачей здесь является определение зарядового состояния компонент неустойчивой пары, существующей не более 10⁻¹¹ с.

На сегодняшний день на этот счет нет аргументированного мнения, и авторы в своих расчетах полагали для металлов

$$|q_i| = |q_v| = |e|,$$
 (4)
а для полупроводников

 $|q_i| = |q_{\nu}| = v|e|$,

где *е* – заряд электрона, v – валентность.

Второе слагаемое в уравнении (3) описывает упругое взаимодействие междоузельного атомас его вакансией [1], а введение функции Хевисайда позволяет учесть то, что такое взаимодействие начинает проявляться лишь на достаточно большом расстоянии *r* между ними.

Ранее [2] авторами в качестве минимального расстояния между v и i, на котором начинают действовать силы упругости, использовалось значение a/2 – первое междоузельное положение выбитого из узла решетки атома. Однако, как показывает более детальное рассмотрение ситуации, компоненты пары v-i становятся «полноценными» центрами отрицательной и положительной упругой дилатации на расстоянии r между ними, по крайней мере, не менее одной постоянной решетки a. В связи с этим результаты численного анализа формулы (17) из [2] существенно изменятся, и в данной публикации приведены уточненные расчеты. Также в настоящей работе использованы уточненные значения объемов упругой дилатации [3]:

$$\Delta V_i = 2,5\Omega_0 = \frac{2,5}{n},$$
(6)

$$\Delta V_{\nu} = -0,5\Omega_0 = -\frac{0,5}{n},$$
(7)

где Ω_0 – атомный объем, *n* – концентрация атомов вещества матрицы (решетки).

При расчете коэффициента внутрикристаллического трения ξ предполагалось, что для малых скоростей υ движения выбитого из узла решетки атома диссипативные потери энергии на единицу длины связаны сξ как

$$-\frac{dE}{dr} = m\xi\upsilon,$$
(8)

а диссипативные потери энергии S на единицу длины и в расчете на один атом единицы объема будут пропорциональны υ [4]:

$$S = -\frac{dE}{dr} \cdot \frac{1}{n} = \alpha \upsilon, \tag{9}$$

где а – коэффициент пропорциональности.

Тогда из выражений (8) и (9) следует

$$\xi = -\frac{n}{m}\alpha. \tag{10}$$

Для полупроводников и диэлектриков величина α оценивалась в рамках модели Фирсова (см., например, [5]):

$$\alpha = \frac{13,88 \cdot e^2 a_0 Z}{4\pi\varepsilon_0 \nu_{\rm b}},\tag{11}$$

где a_0 – первый боровский радиус, Z – порядковый номер химического элемента в таблице Менделеева, $v_{\rm b}$ – скорость электрона на первой боровской орбите.

И в этом случае коэффициент ξ равен

$$\xi = \frac{nZ}{m} \cdot 7,72 \cdot 10^{-44} \,. \tag{12}$$

Для металлов при этих же условиях использовалась модель движения выбитого из узла решетки атома в электронной ферми-жидкости и величина α определялась из следующего выражения [4]:

(5)

$$\alpha = \frac{10\hbar n_e^{2/3}}{n},\tag{13}$$

где *ћ* – постоянная Планка, *n*_e – концентрация свободных электронов.

Учитывая выражение (13), коэффициент
 ξ внутрикристаллического трения (10) для металлов равен

$$\xi = \frac{10\hbar n_e^{2/3}}{m}.$$
 (14)

В соответствии с предложенной в настоящей работе моделью подпорогового движения выбитого из узла решетки атома в рамках закона сохранения энергии структура пороговой энергии смещения *E*_d имеет следующий вид:

$$E_d = U_1 + U_2 + U_3 + U_4, (15)$$

где $U_1 = E_{c_B}$ – величина энергии связи, $U_2 = |A_{kyn}|$ и $U_3 = |A_{ynp}|$ – абсолютное значение работы соответственно кулоновских и упругих сил при движении выбитого из узла решетки атома до границы зоны неустойчивости, размер которой характеризуется ее радиусом *R*,

$$U_4 = m\xi \int_0^t v^2(t) dt -$$
(16)

величина работы внутрикристаллического трения за время τ максимального удаления междоузельного атома от своей вакансии, $\upsilon(t) = \frac{dr(t)}{dt}$ – зависимость от времени его скорости.

