
A Formal Model of Shared Semantic Memory
for Next-Generation Intelligent Systems

Nikita Zotov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: nikita.zotov.belarus@gmail.com

Abstract—This paper discusses in detail the formal model
of semantic memory for intelligent systems, its structure,
its elements, correspondences between them, rules and
algorithms. The implementation based on this model is
described, quantitative indicators of its efficiency are given.

Keywords—shared memory, semantic memory, graph
database, sc-memory, formal model of semantic memory,
mathematical model of semantic memory, ostis-platform,
intelligent system, unified knowledge representation, paral-
lel information processing, semantic networks storage

I. Introduction

Earlier in the works [1]–[3], devoted to the description
of the Software platform for intelligent systems developed
according to the principles of the OSTIS Technology [4]
(Software platform of ostis-systems) — a software emu-
lator of the future associative semantic computer [5], the
software implementation of the general semantic memory
(sc-memory) was considered [3], and the implementation
of its programming interface was described in detail [2].

The peculiarity of previous works is that they focused
not on the peculiarities of component implementation,
but on approaches to describing and documenting such
complex systems as the Software platform of ostis-
systems [6], [7]. In this paper, the main task is to formallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformallyformally
describe how a shared semantic memory can be realized
in intelligent systems, i. e. to describe its model.

Therefore, the purpose of the current work and the
novelty of this paper is to describe a formal model of
shared semantic memory used in ostis-systems, allowing:

• to store information of anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany kind in a unified seman-
tically compatible form;

• to efficiently process this information using a spec-
ified set of operations in bothbothbothbothbothbothbothbothbothbothbothbothbothbothbothbothboth single-threaded and
multi-threaded modes;

• to process this information using agents that react
to events in this memory,

that is, allowing [8]:
• to represent knowledge in the form of semantically
compatible knowledge bases of intelligent systems
[9], [10];

• to create various types of interpreters of models
of intellectual systems components, including inter-
preters for intellectual systems problem solvers;

• create libraries of reusable platform-dependent com-
ponents to implement other components of ostis-
platforms [11].

The relevance of the work is conditioned by the current
state in the field of development of intelligent systems
[12], namely:

• labor intensity of development of intellectual sys-
tems of various kinds;

• complexity of tasks solved in intelligent systems;
• complexity of integration of various components of
intelligent systems;

• increase in the volume of processed information;
• growth of requirements to the speed of information
processing;

• insufficient performance of modern open computing
systems.

Further in this paper we will consider and describe the
necessary and sufficient model of semantic memory for
its implementation and use in solving the above problems
[13]–[15].

II. Principles of implementation of ostis-platforms

All intelligent systems developed according to the prin-
ciples of the OSTIS Technology are commonly referred
to as ostis-systems. Each ostis-system consists of its own
sc-model, including a knowledge base, problem solver
and user interface, and an ostis-platform on which this
sc-model is interpreted [4], [16]. Any sc-model of an
ostis-system is a logical-semantic model of that system
described in SC-code, the language of universal infor-
mation encoding. By ostis-platform is meant a hardware-
implemented computer or a software emulator of this
computer for interpretation of sc-models of ostis-systems
[9].

There can be a great variety of ostis-platform imple-
mentations on which ostis-systems can be interpreted, but
each of such ostis-platforms should provide the following
basic principles [1], [16], [17]:

63

• the development of an ostis-system should beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould beshould be re-
duced to the development of its sc-model (i.e. the
description of the model in SC-code [18]) without
modification of the chosen ostis-platform and regard-
less of the means by which this ostis-platform is
developed;

• transfer of the sc-model of an ostis-system from one
ostis-platform to another is limited to loading this sc-
model into the memory of the ostis-platform without
loss of functionality of this ostis-system;

• addition of new information should be reduced to
the "gluing" of its signs with signs of existing
information with further verification of the obtained
information;

• processing of information in the system should be
provided by changing the configuration of links
between entities in this information by means of
asynchronous-parallel interaction of sc-agents re-
acting to the occurrence of events in the shared
memory.

Therefore, all ostis-systems interpreted on ostis-
platforms, unlike modern computer systems, have the
following features:

• unlike modern computers, where data is represented
as lines of binary code, the data stored inside the
memory of ostis-systems are graph constructions
written in SC-code (sc-constructions), due to which
[19]:
– anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany kind of knowledge is written in the same form
using a minimal set of syntactically indivisible
elements — the minimal alphabet of a language,
which can always be augmented with new syntac-
tic elements by specifying additional syntactically
distinguishable classes for the elements of that
language’s alphabet;

– synonymy of entity signs is forbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbiddenforbidden, since each
entity appears in the semantic network once;

– the meaning of information is represented by
explicitly specifying the relationships between
entities in that information;

– the "gluing" of information is reduced to the
"gluing" of the entity signs in that information;

– the processing of this information does not re-
quire various means of syntactic and semantic
analysis.

• information processing is based on the principles of
graphodynamic and agent-oriented models, so that:
– the process of information processing is reduced

not only to changing the state of elements of the
semantic network, but (!) also to changing the
configuration of links between them;

– information processing is represented and stored
as a semantic network;

– it is possible to describe and solve problems of

anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany information complexity;
– it is possible to realize and use anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany existing types
and models of information processing (procedu-
ral, neural network, frame, logical, production,
etc.);

– information can be processed in parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallel, i.e. dif-
ferent methods of problem solving can be applied
simultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneouslysimultaneously.

In other words, unlike traditional computer systems,
any ostis system must be oriented towards:

• independenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependence from the implementation of a partic-
ular ostis-platform;

• storage of information in a unifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunified and
semantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatible form (in SC-code [18]);

• event-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-oriented and parallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processing of this infor-
mation.

The principles of ostis-systems, first of all, should
be provided by a concrete implementation of the ostis-
platform. Within each ostis-platform there must be im-
plemented:

• the shared semantic memory that allows [20]:
– to store information constructions belonging to
SC-code (sc-texts);

– to store information constructions that do not
belong to SC-code (images, text files, audio and
video files, etc.);

– to store subscriptions to occurrences of events in
memory;

– to initiate agents after these events appear in
memory;

– to use a programming interface to work with SC-
code and non-SC-code information constructions,
including:
∗ operations to create, search, modify, and

delete these constructions in the memory;
∗ operations for subscribing to the occurrence

of events in the memory;
∗ operations for controlling and synchronizing

processes in the memory;
∗ programming interface for creating platform-

dependent agents;
• the interpreter of the SCP asynchronous-parallel
programming language, which is a platform-
independent programming interface that implements
platform-independent operations on the shared se-
mantic memory.

The shared semantic memory that allows for fulfill-
ment of all of the above mentioned tasks is called
sc-memory, and the interpreter of the basic language
of asynchronous-parallel programming SCP — scp-
interpreter. In the context of this paper only the sc-
memory model is considered. The scp-interpreter model
and its implementation were considered in [21].

64

All listed principles of ostis-systems are provided in
the first (basic) Software variant of the implementation of
the ostis-platform — Software platform of ostis-systems.
Drawing an analogy with modern developments in the
field, the Software platform of ostis-systems can be
considered as a graph database management system, for
example, Neo4J [22]. However, unlike existing database
management systems, the Software platform of ostis-
systems acts as an interpreter of sc-models of seman-
tically compatible ostis-systems. Therefore, the Software
platform ostis-systems should also be considered as a
software alternative for modern von Neumann computers.
In general, the above mentioned features of the imple-
mented Software platform of ostis-systems are also true
for all ostis-platforms regardless of the means by which
they are implemented.

