
Current State of ostis-systems Component
Design Automation Tools
Maksim Orlov, Anna Makarenko, Ksenija Petrochuk

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: orlovmaksimkonst@gmail.com, anna.makarenko1517@gmail.com, xenija.petrotschuk@gmail.com

Abstract—In the article, an approach to the design of
intelligent systems is considered, focused on the use of com-
patible reusable components, which significantly reduces
the complexity of developing such systems. The key means
of supporting the component design of intelligent computer
systems is the manager of reusable components proposed
in the work.

Keywords—Component design of intelligent computer
systems; reusable semantically compatible components;
knowledge-driven systems; semantic networks; OSTIS Tech-
nology.

I. Introduction
The main result of artificial intelligence is not the

intelligent systems themselves, but powerful and effec-
tive technologies for their development. The analysis of
modern technologies for designing intelligent computer
systems shows that along with very impressive achieve-
ments, the following serious problems occur [1]–[3]:

• high requirements for the initial qualifications of
users and developers. Artificial intelligence tech-
nologies are not focused on the wide range of
developers and users of intelligent systems and,
therefore, have not received mass distribution;

• modern information technologies are not oriented
to a wide range of developers of applied computer
systems;

• there is no general-unified solution to the prob-
lem of semantic compatibility of computer systems
[4]. There are no approaches that allow integrating
scientific and practical results in the field of arti-
ficial intelligence, which generates a high degree
of duplication of results and a lot of non-unified
formats for representation of data, models, methods,
tools, and platforms;

• lack of powerful tools for designing intelligent com-
puter systems, including intelligent training subsys-
tems, subsystems for collective design of computer
systems and their components, subsystems for verifi-
cation and analysis of computer systems, subsystems
for component design of computer systems;

• long terms of development of intelligent computer
systems and high level of complexity of their main-
tenance and extension;

• the degree of dependence of artificial intelligence
technologies on the platforms on which they are
implemented is high, which leads to significant
changes in technologies when transitioning to new
platforms;

• the degree of dependence of artificial intelligence
technologies on subject domains in which these
technologies are used is high;

• there is a high degree of dependence of intelligent
computer systems and their components on each
other; the lack of their automatic synchronization.
The absence of self-sufficiency of systems and com-
ponents, their ability to operate separately from each
other without loss of expediency of their use;

• increase in the time to solve the problem with the
expansion of the functionality of the problem solver
and with the expansion of the knowledge base of
the system [5];

• lack of methods for designing intelligent computer
systems. Updating computer systems often boils
down to the development of various kinds of
“patches”, which eliminate not causes of the iden-
tified disadvantages of updated computer systems
but only some consequences of these causes;

• poor adaptability of modern computers to the ef-
fective implementation of even existing knowledge
representation models and models for solving prob-
lems that are difficult to formalize, which requires
the development of fundamentally new computers
[6];

• there is no single approach to the allocation of
reusable components and the formation of libraries
of such components, which leads to a high complex-
ity of reuse and integration of previously developed
components in new computer systems.

• there is a variety of semantically equivalent imple-
mentations of problem-solving models, duplication
of knowledge base and user interface components
that differ not in the essence of these components
but in the form of representation of the processed
information;

To solve these problems, it is necessary to implement a

49

comprehensive technology for designing intelligent com-
puter systems, which includes the following components:

• a model of an intelligent computer system [7];
• a library of reusable components and corresponding
tools to support component design of intelligent
computer systems;

• an intelligent integrated automation system for the
collective design of intelligent computer systems,
including subsystems for editing, debugging, per-
formance evaluation, and visualization of developed
components, as well as a simulation subsystem;

• methods of designing intelligent computer systems;
• an intelligent user interface;
• training subsystems for designing intelligent com-
puter systems, including a subsystem for conducting
a dialogue with the developer and the user;

• a subsystem for testing and verification of intelligent
computer systems, including a subsystem for testing
the compatibility of the developed system with other
systems;

• an information security support subsystem for the
intelligent computer system.

The key component of the technology for intelligent
systems design is a component design that is represented
as a library of reusable components and the correspond-
ing tools for supporting component design of intelligent
computer systems. With its help, it is possible to effec-
tively implement the typical subsystems to support the
design of intelligent computer systems.

II. Analysis of existing approaches to solving the
problem

The problem is the lack of accessibility and integration
in artificial intelligence technologies, which have high
initial qualification requirements, lack a unified semantic
compatibility solution, and have a high degree of de-
pendency on platforms, subject areas, and components,
leading to long development times, high maintenance
costs, and difficulties in reusing and integrating previ-
ously developed components in new systems.