Следует отметить сразу, что величина E_d по сути своей анизотропна и это может быть учтено зависимостью E_{c_B} и ξ от направлений в кристалле. В дальнейшем для качественных оценок авторы использовали изотропный случай.

Зависимость r(t) удаления выбитого из узла решетки атома от своей вакансии определялась численным интегрированием динамического уравнения (1) с учетом выражений (2)–(7), (12) и (14) с начальными условиями: $r(t)|_{t=0}=0, 4a$ – смещение атома от равновесного положения, при котором величина энергии межмолекулярного взаимодействия не превышает 25% от максимума ее абсолютного значения, $\frac{dr(t)}{dt}\Big|_{t=0}=\sqrt{\frac{2(W-E_{cB})}{m}}$, где W – сообщаемая

атому от налетающей частицы (или другого смещенного атома) энергия.

Полученные кривые r(t) имеют два принципиально разных характерав зависимости от значения W: 1) выбитый из узла решетки атом после достижения им наибольшего удаления возвращается обратно и аннигилирует со своей вакансией; 2) атом обратно в свою вакансию не возвращается. Пороговая энергия смещения E_d определялась авторами как максимальная переданная атому энергия W, при которой выбитый из узла решетки атом еще аннигилирует с собственной вакансией, а координаты максимума соответствующей этой энергии зависимости r(t) являются значениями размера зоны неустойчивости R и времени τ ее прохождения атомом.

В табл. 1 приведены результаты расчета пороговой энергии смещения E_d для ряда простых веществ и некоторые необходимые для этого параметры. На рисунке показана диаграмма, иллюстрирующая в соответствии с формулой (15) структуру пороговой энергии смещения E_d для некоторых простых веществ. Сравнение с экспериментом полученных авторами данных представляет определенные трудности из-за значительного разброса соответствующих экспериментально измеренных значений пороговой энергии смещения, полученных в разное время разными авторами и различными способами (табл. 2).

	таоттца	11100	Jubiaibi		ue ieru nopor obon sneprini estementa za dris nekoropzix sarepnaror							
	а,	c	<i>n</i> ,	В,	ξ,	τ,	<i>R</i> ,	U_1 ,	U_2 ,	<i>U</i> ₃ ,	U_4 ,	E_d ,
	10 ⁻¹⁰ м	ъ	10 ²⁸ м ⁻³	10 ⁹ Па	$10^{10} \mathrm{c}^{-1}$	10 ⁻¹² c	10 ⁻⁹ м	эВ	эВ	эВ	эВ	эВ
С	3,57	5,7	15,81	286,8	367,7	0,61	2,70	7,36	26,81	1,97	10,32	46,46
Al	4,05	1	6,03	78,9	75,0	0,97	1,79	3,34	8,08	2,52	1,16	15,10
Si	5,43	12	5,00	83,3	115,9	1,20	2,36	4,64	8,02	1,61	2,57	16,84
Ti	2,95	1	5,68	109,4	31,0	1,07	1,60	1,87	11,29	10,26	0,72	24,14
V	3,03	1	7,05	165,5	33,6	1,13	1,61	5,30	10,98	8,84	0,80	25,92
Cr	2,80	1	8,33	145,6	23,2	1,12	1,59	4,10	11,59	11,51	0,56	27,76
Fe	2,87	1	8,49	171,1	34,7	1,13	1,54	4,20	11,60	7,79	0,80	24,39
Co	2,50	1	9,10	167,1	34,5	1,05	1,44	4,38	13,39	10,03	0,81	28,61
Ni	3,52	1	9,15	366,7	34,7	1,34	1,76	4,43	9,40	7,79	0,92	22,54
Cu	3,61	1	8,49	180,6	19,2	1,46	1,72	3,50	9,13	4,15	0,45	17,23
Zr	3,23	1	7,05	93,3	33,6	1,61	1,72	6,30	10,30	11,85	0,46	28,91
Mo	3,15	1	6,42	253,1	10,6	1,64	1,73	6,80	10,59	15,26	0,40	33,05
Cd	2,98	1	4,64	47,3	11,5	1,69	1,56	1,20	11,15	6,45	0,36	19,16
Та	3,31	1	5,54	211,1	8,1	2,35	1,79	8,10	10,06	14,71	0,43	33,30
W	3,16	1	6,34	333,3	8,7	2,27	1,79	8,66	10,58	20,41	0,51	40,16
Au	4,08	1	5,91	166,4	4,9	2,84	1,88	3,78	8,06	5,43	0,22	17,49
Bi	4,75	1	2,82	31,4	5,8	3,25	1,98	2,15	6,85	2,85	0,25	12,10