An efficient implementation of sc-memory must fulfill
the following requirements:

• high performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performancehigh performance — minimizing the time spent
on operations of adding, searching, modifying and
deleting stored information;

• minimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memoryminimum memory and disk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk spacedisk space usage for storing
sc-texts;

• scalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalabilityscalability — the ability to add computing power as
the load increases without difficulty.

The following sections of this paper will discuss a
possible sc-memory model and its implementation.

III. Proposed sc-memory model for next-generation
intelligent systems

So, as mentioned above, in general sc-memory per-
forms the following tasks:

• the task of storing sc-constructs and information
constructs external to the SC-code (ostis-system
files),

• the task of managing events and processes working
on these constructs,

• the task of managing access to sc-constructions,
including tasks of:
– creating and deleting sc-elements (sc-nodes, sc-

connectors, etc.);
– searching sc-constructions by specified sc-

elements;
– getting sc-element characteristics (type, incident

sc-elements);
– adding content to sc nodes;
– retrieving ostis-system files by known contents;
– retrieving content from ostis-system files.

In this regard, all entities in sc-memory are:
• elements of sc-constructions:
– sc-nodes, ostis-system files,
– or sc-connectors (sc-arcs, sc-ribs) between sc-

nodes, ostis-system files;
• elements of information constructions that are exter-
nal to the SC-code:

– string content;
– or binary content;

• subscriptions to events in this sc-memory, that is,
subscriptions to the occurrence of items in it;

• active or inactive processes in this sc-memory,
• the synchronization objects of the processes in this
sc-memory,

• operations performed by processes in this sc-
memory.

Thus, the model of sc-memory can be defined quintuple

SM = ⟨SS, FS, RS, PS, PI⟩,

where
• SS — the sc-element storage model, which is a
structure of information about sc-elements,

• FS — the external information construction storage
model (file memory), which is a structure of infor-
mation about external information constructions,

• RS — the event subscription storage model, which
is a structure of information about event subscrip-
tions in sc-memory,

• PS — the process storage model that represents the
structure of process information in sc-memory,

• PI — the set of operations over sc-memory, i.e.,
the programming interface of sc-memory.

A. Model of storage of sc-elements in sc-memory
The model of sc-element storage in sc-memory can be

represented as

SS = ⟨S, Me, nsle , nsmax , nslv , nslr , ms,

mn
slv , mn

slr , SSPI⟩,

where
• S = ⟨s1, s2, ..., si, ..., sn⟩, i = 1, n — sequence
of allocated cell segments in sc-memory of fixed
size n;

• si = {⟨ei1, ei2, ..., eij , ..., eim⟩, nele , nelr , me},
j = 1, m, — i-th segment of fixed size m,
consisting of cells (elements) of sc-memory eij of
fixed size k,

• nele ∈ (N̄ ∪ {0}) — the index of the last engaged
cell in the segment si,

• nelr ∈ (N̄ ∪ {0}) — the index of the last released
cell in the segment si,

• me ∈ M — the object that synchronizes access to
nele and ner ;

• Me ⊆ E ×M — a dynamic oriented set of pairs
of sc-elements and corresponding synchronization
objects;

• nsle ∈ (N̄ ∪ {0}) — the index of the last engaged
segment in sc-memory (nsle = n),

• nsmax ∈ (N̄ ∪ {0}) — the maximum number of
segments in sc-memory;

65

• nslv ∈ (N̄ ∪ {0}) — the index of the last vacant
segment in sc-memory;

• nslr ∈ (N̄ ∪ {0}) — the index of the last released
segment in sc-memory;

• ms ∈ M — the object that synchronizes access to
S, nsle and nsmax

;
• mn

slv ∈ M — the object that synchronizes access
to nslv ;

• mn
slr ∈ M — the object that synchronizes access

to nslr ;
• SSPI = {engage, release} — internal program-
ming interface of sc-elements storage in sc-memory.

All allocated segments S may be free Sf ⊆ S or
engaged Se ⊆ S. The set of free sc-memory segments
Sf includes the set of vacant segments Sv ⊆ Sf and
the set of released segments Sr ⊆ Sf .

Cells in sc-memory segments E may be free Ef ⊆ E
and engaged Ee ⊆ E. The set of free sc-memory cells
Ef = {eijf | eijf ϵ sif , sif ϵ Sf} includes the set
of vacant cells Ev ⊆ Ef and the set of released cells
Er ⊆ Ef .

Consequently, the following statements hold for all sc-
memory segments and cells in them:

• Ef ∪ Ee = E, Ef ∩ Ee = ∅,
• Ev ∪ Er = Ef , E v ∩ Er = ∅,
• Sf ∪ Se = S, Sf ∩ Se = ∅,
• Sv ∪ Sr = Sf , S v ∩ Sr ⊆ Sf .
For the sets of engaged and released cells, the corre-

sponding transitions can be defined in the form of:
• operation of allocating a engage : Ef → Ee, which
changes the state of the cell from "released" to
"engaged":

engage() =

{
eij ∈ Ee, if ∃eij ∈ si, Ef ∧ n ≤ nsmax ,

Error, if n > nsmax
∨ |Ef | = 0;

• operation of releasing a cell in sc-memory segment
release : Ee → Ef , which changes the state of the
cell from "engaged" to "released":

release(eij) =

{
eij ∈ Ef , if eij ∈ Ee,

Error, if eij /∈ Ee.

The algorithm of the cell engaging operation in sc-
memory segment (engage) can be described as follows:

• Step 1: Try to find any vacant segment si in the set
Sv:
– If such a segment exists, go to step 2.
– If no such segment exists, skip to step 3.

• Step 2: Engage a new cell in the found vacant
segment si:
– Increase nele in segment si by 1.
– Occupy the cell eij with index nele in segment

si.

– Return the address of the engaged cell eij and
terminate.

• Step 3: Attempt to get a new segment from set S:
– If the number of engaged segments nsle is less
than the maximum nsmax

, create a new segment
si (set nele as 0) and add it to S.
∗ Increase nele in segment si by 1.
∗ Occupy the cell eij with index nele in segment

si.
∗ Return the address of the engaged cell eij and
terminate.

– If the maximum number of segments nsmax is
reached, go to step 4.

• Step 4: Try to get the released segment si from the
set Sr:
– If there is no such segment, report an error and
terminate.

– If such a segment exists, proceed to step 5.
• Step 5: Engage a new cell in the found released
segment si:
– Get the last released cell eij by its number in
segment ner .

– Occupy the cell eij with index ner in segment si.
– Update ner for the next released cell.
– Return the address of the engaged cell eij and
terminate.

The algorithm of the cell releasing operation in sc-
memory segment (release) can be described as follows:

• Step 1: Verify the correctness of the given address
of cell eij :
– If the cell address does not exist in sc-memory,
terminate with an error.

– If the cell address exists in sc-memory, proceed
to step 2.

• Step 2: Using the cell address, determine the corre-
sponding segment ei of the cell in sc-memory and
proceed to step 3.

• Step 3: Release the cell eij :
– Update the information about the cell eij , mark

it as released.
– Update the number of the last released cell in

segment ner .
– Go to step 4.

• Step 4: Update the information about the released
segments.
– If the released cell was the first released cell in
the segment, update the information of the last
released segment in sc-memory nslr .

– Go to step 5.
• Step 5: Terminate.

The described algorithms may include synchroniza-
tion mechanisms to ensure data integrity during multi-

66

threaded sc-memory accesses. All synchronization oper-
ations in these algorithms can be performed using ap-
propriate synchronization objects ms, me, mn

slv , mn
slr .

The model of the synchronization object will be dis-
cussed later.