Existing approaches to solving the problem include
component libraries and package managers of program-
ming languages and operating systems, as well as sepa-
rate systems and platforms with built-in components and
means for saving created components.

The components of the library may be implemented in
different programming languages (which leads to the fact
that for each programming language different libraries
are developed with their own solutions to various com-
mon situations), and may be located in different places,
which leads to the fact that the library needs a tool to
find components and install them.

Modern package managers such as npm, pip, papt,
maven, poetry and others have the advantage that they
are able to resolve conflicts when installing dependent

components, but they do not take into account the
semantics of components, but only install components
by the [8] identifier. Libraries of such components are
only a repository of components, without taking into
account the purpose of components, their advantages
and disadvantages, areas of application, the hierarchy
of components and other information necessary for the
intellectualization of component design of computer sys-
tems. Searching for components in component libraries
corresponding to these package managers is reduced
to searching by component identifier. Modern package
managers are only "installers" without automatic integra-
tion of components into the system. Also a significant
disadvantage of the modern approach is the platform
dependency of components. Modern component libraries
are oriented only to a certain programming language,
operating system or platform.

The pip package manager is a package management
system that is used to install packages from the Python
Package Index, which is some library of such packages.
Pip is often installed with Python. The pip package man-
ager is used only for the Python programming language.
It has many functions for working with packages:

• installation of a package;
• installation of a package of a specialized version;
• deletion of a package;
• reinstallation of a package;
• display of installed packages;
• search for packages;
• verification of package dependencies;
• creation of a configuration file with a list of installed
packages and their versions;

• installation of a set of packages from a configuration
file.

Figure 1. pip configuration file

The pip package manager works well with dependen-
cies, displays unsuccessfully installed packages, and also
displays information about the required package version
in case of conflict with another package. An example of
a pip package configuration file is shown in Figure 1.

Another example of a package manager is npm. npm
is a package manager for the javaScript language. The

50

npm package manager has a component library (npm
Registry) and a command-line user interface. The source
code for the package manager and related npm tools can
be found at https://github.com/npm. The most commonly
used npm commands are:

• initializing the project (creating the package.json
file);

• install all packages from the package.json file;
• install a package by name;
• deleting a package by name;
• check for obsolete packages;
• display help;
• view installed packages;
• search for packages;
• update packages.
The component approach to the design of computer

systems can be implemented within various languages,
platforms, and applications. Let us consider some of
them.

The ontology implemented in OWL (Web Ontology
Language) is a set of declarative statements about the
entities of the dictionary of a subject domain (discussed
in more detail in [9]). OWL assumes the concept of an
“open world”, according to which the applicability of
subject domain descriptions placed in a specific physi-
cal document is not limited only to the scope of this
document — the contents of the ontology can be used
and supplemented by other documents adding new facts
about the same entities or describing another subject
domain in terms of this one. The “openness of the
world” is achieved by adding a URI to each element of
the ontology, which makes it possible to understand the
ontology described in OWL as part of a universal unified
knowledge.

The IACPaaS platform is designed to support the
development, management, and remote use of applied
and instrumental multi-agent cloud services (primarily
intelligent ones) and their components for various subject
domains [10].

The IACPaaS platform supports:
• the basic technology for the development of applied
and specialized instrumental (intelligent) services
using the basic instrumental services of the platform
that support this technology;

• a variety of specialized technologies for the de-
velopment of applied and specialized instrumental
(intelligent) services, using specialized platform tool
services that support these technologies.

The IACPaaS platform also does not contain means for
a unified representation of the components of intelligent
computer systems and means for their specification and
automatic integration.

Based on the analysis carried out, it can be said that at
the current state of development of information technolo-
gies, there is no comprehensive library of reusable se-

mantically compatible components of computer systems
and corresponding component management tools. Thus,
it is proposed to implement a library and an appropriate
component management tool that will implement seam-
less integration of components, ensure semantic compati-
bility of systems and their components, and significantly
simplify the design of new systems and their components.

III. Proposed approach
Within this article, it is proposed to take the OSTIS

Technology [11] as a basis, the principles of which
make it possible to implement a library of semantically
compatible components of intelligent computer systems
and, accordingly, provide the ability to quickly create
knowledge-driven systems using ready-made compatible
components.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology is
based on a universal method of semantic representation
(encoding) of information in the memory of intelligent
computer systems, called an SC-code. Texts of the SC-
code (sc-texts) are unified semantic networks with a
basic set-theoretic interpretation, which allows solving
the problem of compatibility of various knowledge types.
The elements of such semantic networks are called sc-
elements (sc-nodes and sc-connectors, which, in turn, de-
pending on orientation, can be sc-arcs or sc-edges). The
Alphabet of the SC-code consists of five main elements,
on the basis of which SC-code constructions of any
complexity are built, including more specific types of sc-
elements (for example, new concepts). The memory that
stores SC-code constructions is called semantic memory,
or sc-memory.

