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Abstract—The paper considers the problem of stable
interpretation of fuzzy logic models. An approach based on
parameterized fuzzy logic is proposed, where each logical
formula has a set of model parameters in addition to truth
values. Parameterized fuzzy logic allows combining different
fuzzy logic systems. Model parameters are used to calculate
fuzzy truth values as a fuzzy measure. Models and model
parameters related to metric spaces, consistent with metric
sense spaces and being the basis for interpretation of fuzzy
logic formulas on ontological models are considered.
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I. Introduction
Approaches to integration of logical models in a

general form are considered in [7].
One of the problems of integration of logical models of

knowledge representation and processing [11], [17], [20]
is to identify compatible models that provide construction
of interpretations of corresponding logical formalisms
[6]. If necessary, these models can be considered as part
of the corresponding semantic space [7], [8], [19].

One of the broad classes of logical models is fuzzy
logics [3]. There is a problem of unreliability of fuzzy
logics due to uncertainties [18] existing at different stages
of their application [15]. One of the stages is selection of
a fuzzy logic model or system with the purpose of appli-
cation for realization of reasoning and problem solving. It
is not always clear how suitable the chosen fuzzy system
is. This is due to the fact that interpretations (which are
built in the process of fuzzy logical inference) connect
logical constructions with abstract algebraic systems that
have no definite connection with any subject area or
its model. Moreover, for each fuzzy system a different
algebraic system is considered, the connection of which
with other algebraic systems also remains undefined. This
high degree of uncertainty does not allow reliable use of

fuzzy logic models which is one of the problems of fuzzy
logics [15].

The choice of fuzzy logics is also conditioned by their
rich internal and external diversity, which allows fuzzy
logics to represent other non-classical logical [3], [9],
[10] models by means of fuzzy logics. The diversity
of fuzzy logical models leads, among other things, to
the diversity of fuzzy logical operations (for example,
such as triangular norms and conorms), the emergence
of their classes and their parameterization within the
corresponding subclasses.

In development of the idea of parameterization of
logical operations, the concept of parameterized fuzzy
logics [6] is proposed.

The two main parametric families of triangular norms
(and corresponding conorms) [14] are: the Frank para-
metric family [12], [13] and the Schweitzer-Sklar para-
metric family.

When constructing interpretations of parametrized
fuzzy logics we can distinguish their following types:
interpretations on algebraic systems, interpretations
on “amorphous” models, interpretations on concrete
structural-static models.

Interpretations on algebraic systems are largely similar
to traditional fuzzy systems, the general scheme of which
is given in [6], and therefore we will not consider them in
detail in this paper. Further we will consider examples of
interpretations of formulas of parameterized fuzzy logics
on “amorphous” models and on concrete structural-static
models.

II. Interpretation and models of fuzzy logics

As an “amorphous” model, consider a model in which
each fuzzy predicate is matched with a vector quantity
(vector) A, which can be given by some unit (or zero)
vector 1A, specifying the direction of this quantity, in
some linear basis of some vector space and a scalar ||A||
in the range from 0 to 1, specifying the length of vector
A. If and only if the length is 0 or the direction is given
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by a zero vector, then the vector quantity is equal to a
zero vector, its length is 0, but its direction can be a
non-zero vector.

The fuzzy negation operation in this model reverses
the direction of the vector according to the expression:

−1A

and its length according to the expression:

1− ||A||

The next operation we will consider is the fuzzy con-
junction. It should be noted that the fuzzy conjunction
does not fulfill all the properties characteristic, for ex-
ample, for triangular norms since this conjunction is
parameterized, covering more than one triangular norm.
A parameterized conjunction can naturally cover several
triangular norms in one expression, so the properties
of one triangular norm cannot be extended to such a
conjunction.

To consider the result of the computation of such a
fuzzy conjunction, let us consider 23 cases (variants, see
Table I) of the spatial relation of vectors of a pair of its
arguments (A = 1A ∗ ||A|| and B = 1B ∗ ||B||), which
we will later reduce to a smaller number of cases.