Basically, the advantages of the described algorithms
are due to the advantages of the cell engaging algorithm
in sc-memory, which are as follows:

• The cell engaging algorithm in sc-memory tries to
find a vacant segment before creating a new one. If
there is no vacant segment, it tries to create a new
one if the maximum number of segments has not
been reached. This approach avoids wasting memory
on creating unnecessary segments.

• By updating the number of the last released cell in
a segment, the algorithm keeps track of which cells
are available for reuse. This tracking ensures that
the engaging process is fast and does not require
searching the entire memory for a released cell.

To analyze the complexity of these algorithms, let us
consider their main characteristics:

• In the algorithm of cell engaging operation in sc-
memory:
– finding a vacant segment and engaging a cell in it

requires traversing many segments and checking
their status, which can be accomplished in a time
proportional to the number of segments;

– creating a new segment and selecting a cell in it
requires a fixed number of operations independent
of the data size;

– finding a released segment also requires travers-
ing multiple segments.

• In the algorithm of cell releasing operation in sc-
memory:
– checking the correctness of the cell address and

determining the appropriate segment can be ac-
complished in a time proportional to the number
of segments, or faster if an efficient data structure
is used to store the segments;

– releasing a cell and updating segment information
requires a fixed number of operations.

The complexity of the algorithms depends on the
data structures used and how they are processed. As-
suming that multiple segments are processed efficiently,
for example using internal lists in released segments
and released segment cells, the underlying complexity
of the algorithms will be determined by the number of
operations required to process each step. Thus:

• The algorithm of cell engaging operation in sc-
memory can have a complexity from O(1) to O(n),
where n is the number of segments, depending on
whether a free segment is found or a new segment
needs to be engaged;

• The algorithm of cell releasing operation in sc-
memory basically has a complexity of O(1), since
most operations are performed in a fixed amount of
time, except for address correctness checking, which
may require O(n) in the worst case.

So, an sc-element storage is a set of cells, each of
which can store some sc-element (be engaged) or can be
empty (free):

(∀e ∈ E : (e ∈ Ee) ∨ (e ∈ Ef)).

Each cell eij ∈ E, eij ∈ si, si ∈ S has a unique
internal address a = ⟨i, j⟩ ∈ A. That is, the following
statement always holds:

(∀eij ∈ E,∃!a ∈ A : (eij ∈ si)∧(si ∈ S)∧(a = ⟨i, j⟩)).

Each cell stores either an sc-nodeN or an sc-connector
C:

(∀e ∈ E : (e ∈ N) ∨ (e ∈ EC)),

N ∪ C = E,N ∩ C = ∅.

It is assumed that if a cell stores some sc-element, it
stores information characterizing this sc-element. Each
cell in sc-memory e ∈ E can be represented as a tuple:

e = ⟨FI,EI, CI⟩,

where
• FI — characteristics of the stored sc-element, in-
cluding the type of sc-element and its states,

• EI — information about sc-elements incident with
the given sc-element,

• CI — information about the number of incoming
and outgoing sc-connectors for a given sc-element.

The characteristics of an sc-element FI can be repre-
sented as:

FI = ⟨t, s⟩,

where
• t ∈ T is the syntactic type of a given sc-element
(e.g., sc-node, sc-connector, ostis-system file, etc.),

• s ∈ ES is the state of the cell (e.g., "engaged",
"free", etc.).

T = Tn ∪ Tc,

Tn = {node, file}, Tc = {connector, arc, edge},

where
• T is the set of all possible syntactic types of sc-
elements;

• Tn is set of all possible syntactic types of sc-nodes,
node, file — actual sc-node label and ostis-system
file label, respectively;

67

• Tc is the set of all possible syntactic types of
sc-connectors, connector, arc, edge — the actual
sc-connector label, sc-arc label, and sc-edge label,
respectively;

ES = {engaged, free},

where
• ES is the set of all possible cell states;
• engaged — the cell is "engaged";
• free — the cell is "free".
Information about incident sc-connectors EI can be

represented as:

(∀n ∈ N : (n ∋ EI = ⟨bo, bi⟩)),

(∀c ∈ C : (c ∋ EI =

= ⟨bo, bi, b, e, nbo, pbo, nbi, pbi, neo, peo, nei, pei⟩)),

where
• bo ∈ A is the sc-address of the initial sc-connector
outgoing from the given sc element,

• ei ∈ A is the sc-address of the initial sc-connector
incoming into the given sc-element,

• b ∈ A is the sc-address of the initial sc-element of
the sc-connector,

• e ∈ A is the sc-address of the final sc-element of
the sc-connector,

• nbo ∈ A is the sc-address of the next sc-connector
outgoing from the initial sc-element,

• pbo ∈ A is the sc-address of the previous sc-
connector outgoing from the initial sc-element,

• nbi ∈ A is the sc-address of the next sc-connector
incoming into the initial sc-element,

• pbi ∈ A is the sc-address of the previous sc-
connector incoming into the initial sc-element,

• neo ∈ A is the sc-address of the next sc-connector
outgoing from the final sc-element,

• peo ∈ A is the sc-address of the previous sc-
connector outgoing from the final sc-element,

• nei ∈ A is the address of the next sc-connector
incoming into the final sc-element,

• pei ∈ A is the address of the previous sc-connector
incoming into the final sc-element.

In this case, the following statements are true:

(∀e ∈ E,∃!bo, bi ∈ A : (Inc(e, bo) ∧ Inc(e, bi))),

(∀ e ∈ C, ∃! nbo, pbo, nbi, pbi ∈ A :

((Inc(e, nbo) ∧ Inc(e, pbo)) ∧ (Inc(e, nbi) ∧Inc(e, pbi)))),

(∀ e ∈ C, ∃! neo, peo, nei, pei ∈ A :

((Inc(e, neo) ∧ Inc(e, peo)) ∧ (Inc(e, nei) ∧ Inc(e, pei)))),

where Inc is the binary relation of incidence of two
sc-elements.

Information about the number of incoming and outgo-
ing sc-connectors C can be represented as:

CI = ⟨cin, cout⟩,

where
• cin ∈ (N̄ ∪ {0}) is the number of incoming sc-
connectors in a given sc-element,

• cout ∈ (N̄ ∪ {0}) is the number of outgoing sc-
connectors from a given sc-element.

This information can be used to optimize the iso-
morphic search for sc-constructions over a given graph-
template [2].

The model of storage of sc-elements in sc-memory
provides:

• storage of sc-constructions, their sc-elements, char-
acteristics and incident relations between them;

• ability to create, modify, search and delete sc-
elements.

The advantages of this model are as follows:
• it provides efficient fragmentation and defragmenta-
tion of cells;

• algorithms for allocating and freeing a memory
segment have asymptotic complexity from O(1) to
O(n), where n is the number of segments that must
be traversed to find a free segment.

B. Model of storage of external information construc-
tions in sc-memory

The model of storage of external information construc-
tions in sc-memory can be represented as

FS = ⟨CH,Ms, nchle
, nchmax

,mch, tr,

TSO, SOF, FSO, FSPI⟩,

where
• CH = ⟨ch1, ch2, ..., chi, ..., chn⟩, i = 1, n is
the sequence of dynamically allocated file segments
in sc-memory of fixed size n;

• chi = {⟨⟨lsi1 , si1⟩, ..., ⟨lsij1 , eij⟩, ..., ⟨lsim , eim⟩⟩,
nsl , ms}, j = 1, m, — the i-th file segment
of fixed size m, consisting of cells – pairs of string
lengths lsij and strings themselves sij ∈ STR,

• nsl ∈ (N̄ ∪ {0}) — the index of the last engaged
cell in the file segment chi,

• ms ∈ M — the object that synchronizes access to
nsle ;

• Ms ⊆ CHS ×M — a dynamic oriented set of file
and cell pairs and their corresponding synchroniza-
tion objects;

• nchle
∈ (N̄ ∪ {0}) — the index of the last engaged

file segment in sc-memory (nchle
= n),

68

• nchmax
∈ (N̄ ∪ {0}) — the maximum number of

file segments in sc-memory;
• mch ∈M — the object that synchronizes access to
CH,nchle

andnchmax ;
• tr ⊂ TRM — rules (terms) for finding terms in
strings;

• TSO — correspondence between string terms and
file cell numbers with these sc-memory strings;

• SOF — correspondence between file cell numbers
with strings in sc-memory and ostis-system files of
which these strings are contents;

• FSO — correspondence between ostis-system files
and file cell numbers with sc-memory strings, which
are the contents of these strings;

• FSPI = {allocate, free, dump, load} — in-
ternal programming interface of file storage in sc-
memory.