Within this article, fragments of structured texts in the
SCn code [12] will often be used, which are simultane-
ously fragments of the source texts of the knowledge
base, understandable to both human and machine. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies.

In order to solve the problems that have arisen in
the design of intelligent systems and libraries of their
reusable components, it is necessary to adhere to the
general principles of the technology for intelligent com-
puter systems design, as well as meet the following
requirements:

• ensuring compatibility (integrability) of components
of intelligent computer systems based on the unify-
ing representation of these components;

• clear separation of the process of developing formal
descriptions of intelligent computer systems and the

51

process of their implementation according to this
description;

• clear separation of the development of a formal
description for the designed intelligent system from
the development of various options for the interpre-
tation of such formal descriptions of the systems;

• availability of an ontology for component design
of intelligent computer systems, including (1) a
description of component design methods, (2) a
model of a library of reusable components, (3) a
model of a specification of reusable components,
(4) a complete classification of reusable components,
(5) a description of means for interaction of the
developed intelligent computer system with libraries
of reusable components;

• availability of libraries of reusable components of
intelligent computer systems, including component
specifications;

• availability of means for interaction of the devel-
oped intelligent computer system with libraries of
reusable components for installation of any types of
components and their management in the created
system. The installation of a component means not
only its transportation to the system (copying sc-
elements and/or downloading component files) but
also the subsequent execution of auxiliary actions so
that the component can operate in the system being
created.

Based on this, in order to solve the problems set within
this article, it is proposed to develop the following system
of subject domains and corresponding ontologies:

• Subject domain of reusable ostis-systems compo-
nents

• Subject domain of a library of reusable ostis-
systems components

• Subject domain of the manager of reusable ostis-
systems components

IV. Concept of reusable component of ostis-systems
The Subject domain of reusable ostis-systems com-

ponents describes the concept of a reusable compo-
nent, the classification of components, and their general
specification. This subject domain allows creating new
and specifying existing components to add them to the
library.

As a reusable ostis-systems component, a component
of some ostis-system that can be used within another
ostis-system is understood (see [13]). This is a component
of the ostis-system that can be used in other ostis-systems
(child ostis-systems) and contains all those and only those
sc-elements that are necessary for the functioning of the
component in the child ostis-system. In other words, it is
a component of some maternal ostis-system, which can
be used in some child ostis-system. To include a reusable
component in some system, it must be installed in this

system, that is, all the sc-elements of the component
should be copied into it and, if necessary, auxiliary files,
such as the source or compiled component files. Reusable
components must have a unified specification and hierar-
chy to support compatibility with other components. The
compatibility of reusable components leads the system
to a new quality, to an additional extension of the set of
problems to be solved when integrating components.

reusable ostis-systems component
:= [typical ostis-systems component]
:= [reused ostis-systems component]
:= [reusable OSTIS component]
:= [ostis-systems ip-component]
:= frequently used sc-identifier*:

[reusable component]
⊂ ostis-system component
⊂ sc-structure

The requirements for reusable ostis-systems compo-
nents inherit the common requirements for the design
of software components and also include the following
ones [14]:

• there is a technical possibility to embed a reusable
component into a child ostis-system;

• a reusable component should perform its functions
in the most general way, so that the range of possible
systems in which it can be embedded is the widest;

• compatibility of a reusable component: the com-
ponent should strive to increase the level of
negotiability of ostis-systems in which it is embed-
ded and be able to be automatically integrated into
other systems;

• self-sufficiency of components, that is, their ability
to operate separately from other components with-
out losing the appropriateness of their use.

In the Subject domain of the library of reusable
ostis-systems components, the most common concepts
and principles are described, which are valid for any
library of reusable components. This subject domain
allows building many libraries, each of which will be
semantically compatible with any other built according to
the proposed principles. Such libraries store components
and their specifications for use in child ostis-systems. An
example of a specification of a reusable ostis-systems
component is shown in Figure 2.

Versions for the full contents of the Subject domain
of reusable ostis-systems components and the Subject do-
main of the library of reusable ostis-systems components
are represented in the work [15].

The manager of reusable ostis-systems components
is the main means of supporting component design of
intelligent computer systems built by the OSTIS Technol-
ogy ([16]). It allows installing reusable components in
ostis-systems and controlling them. The Subject domain

52

Figure 2. An example of a specification of a reusable ostis-systems component

of the manager of reusable ostis-systems components
contains the full specification for the manager of ostis-
systems components, the requirements for the compo-
nent manager, its functionality, the specification of the
implementation option for the manager of ostis-systems
components, including the sc-model of the knowledge
base, the problem solver, and the interface.