Table I
Variants of relations of parameters of “amorphous” parameterized

fuzzy logic

№ ||A|| ∗ ||B|| cos (⟨A,B⟩)
0 0 [−1; 1]
1 0 [−1; 1]
2 (0; 1] 1
3 (0; 1] (0; 1)
4 (0; 1] (0; 1)
5 (0; 1] (0; 1)
6 (0; 1] 0
7 (0; 1] (−1; 1)
8 (0; 1] (−1; 1)
9 (0; 1] (−1; 1)
10 (0; 1] (−1; 1)
11 (0; 1] (−1; 1)
12 (0; 1] (−1; 1)
13 (0; 1] (−1; 1)
14 (0; 1] (−1; 1)
15 (0; 1] (−1; 1)
16 (0; 1] (−1; 1)
17 (0; 1] (−1; 1)
18 (0; 1] (−1; 1)
19 (0; 1] (−1; 1)
20 (0; 1] (−1; 1)
21 (0; 1] (−1; 1)
22 (0; 1] (−1; 1)
23 (0; 1] -1

Due to symmetry (commutativity of the fuzzy con-
junction operation), the number of these cases (variants)
can be reduced to 16 which in turn are reduced to 10
(see Table II) as a result of decomposition. The result
of the initial variant (case) is the arithmetic mean of the
variants (cases) into which it is decomposed.

Table II
Decomposition of variants of parameter relations of “amorphous”

parameterized fuzzy logic

Symmetry of variants Decomposition into variants
1 1 0
2 2 5
3 5 6
4 4 7
6 6 8
7 7 1 1
8 11 1 2
9 15 1 3
10 19 1 4
12 12 2 2
13 16 2 3
14 20 2 4
17 17 3 3
18 21 3 4
22 22 4 4
23 23 9

Hypothetically, variants 13 and 16 are impossible.
Let us consider these variants sequentially.
As a result of the operation of fuzzy conjunction of

two arguments (A = 1A ∗ ||A|| and B = 1B ∗ ||B||), we
must obtain a vector quantity given by two parameters:
a vector and a scalar.

For the 0th variant, the vector coincides with the vector
of a non-zero argument or is calculated by the formula:

(1A + 1B) /
√
(1A + 1B) ∗ (1A + 1B)

For all variants except for the 0-th (23rd) we will
calculate the vector by the formula:

(1A + 1B) /
√

(1A + 1B) ∗ (1A + 1B)

The proposed formula has the advantage of a more
convenient model for modeling traditional fuzzy logics
but alternative expressions for calculating the vector are
possible:

(A+B) /
√

(A+B) ∗ (A+B)

(A+B + 1A + 1B)√
(A+B + 1A + 1B) ∗ (A+B + 1A + 1B)

and others.
For two nonzero noncollinear vectors A and B, the

vector HAB = A ∗ u+B ∗ v from their common origin
to the intersection of the perpendiculars to their ends can
be expressed:

HAB =
A ∗ (A ∗ (B −A)) ∗B2 +B ∗ ((A−B) ∗B) ∗A2

(A ∗B)
2 −A2 ∗B2

from

(A ∗ u+B ∗ v −B)∗B = (A ∗ u+B ∗ v −A)∗A = 0{
u ∗ (A ∗B) = (1− v) ∗B ∗B
v ∗ (A ∗B) = (1− u) ∗A ∗A
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Figure 1. Variant 1 illustration.

u = (A ∗ (B −A)) ∗B2/
(
(A ∗B)

2 −A2 ∗B2
)

v = ((A−B) ∗B) ∗A2/
(
(A ∗B)

2 −B2 ∗A2
)

Let the following:

D = HAB

D′ = HA′B

1A′ = −1A

1D = H1A1B

1D′ = H1A′1B

Variant 1: The angle between vectors A (vector A′ =
A− 1A) and B is obtuse (A ∗B < 0), the perpendicular
to vector A′ intersects the perpendicular to B before B
||B|| ≤ ||A′||/cos (⟨A′, B⟩) (see Fig.1) then the length
of the result is equal to the ratio of areas:

(2 ∗ ||D′ − A′|| − ||1A′ − A′||) ∗ ctg (⟨A′, B⟩) ∗ ||1A′ − A′||/2
(1A′ ∗ (1D′ − 1A′) + 1B ∗ (1D′ − 1B)) /2

Variant 2. The angle between vectors A (vector A′ =
A− 1A) and B is obtuse (A ∗B < 0), the perpendicular
to vector A′ intersects B before the perpendicular to it
||B|| > ||A′||/cos (⟨A′, B⟩⟩) (see Fig.2) then the length
of the result is equal to the ratio of areas:
(||1A′||2−||A′||2)

ctg(⟨A′,B⟩) −
(

||1A′||
cos(⟨A′,B⟩) − ||B||

)2
∗ ctg (⟨A′, B⟩)