Unlike sc-element storage, where the cell size is fixed
and cells can be allocated in advance as some fixed
sequence, this cannot be done in file storage, because
cells can store strings of unknown length in advance.
Therefore, the accounting of released cells, their frag-
mentation and defragmentation processes may be more
complicated. In this connection, the problem of external
fragmentation is not solved in this model, as it is solved
in the sc-element storage model.

Each file cell sij ∈ STR, sij ∈ chi, chi ∈ CH has
some unique internal address fa = ⟨i, j⟩ ∈ FA ⊂ A.
That is, the following statement is always true:

(∀sij ∈ STR, ∃!fa ∈ FA : (sij ∈ chi) ∧ (chi ∈ CH)∧

∧ (fa = ⟨i, j⟩)).

The allocate and free operations can be defined for
file segment cells. Their algorithms are quite simple, so
they will not be considered.

File storage specifies operations to enable saving
dump and loading load of all sc-memory.

This model is focused on the fact that any string can be
partitioned into a set of terms, by which, using the TSO
mapping, we can determine the indexes of strings that
contain these terms [23], [24]. Then, by string indexes it
is possible to obtain: from CH — the strings themselves,
from SOF — the ostis-system files that contain these
lines. Using the FSO mapping it is possible to find the
string, which is contained by the given ostis-system file.

TSO = TRM × FA,

SOF = FA× FN,FSO = FN × FA,FN ⊂ N.

The model of storage of external information construc-
tions in sc-memory provides:

• storing of the contents of ostis-system files;
• setting the contents to a given ostis file;

• retrieving contents from a specified ostis file;
• retrieving ostis-files by their contents;
• obtaining ostis-system files by their content sub-
string.

The advantages of this model are as follows:
• asymptotic complexity of adding new strings to the
storage is O(1) without taking into account the
complexity of access time to file storage segments;

• asymptotic complexity of searching ostis-system
files and their contents is O(1) without taking into
account the complexity of access time to segments
and cells of the file storage and correspondences
between ostis-system files and their contents.

C. Model of storage of subscriptions to events in sc-
memory

The model of storage of subscription to events in sc-
memory can be specified by the following tuple

RS = ⟨V,mv, RSPI⟩,

where
• V = {v1, v2, ..., vi, ..., vn}, i = 1, n is set of
subscriptions to events in sc-memory of size n;

• vi = ⟨e, tv, av, mv⟩ ∈ V is a subscription to an
event in sc-memory;

• e is an sc-element (a cell) in sc-memory that is being
"listened";

• tv ∈ Tv is a type of event in sc-memory;
• agv ∈ AG is an agent subscribed to an event;
• mv ∈ M is an object that synchronizes access to
subscription elements;

• RSPI = {subscribe, unsubscribe, notify} — in-
ternal programming interface of storage of subscrip-
tions to events in sc-memory.

All cells in sc-memory can E be listenable El ⊆ E
and non-listenable Enl ⊆ E. For them, the following
statements are true:

• El ∪ Enl = E, En ∩ Enl = ∅,
• El ∩ Ee = El, El ∩ Ef = ∅,
• Enl ∩ Ee = Enl, El ∩ Ef = ∅,

Tv = {aoc, aic, roc, ric, re, cc},

where
• aoc is the event of adding an outgoing sc-connector
from the listened sc-element;

• aic is the event of adding an incoming sc-connector
to the listened sc-element;

• roc is the event of removing an outgoing sc-
connector from the listened sc-element;

• ric is the event of removing an incoming sc-
connector from the listened sc-element;

• re is the event of removing the listened sc-element;
• cc is the event of changing the content of the listened
ostis-system file.

69

For the sets of listened and unlistened cells, the
corresponding transitions can be defined in the form of:

• operation of creating a subscription to an event in
sc-memory subscribe : E × Tv ×AG→ El:

subscribe(e, tv, agv) =

{
eij ∈ El, if eij ∈ Ee

Error, if eij /∈ Ee;

• operation of removing a subscription to an event in
sc-memory unsubscribe : El → Enl:

unsubscribe(eij) =

{
eij ∈ Enl, if eij ∈ Ee,

Error, if eij /∈ Ee.

In addition, the following operation can be defined for
the set of listened events notify : (El ×C)∪El → Pw:

notify(el, c) =

{
p ∈ Pw if el ∈ El, c ∈ C, Inc(el, c),

Error, otherwise;

The notify operation can be used to notify (initiate) a
process about a new event (creation of an outgoing arc
c from sc-element el, deletion of element el, etc.).

The model of storage of subscriptions to events pro-
vides:

• storing of event subscriptions in sc-memory;
• ability to subscribe and unsubscribe to an event in
sc-memory;

• ability to notify about an event in sc-memory.

D. Model of storage of processes in sc-memory
The model of storage of processes in sc-memory can

be defined as

PS = ⟨Pa, Qwp, nmap, PS, PSF, PAG,PSPI⟩,

where
• Pa ⊆ P is the set of active processes in sc-memory;
• Qwp is the queue of processes waiting to start in
sc-memory;

• nmap is the the maximum possible number of active
processes at a given time, |Qwp| ≤ nmap;

• PS is the mapping between active processes and
sc-element storage segments;

• PSF is the mapping between active processes and
file storage segments;

• PAG is the mapping between active processes and
agents;

• RSPI = {activate, deactivate} — internal pro-
gramming interface of storage of sc-memory pro-
cesses.

PS = (Pa ∪ Pw)× S,

PSF = (Pa ∪ Pw)× CH,

PAG = (Pa ∪ Pw)×AG.

The PS and PSF mappins are used to assign pro-
cesses to segments of the sc-element storage and file
storage. If there are enough free segments in the stor-
age, each process is assigned separate segments in both
storages.

All processes in sc-memory P can be waiting Pw ⊆ P ,
active Pa ⊆ P or finished Pf ⊆ P .

In this case, each active and waiting process corre-
sponds to an agent that executes it:

(∀p ∈ Pa, ∃!ag ∈ AG : (⟨p, ag⟩ ∈ PAG)),

(∀p ∈ Pw, ∃!ag ∈ AG : (⟨p, ag⟩ ∈ PAG)).

The following statements are true for all types of
processes:

• Pw ∪ Pa ∪ Pf = P, Pw ∩ Pa ∩ Pf = ∅;
• |Pa| ≤ nmap.
Transition between waiting and active processes can

be defined as the function activate : Pw → Pa:

activate(pw) =

=

pw ∈ Pa,

{
((∃si ∈ Sf) ∧ (ns ≤ nsmax

))

((∃chi ∈ CH) ∧ (nch ≤ nchmax
)),

Error, otherwise;

Transition between active and finished processes can
be defined as the function deactivate : Pa → Pf :

deactivate(pa) =

{
pa ∈ Pf , if , pa ∈ Pa,

Error, otherwise;

A process is considered to be finished if it is not active
and not waiting:

((p ∈ Pf)⇔ ((¬p ∈ Pa) ∧ (¬p ∈ Pw))).