V. Architecture of component manager and library of
reusable components of ostis-systems

To install reusable components of ostis-systems it is
necessary to have a special subsystem in the system: a
manager of reusable components of ostis-systems. The
component manager interacts with the user and with the
library of reusable components. To clarify the specifics

of such interaction, diagrams are developed and SC-
constructions necessary to initiate actions when working
with the component manager are depicted.

Fig. 3 shows the entity-relationship diagram for the
component manager, describing the current state of the
component manager functionality.

The diagrams (Fig. 3 and Fig. 4) use the following
concepts:

• of entities
– Developer — a developer (of their local system);
– OSTIS Metasystem Developer;
– Component manager — manager of reusable com-

ponents of ostis-systems;
– Library of components;
– System — user’s system;

53

– Reusable component — Reusable component of
ostis-system;

– (Reusable) component specification — Specifica-
tion of reusable component of ostis-system;

– Storage (GitHub) — A repository of components
and specifications, such as GitHub;

– Other library — a third-party library of reusable
components.

• relationship
– update;
– use;
– subsystem;
– search;
– connect;
– store;
– link;
– installation.

• attributes
– OSTIS Metasystem library — OSTIS Metasystem

library of reusable components of ostis-system;
– OSTIS Metasystem manager — OSTIS Metasys-
tem manager of reusable components of ostis-
system;

– search arguments — search arguments for
reusable components
∗ Author — the author of the component;
∗ Class — the class of the component;
∗ Identifier — the name of the component;
∗ Explanation — explanation of the component.

Component Library is a library of reusable compo-
nents of ostis-systems, which is a subsystem of them.
The library’s knowledge base is a repository of reusable
component specifications, and the library also provides
an interface to visualise and manage component specifi-
cations of the user’s system.

Component Manager — is a reusable component
manager for ostis systems that is a subsystem for in-
stalling, downloading, and tracking components and their
specifications for both the user’s system and other sys-
tems that store reusable components.

The entity-relationship diagram for the component
manager from the point of view of the ostis-system user
on the example of the OSTIS Metasystem Library (Fig. 3)
contains the following information.

The developer uses some ostis-system, a subsystem of
which is a reusable component manager and optionally
a library of reusable components. The developer can up-
date a reusable component from the OSTIS Metasystem
Library using the OSTIS Metasystem Reusable Compo-
nent Manager. The developer can use the component
manager to search for components in the OSTIS Meta-
system and third-party libraries known to the manager
by criteria such as component author, class, identifier,
and component explanation fragment. The developer can

connect to other component libraries. The developer can
also install the found components into his system.

The entity-relationship diagram for a component li-
brary depicts the main relationships between a system,
in this case the OSTIS Metasystem, and its subsystems
(manager and library) in terms of the storage of com-
ponents and their specifications.(Fig. 4). The diagram
contains the following information.

OSTIS Metasystem has a subsystem in the form of
a library and a component manager. The OSTIS Meta-
system library stores many specifications of reusable
components. Since all components are stored via GitHub,
the manager uses the links provided in the component
specifications to access them. The component specifi-
cations have a link to the repository that stores the
component itself.

Updating reusable OSTIS Metasystem components in
the OSTIS Metasystem Library is done through the
OSTIS Metasystem Manager and the GitHub repository.
The manager allows you to select the required versions
of components and install the corresponding component
specifications in the OSTIS Metasystem Library. Ac-
cording to these specifications, users using the OSTIS
Metasystem will be able to learn about components and
install them in their systems.

A component repository such as GitHub has many
repositories, each of which can store any number of
components and their specifications for installation on
other systems using the reusable component manager.

VI. Reusable components installation process

Let’s consider the functions of the manager of reusable
components of ostis-systems.

reusable ostis-system components manager
:= [component manager]
⇒ functions*:

{{{• reusable component installation
⇒ partitioning*:

{{{• scnitem
scnitem component download
• setting component

dependencies
• translating component scs

files into system
sc-memory

}}}
• search for specifications of reusable

components
• downloading specifications of reusable

components
}}}

In general, component installation consists of the fol-
lowing steps:

54

Figure 3. Entity-relationship diagram for a component library

Figure 4. Entity-relationship diagram for a component library

55

• initiation of the agent to install all component spec-
ifications described in the knowledge base;

• to initiate the agent to search for the required
component specifications in the knowledge base;

• initiating the agent to install the selected compo-
nents.