Таблица 1. Результаты расчета пороговой энергии смещения Еа для некоторых материалов

Диаграмма структуры пороговой энергии смещения *E*_d согласно формуле (15)

Таблица 2. Значения пороговой энергии смещения *Е*_d для различных металлов

	Al	Ti	v	Cr	Fe	Co	Ni	Cu	Zr	Мо	Cd	Та	W	Au	Bi
<i>Е</i> _d , эВ	15 [6];	19,2 [3];	23,6 [6];	25,3 [6];	17 [7];	23 [8];	23 [3];	18 [3];	14,5 [3];	32,4 [8];	19 [3];	26,7 [8];	40 [3];	33,5 [6];	12,3 [6];
	32 [3]	30 [7]	40 [7]	40 [7]	40 [7]	40 [7]	40 [7]	30 [7]	40 [7]	60 [7]	40 [3]	90 [7]	90 [7]	40 [3]	13 [3]

Заключение

1. Аналитическое выражение для пороговой энергии смещения имеет сложную структуру и компоненты, его составляющие, определяются энергией связи, работой сил электростатического и упругого взаимодействий, а также диссипативными потерями энергии междоузельного атома при его движении в области зоны неустойчивости.

2. Повышение радиационной стойкости материалов лежит на пути увеличения энергии связи и упругих характеристик структуры.

PHYSICAL PRINCIPLES OF MATERIALS RADIATION RESISTANCE

N.T. KVASOV, V.V. UGLOV, L.I. DOROSHEVICH

Abstract

The work is devoted to clarify the physical nature of the threshold energy of shift E_{d-} one of the most important characteristics of the radiation resistance of materials. Physical object, on which physical and mathematical formalism E_d is constructed, is an unstable pair of «vacancy – interstitial atom», so-called dynamic defect with existence time $10^{-12}...10^{-11}$ s. Within the law of energy conservation analytical expression for E_d is received and its structure on the basis of the analysis of the processes accompanying the subthreshold movement beaten out from atom lattice knot is established: electrostatic and elastic interaction with own vacancy of interstitial atom, and also dissipative losses of its energy at the movement in the field of an instability zone. There is a satisfactory agreement between the calculation results with the experimental data.

Список литературы

- 1. Кошкин В.М. // Физика низких температур. 2002. Т. 28. № 8/9. С. 963-977.
- 2. Углов В.В., Квасов Н.Т., Ремнев Г.Е. и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 11. С. 1–8.
- 3. Зеленский В.Ф., Неклюдов И.М., Черняева Т.П. Радиационные дефекты и распухание металлов. Киев, 1988.
- 4. *Трубников Б.А., Явлинский Ю.Н.* // Журнал экспериментальной и теоретической физики. 1965. Т. 48, № 1. С. 253–260.
- 5. *Ахиезер А.И., Давыдов Л.Н.* Введение в теоретическую радиационную физику металлов и сплавов. Киев, 1985.
- 6. Комаров Ф.Ф., Новиков А.П., Соловьев В.С. и др. Дефекты структуры в ионноимплантированном кремнии. Минск, 1990.
- 7. ASTM E521-96: Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation. Philadelphia, 1996.
- 8. Wolfer W. G.// Comprehensive nuclear materials. 2012. Vol. 1. P. 1–45.