The model of storage of sc-memory processes pro-
vides:

• efficient one-to-one allocation of writer-processes to
sc-element storage and file storage segments;

• queuing new processes when the device’s processing
power is limited, and activating processes from the
queue when some active process has finished its
work.

E. Model of coordinated access (synchronization) of
processes to sc-memory

Each synchronization object m ∈ M can be repre-
sented as [25], [26], [27]:

m = ⟨car, faw, Qrw,mu⟩,

where

70

• car is the active reader count;
• faw is the flag that shows whether a reader is active
at a given moment;

• Qrw is the queue of readers and writers;
• mu is the object used to synchronize access to
elements of a given synchronization object.

The queue of readers and writers is a sequence of
requests to acquire a particular resource:

Qrw = ⟨q1, q2, ..., qj , ..., qm⟩.

Each request qj includes a unique thread identifier
idj , a thread type (reader or writer) ttj , and a condition
variable that allows messages to be exchanged between
processes (threads) cvj :

qj = ⟨idj , ttj , cvj⟩.

This queue ensures that no thread is left hungry.
To coordinate access to data structures in sc-memory,

mechanisms for acquiring and releasing resources for
reader-threads Pr (hereinafter — readers) and writer-
threads Pw (hereinafter — writers) are required.

P = Pr ∪ Pw.

These mechanisms should include:
• a reader resource acquisition operation
(acquire_read) that allows a reader-thread to
acquire a synchronization object to start reading
the resource and suspend the execution of all
other writer-threads while there are readers in the
reader-writer queue;

• a reader resource release operation (release_read)
that allows a reader-thread to release the synchro-
nization object after finishing reading the resource
and notify all other writer-threads to execute if there
are no active readers in the reader-writer queue after
releasing the synchronization object;

• a writer resource acquisition operation
(acquire_write) that allows a writer-thread to
acquire a synchronization object to start modifying
the resource and suspend execution of all other
reader-threads and writer-threads while there is an
active writer in the reader-writer queue;

• a writer resource release operation (release_write)
that allows a writer-thread to release the synchro-
nization object after the resource modification is
complete and notify all other reader-threads and
writer-threads to execute if there are no active
readers in the reader-writer queue after the synchro-
nization object is released;

• a reader multi-resource acquisition operation (ac-
quire_read_n) that allows a reader-thread to acquire
multiple synchronization objects for reading in the
order necessary to prevent deadlocks;

• a reader multi-resource release operation (re-
lease_read_n) that allows a reader-thread to release
multiple synchronization objects in the reverse order
of acquisition;

• a writer multi-resource acquisition operation (ac-
quire_write_n) that allows a writer-thread to acquire
multiple synchronization objects to modify in the
order necessary to prevent deadlocks;

• a writer multi-resource release operation (re-
lease_write_n) that allows a writer-thread to release
multiple synchronization objects in the reverse order
of acquisition.

Allocation of sc-memory to writers can be done
segment-by-segment using a specialized table Tps, which
allows to determine whether a given vacant sc-memory
segment has been acquired by another writer:

s : S → Sv, Tps ⊆ Pw × Sv.

Let us recall that a free sc-memory segment can be
either a segment with vacant cells or a segment with
released cells. When allocating sc-memory, the first thing
that is done is to search for vacant segments that are not
used by other writers. If no such segments are found,
new segments are allocated. If there is no available space
in the sc-memory for new segments, writers can use
segments from the list of engaged vacant segments.

To ensure coordinated read access to segments, each
segment contains a unique synchronization object.

ms : S ×M → Sm,

mch : CH ×M → CHm.

In addition to segments, synchronization objects are
also temporarily assigned to sc-memory cells and events
to be registered in it. Synchronization objects of sc-
memory cells can be stored in a specialized table Tem.
These objects are used to synchronize access to the sc-
element information contained in the sc-memory ele-
ment:

Tem ⊆ A×M.

These objects synchronize the subscription and unsub-
scription to events through a single table, as well as the
initiation of the sc-agents themselves

vi = ⟨tiv, Ai
v, mi

v⟩, tiv ∈ Tv, A
i
v ⊆ Av,m

i
v ∈M,

vm : V ×M → Vm.

The model of synchronization of process access to sc-
memory provides:

• parallel access to sc-memory, i.e. the possibility of
parallel execution of actions in sc-memory without
violating correctness of data structures in it;

71

• absence of deadlocks, races and hungry processes
in sc-memory;

• fast parallel creation of sc-elements in sc-memory
due to distribution of processes over sc-memory
segments;

• fast non-blockable parallel search of sc-
constructions provided that no other operations are
performed on these sc-constructions.

F. Model of sc-memory programming interface
The model of sc-memory programming interface can

be defined as follows

PI = NT × CE×E×T × FN×L×

×{EE×{E∪T}×E ∪ E{E∪T}×T×E ∪ EE×T×{E∪T}}×

× TE× FL×LF ×{⊤,⊥}E× V E×Tv×AG×{⊤,⊥}V

where
• NT is the operation of creating an sc-node with the
specified type;

• CE×E×T is the operation of creating an sc-
connector between two given sc-elements with the
specified type;

• FN×L is the operation of setting the contents to an
sc-node;

• {EE×{E∪T}×E ∪ E{E∪T}×T×E ∪EE×T×{E∪T}}
are operations of searching for three-element sc-
constructions by given first and/or second and/or
third sc-elements;

• TE is the operation of obtaining the type of the
given sc-element;

• FL is the operation of obtaining ostis-system files
by their contents;

• LF is the operation of obtaining the content from
the ostis-system file;

• {⊤,⊥}E is the operation of deleting the specified
sc-element.

• V E×Tv×AG — operation of creating a subscription
to an event in sc-memory;

• {⊤,⊥}V — operation of removing a subscription
to an event in sc-memory;

Let us consider some of the algorithms of the de-
scribed operations. The algorithm of the operation of
creating an sc-node with the specified type NT can be
described as follows:

• Step 1: Verify that the specified sc-element type is
a subtype of sc-node.
– If the specified sc-element type is not a subtype

of sc-node, then terminate the algorithm with an
error.

– Otherwise, proceed to step 2.
• Step 2: Allocate a new sc-memory cell for the sc-
node.

– If the sc-memory is engaged, terminate the algo-
rithm with an error.

– Otherwise, proceed to step 3.
• Step 3: Set the type for the cell as sc-node with the
specified type, go to step 4.

• Step 4: Return the resulting sc-address of the sc-
node and terminate.

The algorithm for the operation of creating an sc-
connector between two given sc-elements with the spec-
ified type CE×E×T can be described as follows:

• Step 1: Verify that the specified sc-element type is
a subtype of sc-connector.
– If the specified sc-element type is not a subtype

of sc-node, then terminate the algorithm with an
error.

– Otherwise, proceed to step 2.
• Step 2: Check that the sc-addresses of the start and
end sc-elements are valid.
– If the sc-address is not valid, then terminate the
algorithm with an error.

– Otherwise, proceed to step 3.
• Step 3: Allocate a new sc-memory cell for the sc-
connector.
– If the sc-memory is engaged, terminate the algo-

rithm with an error.
– Otherwise, proceed to step 4.

• Step 4: Set the type for the cell as sc-connector with
the specified type, go to step 5.

• Step 5: Add the sc-connector to the list of outgoing
and incoming arcs of the start and end sc-elements,
go to step 6.

• Step 6: Notify the outgoing and incoming arc addi-
tion events, go to step 7.