After the user has initiated the component specifi-
cation agent, the component manager will search the
component specifications for references to the component
specification repository. The specification file is called
specifcation.scs and is stored in the folder with the
reusable component itself. If the component manager was
able to locate this file, it will load the file into sc memory.
The component specification may include:

• identifier of the component;
• classes to which the component belongs;
• indicating the author of the component;
• indicating a note for the component;
• specifying how the component is installed;
• specifying the location (link) where the component
is stored.

After the specifications are set, the user can search for
components or install them.

The design of initiating the action of searching for
component specifications is shown in Fig. 5.

Figure 5. Example of calling the reusable components specification
search agent

Three parameters are possible for the agent to search
for component specifications: class, author, note. Ac-
cording to the above example, the manager will search
for specifications of components created by Orlov M.K.,
belonging to the class multiple-used knowledge base
component and having the substring "intelligent system"
in the note.

For the agent to find all components known to the
system, then class of reusable ostis-system components
must be passed as a parameter, and then the agent will

find all specifications of reusable components stored in
the system.

In order to install a component, you need to pass it
as a parameter when calling the component installation
agent. The agent will find the required component and
its semantic neighbourhood that specifies the storage
location of the component and how to install it, then
the agent will install the reusable component in the ostis-
system.

The design of the component installation agent initia-
tion is shown in Fig 6:

Figure 6. Example of calling the reusable components installation agent

Thus, the component manager and reusable component
library allow systems to create and design intelligent
systems based on off-the-shelf solutions, thus enhancing
system interoperability and simplifying system develop-
ment.

VII. Specification of ostis-system generation
Component-based design of computer systems means

not only extending the functionality of a system already
created in some form, but also creating an entire system
"from scratch".

For the generation of ostis-systems the manager of
reusable components of ostis-systems is used, which
provides the possibility to assemble the system from
the components available from the libraries of reusable
components of ostis-systems.

The following typical sequence of user actions is used
to generate ostis-systems.

generation of ostis-systems
:= [creation of ostis systems]
⇒ generalised sequence of user actions*:

⟨⟨⟨• search for ostis platform
• installing the ostis platform
• search for generic subsystems

56

• installing generic subsystems
• search for reusable components of

ostis-systems
• installing reusable components
• configure ostis system

:= [configuration of the ostis system]
⟩⟩⟩

Whether installing reusable components into an al-
ready created system or creating a system from scratch,
constructs are created in the ostis-system knowledge base
to denote which components are installed into the system.
Figure 7 shows an example of a construct specifying
which components are installed in an ostis system.

Finding and installing an ostis-platform is necessary
because different ostis-platforms may be suitable for
different classes of tasks and components to be installed
in the generated system.

By installing generic subsystems, the functionality
of the ostis-system being generated can be greatly ex-
panded. The OSTIS Metasystem Library contains many
subsystems often used in other ostis-systems. Typical
subsystems include, for example, the subsystem for col-
lective design of ostis-systems, natural language interface,
training subsystem, security subsystem and others.

Thanks to the extensive search functionality of
reusable ostis-system components, it is possible to search
for any components according to various criteria and
combinations thereof.

Customising an ostis-system implies setting parame-
ters to specify the peculiarities of the system operation,
as well as specifying which users are administrators,
developers, experts, and users of the created ostis-system.

In addition to user actions when creating an ostis-
system, the ostis-system generation subsystem also reg-
isters the created ostis-system in the OSTIS Metasystem.
Thus, the OSTIS Metasystem is able to monitor and
update the status of the components of this system.

VIII. User interface of component manager and library
of reusable components of ostis-systems

The multi-component manager for ostis-systems has a
console interface. The component manager is connected
to sc-memory as a dynamic component, so it does
not require a restart, and you can immediately see the
installed components in a running system.

Let’s look at the commands with which you can use
the component manager. Each command calls the cor-
responding agent. Agent-based architecture allows you
to implement any user interfaces for the component
manager of ostis-systems. Any variant of the compo-
nent manager user interface creates sc-constructs in sc-
memory that are needed to invoke the corresponding sc-
agent.

action. Set the specifications of reusable ostis-system
components
⇒ agent*:

[ScComponentManagerInitAgent]
⇒ command to initiate an action*:

[components init]

action. Find specifications for reusable ostis
components
⇒ agent*:

[ScComponentManagerSearchAgent]
⇒ command to initiate action*:

[components search]
⇒ possible flags*:

• [author]
• [class]
• [explanation]

When using the search command with the author flag,
you must list the system identifiers of the sc nodes that
denote the authors of the reusable component. The class
flag is used to pass the class name to the component
manager to search for components belonging to this class.
The explanation flag is used to specify a natural-language
fragment that is a substring of the component’s explana-
tion. If multiple search flags are listed, components that
satisfy all search criteria simultaneously will be found. If
you use the component search command without flags, all
components whose specifications are downloaded will be
found.

action. Install reusable ostis components
⇒ agent*:

[ScComponentManagerInstallAgent]
⇒ command to initiate action*:

[components install]
⇒ flags*:

• [idtf]

The component install command requires the manda-
tory idtf flag, which the component manager uses to
search by system ID for the components to be installed
and create the necessary construct to call the component
install agent.