• Step 7: Return the resulting sc-connector address
and terminate.

The algorithm of the operation of deleting a given sc-
element {⊤,⊥}E can be described as follows:

• Step 1: Attempt to acquire a cell in sc-memory by
the sc-address of the sc-element.
– If the cell is not found, terminate the algorithm
with an error.

– Otherwise, proceed to step 2.
• Step 2: Initialize the stack to remove sc-elements,
go to step 3.

• Step 3: Put the sc-address of the sc-element to be
deleted into the deletion stack, go to step 4.

• Step 4: Place the sc-addresses of all sc-connectors
for which the given sc-element is the start or end sc-
element and the sc-addresses of all connectors for
which the found sc-connectors are the start or end
sc-elements on the deletion stack, go to step 5.

• Step 5: While the deletion stack is not empty, set
the cells for the sc-elements as released and release

72

all those cells.
– For all sc-connectors to be deleted, notify outgo-

ing and incoming sc-connector deletion events.
– For all sc-cells to be deleted, notify sc-cell dele-
tion events.

– Go to step 6.
• Step 6: Destroy the stack for sc-element deletion, go
to step 7.

• Step 7: Terminate.
The algorithm for the operation of setting the content

to a given sc-node FN×L can be described as follows:
• Step 1: Attempt to retrieve a cell in sc memory by
the sc address of the sc node.
– If the cell is not found, then terminate the algo-

rithm with an error.
– Otherwise, proceed to step 2.

• Step 2: Change the sc-node type to an ostis-system
file, go to step 3.

• Step 3: Add the string to the file storage of sc-
memory.
– Add the string to a free segment of the file

storage.
– Assign matches between this string and the spec-

ified ostis file.
– Notify the event of changing the content of the

ostis-system file.
– Go to step 4.

• Step 4: Terminate.
The principles of search operations were discussed in

[2].
This programming interface provides all the necessary

functionality for working with sc-constructions, file con-
structions, events and processes in the memory.

G. Conclusions
The proposed model of the shared semantic memory

includes a formal description of the following (!):
• how to represent, store, and process graph and string
constructions, events, and processes in the memory;

• how to ensure efficient execution of operations in
this shared memory;

• how to coordinate multiple processes running at the
same time on the same memory location,

• how to efficiently utilize the available computing
power, etc.,

and allows to (!):
• efficiently organize joint storage of graph construc-
tions and string content of external information con-
structions not represented as a graph, using graph-
dynamic and event-driven models;

• efficiently manage the address space, i.e. distribute
information about these constructions the in mem-
ory in the most effective way;

• efficiently allocate processes to work with these
constructions in single-threaded and multi-threaded
environments;

• provide coordinated (synchronized) execution of sev-
eral processes in one memory;

• ensure consistency of operations at the level of rep-
resentation and processing of data in the memory.

This model has many merits, but the following issues
remain unresolved:

• how to ensure the security of information storage
and processing, that is:
– how to ensure access rights for constructions

stored in the memory;
– how to efficiently process and assign these access

rights to processes;
– and more;

• how to ensure consistency of operations at the
knowledge representation and processing level, i.e.:
– how to implement transactions for graphs;
– how to ensure the integrity and atomicity of some

group of operations on a subgraph;
– how to ensure error-free execution of these trans-
actions;

– and more;
• how to ensure the storage and processing of infor-
mation in teams of intelligent systems [28], that is:
– how to organize storage and processing of infor-

mation in distributed memory, i.e. in memory not
on one device, but on multiple devices;

– how to efficiently organize data transfer over a
network between several devices;

– and more;
• how to organize the configuration of memory com-
ponents from the memory itself.

• and so on.
Nevertheless, the results of this paper are very signif-

icant for future work. These questions will be discussed
in the following papers. Let us consider some obtained
quantitative characteristics of the implementation of the
proposed model.

IV. The software implementation of sc-memory for
next-generation intelligent systems

A. Description of the sc-memory implementation
The current version of sc-machine is implemented on

the Linux operating system (Ubuntu-22.04) [29] and is
available on GitHub [30]. When developing sc-machine
according to the described model, we used modern
development environments (CLion, VSCode), container-
ization tools (Docker), programming languages (C, C++,
CMake), as well as standard libraries and frameworks
supplied together with compilers of the programming
languages used. The development was based on the
models and tools described in the previous section, as

73

well as the OSTIS Technology Standard described in the
current version of the OSTIS-2023 monographs [9].

The current Software implementation of sc-memory
has the following features:

• The memory allocation and destruction mechanisms
of the GLib library are used to manage dynamic
memory.

• Prefix trees [31] and linked lists are used as data
structures to store information constructions that do
not belong to SC-code. The reasons for that are as
follows [32]:
– prefix structures are fairly easy to understand and

minimal in their syntax;
– prefix structures are convenient enough to store
and handle "key-value" relations;

– access to a value by a key occurs in the worst
case for the length of this key [33].

The Implementation of file memory allows storing
and searching any kind of information constructs
(including binary files).

• To synchronize processes in sc-memory, monitors
are implemented and used [34], [27]. They provide:
– locking mechanisms to prevent multiple processes

from simultaneously accessing shared resources,
eliminating the possibility of mutual exceptions,
race conditions, and data access conflicts;

– high-precision time synchronization between pro-
cesses that allows them to work in a coordinated
mode, which eliminates the possibility of some
processes being hungry.

The implementation of monitors uses mutexes, con-
dition variables, and queues.

• The current Programming interface of the Software
implementation of sc-memory allows:
– implement platform-dependent components to a

necessary and sufficient extent, almost indepen-
dently of sc-memory implementation.

– implement basic tools for designing platform-
independent ostis-systems.

• The current Implementation of sc-memory is fully
consistent with the current Implementation of scp-
interpreter.

In general, sc-memory can be implemented in different
ways. For example, another variant of ostis-platform sc-
memory can be realized by a program implementation of
Neo4j DBMS. The difference between such a possible sc-
memory implementation and the current one is that the
storage of graph constructions and the control of the flow
of actions over them should be realized more by means
provided by Neo4j DBMS, while the representation of
graph constructions should be implemented in its own
way, because it depends on the SC-code syntax. [18].

B. Efficiency of sc-memory operations
The current Software implementation of sc-memory

in the Software platform for ostis-systems allows to
store and represent sc-constructions, external information
constructions not belonging to SC-code, as well as to
control and coordinate processes in it.

The results of sc-memory operations testing, which
includes the implementation of the process control model,
showed that parallel execution of sc-memory operations
is efficient when the number of operations is large
enough (e.g., 1,000,000 operations) (Table 1).

Table I
Efficiency of using 4 physical threads to perform 1,000,000

sc-memory operations compared to 1 physical thread

Number of
physical threads

1 thread 4 threads
Response
time, ms

Response
time, ms

Speedup,
times

Operations of addition (modification)
Operation of sc-
node creation

958,025 369,680 2.591

Operation of sc-
connector cre-
ation

1,299.740 787.001 1.652

Operation of
adding content
to ostis-system
file

29,885.500 9,555.450 3.128

Operations of search
Operation
of searching
sc-connectors
outgoing from
a given sc-
element

642.378 203.005 3.164

Operation of
searching an
ostis-system
file by its
contents

1,608.650 928.555 1.732

Operations of deletion
Operation of
deleting an
sc-element

1,850.950 1,746.270 1,060

Operation
of deleting
sc-connectors
outgoing from
a given sc-
element

1,704.620 2,115.500 0.806

Testing and evaluation of the effectiveness of the ostis-
systems software platform were conducted on one of its
latest versions — 0.9.0. This version of the platform
solved the problem of controlling processes in the shared
semantic memory. During the testing we calculated the
main efficiency (performance) indicators of operations
over sc-memory in single-threaded and multithreaded
environments: response time and throughput, and also
calculated the speedup [35] obtained by using parallelism
when performing a group of operations of the same
class over sc-memory [36]. The computer used was an

74

HP ProBook Hewlett Packard laptop with a Intel(R)
Core(TM) i7-4900MQ processor (4 cores with 2 threads)
with a configured core frequency of 3.20 GHz, 16 GB
RAM, and 256 GB SSD.

At the same time, parallel execution of a small number
of operations over sc-memory (for example, 100 or
10,000 operations) in some cases can be worse than their
sequential execution (Table 2).

This behavior is related to the peculiarities of the con-
trol mechanisms of the processes in the shared semantic
memory, the classes of operations to be performed, and
their specified input values in the context of the problem
to be solved. For example, all sc-construction search oper-
ations with the same sc-elements, executed in parallel, do
not block each other. For example, the speed of parallel
execution of operations on ostis-system files depends
on the size of the buffer used when reading external
information constructions and writing them to disk, as
well as on the length of the information constructions
themselves.

Table II
Efficiency of using 4 physical threads to perform 100 sc-memory

operations compared to 1 physical thread

Number of
physical threads

1 thread 4 threads
Response
time, ms

Response
time, ms

Speedup,
times

Operations of addition (modification)
Operation of sc-
node creation

0.099 1.306 0.076

Operation of sc-
connector cre-
ation

0.150 0.422 0.356

Operation of
adding content
to ostis-system
file

9.521 4.128 2.307

Operations of search
Operation
of searching
sc-connectors
outgoing from
a given sc-
element

0.530 0.241 2.200

Operation of
searching an
ostis-system
file by its
contents

0.339 1.453 0.233

Operations of deletion
Operation of
deleting an
sc-element

0.144 1.494 0.096

Operation
of deleting
sc-connectors
outgoing from
a given sc-
element

0.182 0.938 0.194

The figure 1 shows Dependence of speedup coefficient
from parallel execution of a group of operations of the
same class on 4 processes on the number of operations

in this group, and the figure 2 shows Dependence of the
execution time of a group of operations on the number
of processes used.

C. Efficiency of network operations over sc-memory
Network access to sc-memory is provided by the

server subsystem of the ostis-systems software platform,
implemented on the basis of Websocket and JSON
languages (protocols) and providing network operations
(commands) over sc-memory [3].

In the process of testing the implementation, the
throughput of its commands was calculated. During the
load testing a test client system implemented in C++ was
used. The same device was used as the device used for
testing operations over sc-memory. As a result, it was
found out that when sending 1000 different commands:
commands for creating sc-elements, commands for pro-
cessing contents of ostis-system files and commands for
deleting sc-elements— the time spent on their processing
did not exceed 0.2 seconds. At the same time, in some
cases it took no more than 0.14 seconds to process 1000
commands for creating sc-elements, while for commands
for deleting sc-elements it took no more than 0.12
seconds, commands for processing the contents of ostis-
system files — no more than 0.10 seconds, commands
to search for sc-constructions isomorphic to a given five-
element graph-template — no more than 0.45 seconds.

D. Conclusions
From the test results, it is clear that the current

implementation of the ostis-systems software platform is
an effective means of processing distributed information
using both the software interface and the network inter-
face and communication protocols.

The current Implementation of sc-memory provides:
• stability in single-threaded and multi-threaded
modes;

• dast speed of work in single-threaded and multi-
threaded modes;

• reliability of knowledge and data storage and pro-
cessing in single- and multi-threaded modes.

The proposed shared semantic memory model enables
efficient tracking and synchronization of parallel data
accesses. The implementation of this model demonstrates
a significant increase (by 2-3 orders of magnitude) in
the throughput of parallel task execution compared to
previous versions of the platform. However, to ensure
(causal, sequential) consistency of processes and their
operations, besides the data level, it is necessary to
manage the knowledge level [37] .

V. Conclusion
In this paper, a model and implementation of the

shared semantic memory has been proposed and dis-
cussed in detail, including (!):

75

Figure 1. Dependence of speedup coefficient from parallel execution of a group of operations of the same class on 4 processes on the number
of operations in this group

Figure 2. Dependence of the execution time of a group of operations on the number of processes used

76

• a storage for unified representation and processing
of graph constructions;

• a storage for unified representation of string con-
structions used as file contents in graph construc-
tions;

• a storage for managing events in this memory;
• a storage for managing processes running in this
memory;

• a set of operations for working with this memory.
The proposed model of the shared semantic memory

includes:
• models and algorithms for allocating and releasing
cells in this memory, providing:
– reusability of the released memory segments;
– ability to utilize new vacant memory segments;

• Models and algorithms to efficiently allocate pro-
cesses in this memory;
– rapid parallel creation of elements in the memory

by allocating processes over the segments of the
memory;

– fast unblockable parallel search of constructions,
provided there are no other operations on these
constructions.

• Models and algorithms for managing subscriptions
to events in this memory;

• Models and algorithms for synchronizing the exe-
cution of processes in the shared memory sections,
providing:
– parallel access to sc-memory, i.e. possibility of

parallel execution of actions in sc-memory with-
out violating correctness of the data structures in
it;

– absence of deadlocks, races and hungry processes
operating in sc-memory.

Promising directions to further this line of work are:
• development of a model for distributed unified rep-
resentation and processing of information in the
unified semantic memory;

• development of a model for representation and stor-
age of platform-dependent agent programs;

• development of a consistency model to ensure cor-
rectness of agents’ operation on constructions in the
memory;

• development of a model of memory configuration
from the memory itself.

In addition, other equally important areas of work are:
• improving the documentation of the current Imple-
mentation of sc-memory and the current Software
implementation of ostis-platform;

• improvement of methodologies and tools for devel-
oping documentation of software systems;

• improvement and mass distribution of the Software
implementation of ostis-platform and intelligent sys-
tems developed on its basis.

The formally described model of semantic memory
is consistent with the previously described ontological
model of this memory [3]. The author of this paper
believes that the used approach to modeling of complex
objects will help to simplify the understanding of the
operation of intelligent systems developed according to
the principles of the OSTIS Technology.

Acknowledgment

The author would like to thank the scientific teams of
the departments of Intelligent Information Technologies
of Belarusian State University of Informatics and Radio-
electronics and Brest State Technical University for their
help in the work and valuable comments.

References

[1] N. Zotov, “Design principles, structure, and development
prospects of the software platform of ostis-systems,” Otkrytye se-
manticheskie tekhnologii proektirovaniya intellektual’nykh system
[Open semantic technologies for intelligent systems], pp. 67—-76,
2023.

[2] ——, “Implementation of information retrieval subsystem in
the software platform of ostis-systems,” Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open se-
mantic technologies for intelligent systems], pp. 77–94, 2023.

[3] ——, “Software platform for next-generation intelligent computer
systems,” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelli-
gent systems]. BSUIR, Minsk, 2022, pp. 297—-326.

[4] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva
i jekspluatacii semanticheski sovmestimyh gibridnyh
intellektual’nyh komp’juternyh sistem [Open technology of
ontological design, production and operation of semantically
compatible hybrid intelligent computer systems], V. Golenkov,
Ed. Minsk: Bestprint [Bestprint], 2021.

[5] V. Golenkov et al., “Associative semantic computers for intelligent
computer systems of a new generation,” in Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
Semantic Technologies for Intelligent Systems (OSTIS)], vol. 7.
BSUIR, Minsk, 2023, pp. 39–60.