The interface of the reusable component library is
graphical (Fig. 8. It displays the components that are
in the library and provides access to search, browse, and
install them.

IX. Example of usage of library of reusable
components of ostis-systems

As an example of a library of reusable components of
ostis-systems for consideration of an example of work,
let’s take the OSTIS Metasystem Library.

Installation of the OSTIS Metasystem is performed
using the following command sequence.

57

Figure 7. Formalisation of installed components to the ostis-system

Figure 8. User interface of a library of reusable components of ostis-system

58

OSTIS Metasystem
⇒ installation stages*:

⟨⟨⟨• Repository cloning
⇒ terminal command*:

[git clone https://github.com/ostis-
ai/ostis-metasystem]

• Change dorectory to the project root
⇒ terminal command*:

[cd ostis-metasystem]
• OSTIS Metasystem installtion

⇒ terminal command*:
[./scripts/install_metasystem.sh]

• Run sc-component-manager
⇒ terminal command*:

[./scripts/run_sc_component_manager.sh]
⟩⟩⟩

⇒ component installation procedure*:
⟨⟨⟨• Install all the reusable components

specifications
⇒ command*:

[components init]
• Reusable components searching

⇒ command*:
[components search]

• Installation of reusable component
⇒ command*:

[components install −−idtf <iden-
tifier>]

⟩⟩⟩
⇒ usage examples*:

• Creation of the kernel
• Extension of kernel functionality

Creation of the core
⇒ stages*:

⟨⟨⟨• Install all the reusable components
specifications
⇒ sc-agent*:

[ScComponentManagerInitAgent]
⇒ commmand to call an agent*:

[components init]
⇒ result*:

[All the reusable components spec-
ifications from OSTIS Library are
installed.]

• Search reusable user interface
components
⇒ sc-agent*:

[ScComponentManagerSearchA-
gent]

⇒ commmand to call an agent*:
[components search −−class con-
cept_reusable_interface_component]

⇒ result*:
[All the reusable user interface

components are found.]
• Install sc-models of user interface

interpreter
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
sc_web]

⇒ result*:
[sc-web is intalled by specifica-
tion.]

⇒ note*:
[If you start the web interface after
this step, only the start page will
load, because the knowledge base
is currently empty.]

• Searching for Knowledge Base
components
⇒ sc-agent*:

[ScComponentManagerSearchA-
gent]

⇒ commmand to call an agent*:
[components search −−class con-
cept_reusable_kb_component]

⇒ result*:
[Received all components for
which their specification states
that they are Knowledge Base
components.]

• OSTIS Standard installation
⇒ agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf os-
tis_standard]

⇒ result*:
[OSTIS Standard is installed]

⇒ note*:
[If you now start the web interface
again, this step in the web inter-
face will display a page with part
of the standard to navigate to.]

⟩⟩⟩
⇒ result*:

[The kernel is installed.]

Extension of kernel functionality
⇒ stages*:

⟨⟨⟨• Search for all available Knowledge Base
components in the library
⇒ sc-agent*:

[ScComponentManagerSearchA-
gent]

59

⇒ commmand to call an agent*:
[components search −−class con-
cept_reusable_kb_component]

⇒ result*:
[Found all Knowledge Base
components whose specifications
have been installed]

• Installing the Knowledge Base component
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
part_polygons]

⇒ result*:
[A Knowledge Base component in
the form of subject domain of
polygons was established.]

⇒ note*:
[After performing this step, we
can find the concept "multiple"
in the web interface and browse
its semantic neighbourhood. But
it is worth noting that the subject
domain of triangles, which is a
private subject domain of poly-
gons, is empty.]

• Installing the Knowledge Base component
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
part_triangles]

⇒ result*:
[The Knowledge Base component
is installed in the form ofof sub-
ject domain of triangle]

⇒ note*:
[After performing this step, we
can find the concept "triangle"
in the web interface and browse
its semantic neighbourhood. It is
worth noting that the subject do-
main of triangles, which is a pri-
vate subject domain of polygons,
is fully described and compatible
with the subject domain of poly-
gons.]