[6] V. Golenkov, “Ontology-based design of intelligent systems,”
Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], pp. 37–56, 2017.

[7] D. Shunkevich, “Ontology-based design of hybrid problem
solvers,” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelli-
gent systems]. Cham: Springer International Publishing, 2022,
pp. 101–131.

[8] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker, and M. E.
Vidal, “Towards a knowledge graph for science,” in Proceedings
of the 8th international conference on web intelligence, mining
and semantics, 2018, pp. 1–6.

[9] V. Golenkov, Ed., Tehnologija kompleksnoj podderzhki
zhiznennogo cikla semanticheski sovmestimyh intellektual’nyh
komp’juternyh sistem novogo pokolenija [Technology of complex
life cycle support of semantically compatible intelligent computer
systems of new generation]. Bestprint, 2023.

[10] A. Palagin and N. Petrenko, “To the question of system-
ontological integration of subject area knowledge,” Mathematical
Machines and Systems, vol. 1, no. 3-4, pp. 63–75, 2007.

[11] M. Orlov, “Comprehensive library of reusable semantically com-
patible components of next-generation intelligent computer sys-
tems,” in Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems]. Minsk : BSUIR, 2022, pp. 261–272.

77

[12] V. Golenkov, N. Guliakina, V. Golovko, V. Krasnoproshin,
“Methodological problems of the current state of works in
the field of artificial intelligence,” in Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open se-
mantic technologies for intelligent systems], ser. 5, V. Golenkov,
Ed. BSUIR, Minsk, 2021, pp. 17–24.

[13] V. Ryen, A. Soylu, and D. Roman, “Building semantic knowledge
graphs from (semi-) structured data: a review,” Future Internet,
vol. 14, no. 5, p. 129, 2022.

[14] P. Barnaghi, A. Sheth, and C. Henson, “From data to actionable
knowledge: Big data challenges in the web of things [guest editors’
introduction],” IEEE Intelligent Systems, vol. 28, no. 6, pp. 6–11,
2013.

[15] C. Kellogg, “From data management to knowledge management,”
Computer, vol. 19, no. 01, pp. 75–84, 1986.

[16] D. Shunkevich, “Universal model of interpreting logical-semantic
models of intelligent computer systems of a new generation,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2022, p. 285–296.

[17] Golenkov, V. V., “Graphodynamic models of parallel knowledge
processing: principles of construction, implementation, and de-
sign,” in Open semantic technologies for designing intelligent
systems (OSTIS-2012): Proceedings of the II International Sci-
entific and Technical Conference, Minsk, February 16-18, 2012,
Belarusian State University of Informatics and Radioelectronics;
editorial board: V. V. Golenkov (chief editor) [et al.]. Minsk,
2012, pp. 23–52.

[18] V. Ivashenko, “General-purpose semantic representation language
and semantic space,” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], ser. Iss. 6. Minsk : BSUIR, 2022,
pp. 41–64.

[19] V. V. Golenkov and N. A. Gulyakina, “Structuring the semantic
space,” in Open semantic technologies for designing intelligent
systems (OSTIS-2014): Proceedings of the IV International Sci-
entific and Technical Conference, V. V. Golenkov, Ed. Minsk:
BSUIR, 2 2014, pp. 65–78, chief editor Golenkov, V. V. [and
others].

[20] ——, “Principles of building mass semantic technology for com-
ponent design of intelligent systems,” in Open semantic technolo-
gies for designing intelligent systems (OSTIS-2011): Proceedings
of the international scientific and technical conference, V. V.
Golenkov, Ed. Minsk: Belarusian State University of Informatics
and Radioelectronics, 2 2011, pp. 21–58, chief editor Golenkov,
V. V. [et al.].

[21] D. Shunkevich, “Hybrid problem solvers of intelligent computer
systems of a new generation,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], no. 6, pp. 119–144, 2022.

[22] “Neo4j graph Database Platform | Graph Database Management
System [Electronic resource],” April 2024. [Online]. Available:
https://neo4j.com/

[23] T. Kahveci and A. K. Singh, “An efficient index structure for
string databases,” in VLDB, vol. 1, 2001, pp. 351–360.

[24] M. Barsky, U. Stege, and A. Thomo, “Structures for indexing
substrings,” in Full-Text (Substring) Indexes in External Memory.
Springer, 2012, pp. 1–15.

[25] N. V. Zotov, “Model of process management in shared semantic
memory of intelligent systems,” in Information Technologies and
Systems 2023 (ITS 2023), L. Y. Shilin, Ed. Minsk: Belarusian
State University of Informatics and Radioelectronics, 11 2023, pp.
53–54, proceedings of the International Scientific Conference.

[26] J. L. W. Kessels, “An alternative to event queues for synchroniza-
tion in monitors,” Communications of the ACM, vol. 20, no. 7,
pp. 500–503, 1977.

[27] C. A. R. Hoare, “Monitors: An operating system structuring
concept,” Communications of the ACM, vol. 17, no. 10, pp. 549–
557, 1974.

[28] A. Zagorskiy, “Principles for implementing the ecosystem of next-
generation intelligent computer systems,” in Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open

semantic technologies for intelligent systems]. BSUIR, Minsk,
2022, p. 347–356.

[29] R. Love, Linux system programming: talking directly to the kernel
and C library. O’Reilly Media, Inc., 2013.

[30] “Software implementation of semantic networks processing stor-
age [Electronic resource],” 2024, mode of access: https://github.
com/ostis-ai/sc-machine. — Date of access: 30.03.2024.

[31] R. Bayer, “Prefix b-trees,” ACM Transactions on Database Sys-
tems (TODS), vol. 2, no. 1, pp. 11–26, 1977.

[32] P. Ferragina and R. Grossi, “The string b-tree: A new data struc-
ture for string search in external memory and its applications,”
Journal of the ACM (JACM), vol. 46, no. 2, pp. 236–280, 1999.

[33] D. Belazzougui, “Fast prefix search in little space, with applica-
tions,” in European Symposium on Algorithms, 2010, pp. 427–
438.

[34] M. I. Cole, Algorithmic skeletons: structured management of
parallel computation. Pitman London, 1989.

[35] L. Gonnord, L. Henrio, L. Morel, and G. Radanne, “A survey on
parallelism and determinism,” ACM Computing Surveys, vol. 55,
no. 10, pp. 1–28, 2023.

[36] N. V. Zotov, “Quantitative indicators of operations efficiency over
shared semantic memory of intelligent systems,” in Information
Technologies and Systems 2023 (ITS 2023), L. Y. Shilin, Ed.
Minsk: Belarusian State University of Informatics and Radio-
electronics, 11 2023, pp. 51–52, proceedings of the International
Scientific Conference.

[37] L. P. Miret, “Consistency models in modern distributed systems.
an approach to eventual consistency,” Master. MA thesis. Univer-
sitat Politecnica de Valencia, Spain, 2014.

ФОРМАЛЬНАЯМОДЕЛЬ ОБЩЕЙ
СЕМАНТИЧЕСКОЙ ПАМЯТИ ДЛЯ
ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

НОВОГО ПОКОЛЕНИЯ
Зотов Н.В.

В работе подробно рассматривается формальная модель
семантической памяти для интеллектуальных систем, струк-
тура, её элементы, соответствия между ними, правила и ал-
горитмы. Описывается реализация на основе данной модели,
приводятся количественные показатели её эффективности.

Received 15.03.2024

78

https://neo4j.com/
https://github.com/ostis-ai/sc-machine
https://github.com/ostis-ai/sc-machine

	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\pdf\5. papers OSTIS24.pdf
	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\papers\05. OSTIS24_ID41_Zotov_FormaMoSSMfN_GIS_09_04.pdf