• Creating two sets of triangles
⇒ note*:

[At this step it is necessary to find
the class "triangle" in the web-
interface, create two sets of tri-
angles and add elements to them.

It is necessary to specify that the
sets and their elements belong to
the class "triangle".]

⇒ example*:
[triangles_1 = {ABC, CDE, XYZ},
triangles_2 = {MNK, CDE,
XYZ}]

⇒ note*:
[After performing this step, you
can check that no operations on
sets can be performed now. This
can be verified by right-clicking
on the node "triangles_1".]

• Search for all available problem solver
components in the library
⇒ sc-agent*:

[ScComponentManagerSearchA-
gent]

⇒ commmand to call an agent*:
[components search −−class con-
cept_reusable_ps_component]

⇒ result*:
[Found all components of the prob-
lem solver whose specifications
are installed.]

• Installing the components of the problem
solver
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
agent_of_finding_intersection_of_sets]

⇒ result*:
[A problem solver component for
finding the intersection of two
sets is established.]

⇒ note*:
[After this step, you can check
that you can now perform an
operation on sets. In the web
interface, search for the concept
"installed components" and select
the node of the desired agent
agent_of_finding_intersection_of_sets)
and run the set intersection agent
using the example of two
previously created triangle
sets. The intersection of the
two sets will be found. But it
should be noted that this way of
launching the agent is long and
inconvenient.]

• Search for all available interface
components in the library

60

⇒ sc-agent*:
[ScComponentManagerSearchA-
gent]

⇒ commmand to call an agent*:
[components search −−class con-
cept_reusable_interface_component]

⇒ result*:
[Found all interface components
whose specifications have been
downloaded.]

• Installing the user interface component
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
menu_of_agent_of_finding_intersection_of_sets]

⇒ result*:
[Installed an interface component
for an agent to find the intersec-
tion of two sets.]

⇒ note*:
[After this step, the intersection
finder can be invoked using a
button in the interface, which is
much faster and more convenient
than the first method. This can be
checked by calling the agent to
find the intersection of two sets
using the example of triangle sets
(triangles_1 and triangles_2).]

• Setting a logical formula component
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
lr_about_isosceles_triangle]

⇒ result*:
[Established a component with a
logical formula for determining
whether a triangle is isosceles or
not.]

⇒ note*:
[If you go to the web interface
after performing this step, create
the necessary fragment for the
geometry logic formula parcels
and try to run the logic output,
it fails because the logic output
component is missing.]

• Setting the logic inference component
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ commmand to call an agent*:
[components install −−idtf
scl_machine]

⇒ result*:
[Logic inference machine is in-
stalled.]

⇒ note*:
[After performing this step go to
the web-interface, create the nec-
essary fragment to send a logical
formula on geometry and try to
run the logical output, then the
formula will generate the neces-
sary fragment of the Knowledge
Base. However, this is still not
very convenient.]

• Installing the user interface component
⇒ sc-agent*:

[ScComponentManagerInstallA-
gent]

⇒ result*:
[Interface component for logic out-
put component installed]

⇒ note*:
[After performing this step in the
web interface after creating the
necessary fragment to send the
formula on geometry, you can eas-
ily call the logical output agent
through the interface component.]

⟩⟩⟩
⇒ result*:

[The functionality of the system is ex-
tended. A system capable of logical in-
ference and finding intersection of sets is
obtained. The system has interface com-
ponents corresponding to these agents.
The Knowledge Base on geometrical fig-
ures (polygons and triangles) is also ob-
tained.]

X. Conclusion

The component approach is key in the technology
of designing intelligent computer systems. At the same
time, the technology of component design is closely
related to the other components of the technology of
designing intelligent computer systems and ensures their
compatibility, producing a powerful synergetic effect
when using the entire complex of private technologies for
designing intelligent systems. The most important princi-
ple in the implementation of the component approach
is the semantic compatibility of reusable components,
which minimizes the participation of programmers in the
creation of new computer systems and the improvement
of existing ones.

61

To implement the component approach, in the article, a
library of reusable compatible components of intelligent
computer systems based on the OSTIS Technology is
proposed, classification and specification of reusable
ostis-systems components is introduced, a component
manager model is proposed that allows ostis-systems
to interact with libraries of reusable components and
manage components in the system, the architecture of the
ecosystem of intelligent computer systems is considered
from the point of view of using a library of reusable
components.

At the moment the manager of reusable components of
ostis-systems with console user interface and the library
of reusable components of ostis-systems with graphical
user interface have been implemented. The subject areas
necessary for the implementation of component design
have been implemented, and diagrams showing the de-
tails of the use and operation of the component manager
and the component library have been implemented.

The results obtained will improve the design effi-
ciency of intelligent systems and automation tools for
the development of such systems, as well as provide an
opportunity not only for the developer but also for the
intelligent system to automatically supplement the system
with new knowledge and skills.

References

[1] K. Yaghoobirafi and A. Farahani, “An approach for semantic inter-
operability in autonomic distributed intelligent systems,” Journal
of Software: Evolution and Process, vol. 34, 02 2022.

[2] Natalia N. Skeeter, Natalia V. Ketko, Aleksey B. Simonov,
Aleksey G. Gagarin, Irina Tislenkova, “Artificial intelligence:
Problems and prospects of development,” Artificial Intelligence:
Anthropogenic Nature vs. Social Origin, 2020.

[3] Olena Yara, Anatoliy Brazheyev, Liudmyla Golovko, Liudmyla
Golovko, Viktoriia Bashkatova, “Legal regulation of the use
of artificial intelligence: Problems and development prospects,”
European Journal of Sustainable Development, 2021.

[4] J. Waters, B. J. Powers, and M. G. Ceruti, “Global interoperabil-
ity using semantics, standards, science and technology (gis3t),”
Computer Standards & Interfaces, vol. 31, no. 6, pp. 1158–1166,
2009.

[5] M. Wooldridge, An introduction to multiagent systems, 2nd ed.
Chichester : J. Wiley, 2009.

[6] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S.
Hua, “Graph processing on GPUs,” ACM Computing Surveys,
vol. 50, no. 6, pp. 1–35, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3128571

[7] P. Lopes de Lopes de Souza, W. Lopes de Lopes de Souza, and
R. R. Ciferri, “Semantic interoperability in the internet of things:
A systematic literature review,” in ITNG 2022 19th International
Conference on Information Technology-New Generations, S. Lat-
ifi, Ed. Cham: Springer International Publishing, 2022, pp. 333–
340.

[8] Blähser, Jannik and Göller, Tim and Böhmer, Matthias, “Thine
— approach for a fault tolerant distributed packet manager based
on hypercore protocol,” in 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC), 2021, pp.
1778–1782.

[9] V. Torres da Silva, J. S. dos Santos, R. Thiago, E. Soares, and
L. Guerreiro Azevedo, “OWL ontology evolution: understanding
and unifying the complex changes,” The Knowledge Engineering
Review, vol. 37, p. e10, 2022.

[10] V. Gribova,L. Fedorischev, P. Moskalenko, V. Timchenko, “Inter-
action of cloud services with external software and its implemen-
tation on the IACPaaS platform,” pp. 1–11, 2021.

[11] Vladimir Golenkov and Natalia Guliakina and Daniil Shunkevich,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[12] (2022, September) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[13] Shunkevich D.V., Davydenko I.T., Koronchik D.N., Zukov
I.I., Parkalov A.V., “Support tools knowledge-based systems
component design,” Open semantic technologies for intelligent
systems, pp. 79–88, 2015. [Online]. Available: http://proc.ostis.
net/proc/Proceedings%20OSTIS-2015.pdf

[14] G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia,
F. Palomba, and F. Ferrucci, “Toward understanding the impact
of refactoring on program comprehension,” in 29th International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2022, pp. 1–12.

[15] M. K. Orlov, “Comprehensive library of reusable semantically
compatible components of next-generation intelligent computer
systems,” in Open semantic technologies for intelligent systems,
ser. Iss. 6. Minsk : BSUIR, 2022, pp. 261–272.

[16] ——, “Control tools for reusable components of intelligent com-
puter systems of a new generation,” in Open semantic technolo-
gies for intelligent systems, ser. Iss. 7. Minsk : BSUIR, 2023,
pp. 261–272.

ТЕКУЩЕЕ СОСТОЯНИЕ СРЕДСТВ
АВТОМАТИЗАЦИИ
КОМПОНЕНТНОГО

ПРОЕКТИРОВАНИЯ OSTIS-СИСТЕМ
Орлов М. К., Макаренко А. И.,

Петрочук К. Д.
В работе рассматривается подход к проектированию

интеллектуальных систем, ориентированный на ис-
пользование совместимых многократно используемых
компонентов, что существенно сокращает трудоем-
кость разработки таких систем. Ключевым средством
поддержки компонентного проектирования интеллек-
туальных компьютерных систем является предложен-
ный в работе менеджер многократно используемых
компонентов.

Received 03.03.2024

62

https://doi.org/10.1145/3128571
https://ims.ostis.net
http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.pdf
http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.pdf

	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\pdf\5. papers OSTIS24.pdf
	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\papers\04. OSTIS24_ID27_orlov_CurreSoOSTIS_SCDAT_07_04.pdf