2 ∗ (1A′ ∗ (1D′ − 1A′) + 1B ∗ (1D′ − 1B)) /2

Variant 3. The angle between vectors A (vector A′ =
A− 1A) and B is obtuse (A ∗B < 0), the perpendicular
to vector A′ intersects the perpendicular to B before B
||B|| ≤ ||A′||/cos (⟨A′, B⟩) (see Fig.3) then the length
of the result is equal to the ratio of areas:

||D′ −A′|| ∗ ||D′ −A′|| ∗ tg (⟨A′, B⟩) /2
1A′ ∗ (1D′ − 1A′) + 1B ∗ (1D′ − 1B) /2

Variant 4. The angle between vectors A (vector A′ =
A− 1A) and B is obtuse (A ∗B < 0), the perpendicular
to vector A′ intersects B before the perpendicular to it

Figure 2. Variant 2 illustration.

Figure 3. Variant 3 illustration.

||B|| > ||A′||/cos (⟨A′, B⟩⟩) (see Fig.4) then the length
of the result is equal to the ratio of areas:

||B|| ∗ ||B|| − ||A′|| ∗ ||A′|| ∗ tg (⟨A′, B⟩) /2
1A′ ∗ (1D′ − 1A′) + 1B ∗ (1D′ − 1B) /2

Variant 5. Vectors A and B are co-oriented then the
length of the result is: min ({||A||} ∪ {||B||}).
Variant 6. The angle between vectors A and B is acute

(A ∗B > 0), the perpendicular to vector A intersects B
before the perpendicular to it ||B|| > ||A||/cos (⟨A,B⟩)
(see Fig.5) then the length of the result is equal to the

Figure 4. Variant 4 illustration.
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Figure 5. Variant 6 illustration.

Figure 6. Variant 7 illustration.

ratio of areas:
A ∗ (D −A) /2

(1A ∗ (1D − 1A) + 1B ∗ (1D − 1B)) /2

Variant 7. The angle between vectors A and B is acute
(A∗B > 0), the perpendicular to vector A intersects the
perpendicular to B before B ||B|| ≤ ||A||/cos (⟨A,B⟩)
(see Fig.6) then the length of the result is equal to the
ratio of areas:

((A+B) ∗D −A ∗A−B ∗B) /2

(1A ∗ (1D − 1A) + 1B ∗ (1D − 1B)) /2

Variant 8. Vectors A and B are orthogonal
((A ∗B = 0) ∧ (||A||+ ||B|| > 0)) (see Fig.7) then the
length of the result is equal to the ratio of areas:
||A|| ∗ ||B||/1.

Variant 9. Vectors A and B are differently directed,
then the length of the result is equal to:

max ({0} ∪ {A+B − 1})

Properties of negation:

A =∼ (∼ A)

0 =∼ 1

1 =∼ 0

Properties of conjunction:
• zero element

A∧̃0 = 0

Figure 7. Variant 8 illustration.

• neutral element
A∧̃1 = A

• idempotency
A∧̃A = A

• commutativity

A∧̃B = B∧̃A

• non-associativity

¬
(
A∧̃

(
B∧̃C

)
=
(
A∧̃B

)
∧̃C
)

• non-monotonicity

¬
(
A ≤ B → A∧̃C ≤ B∧̃C

)
• monotonicity in direction

A
←−≤B → A∧̃C ←−≤B∧̃C

Properties of disjunction:

A∨̃B =∼
(
(∼ A) ∧̃ (∼ B)

)
Properties of implication:

A ∼> B =
(
(∼ A) ∨̃B

)
Properties of a fuzzy measure [16]:

A∧̃B ≤ A

A ≤ A∨̃B

As concrete structural-static models we can consider
finite models or simplicial complexes [1], and also we
can consider their generalizations, for example, as a
residual simplicial complex. Let us consider variants
with simplicial complexes. An important question of such
consideration is the canonical form of the corresponding
simplicial complex.

For simplicial complexes and the corresponding sets
defined by them, the (generalized) operations of union ∪̂
and intersection ∩̂ are naturally defined.
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Each argument of the parameterized fuzzy expression
can be matched with a residual simplicial complex as
one of the parameters. We will also use the notion of
residual simplicial complex to represent the results of
parameterized fuzzy logics.

The residual simplicial complex can be given by
2∗n-simplicial complexes ⟨C1, C2, ..., C2∗n⟩ through an
expression of the form:

C1/(C2/(. . . /C2∗n))

For a residual simplicial complex the following is true:

Ci+1 ⊂ Ci

Ci+2 ⊆ ∂Ci

(X ∈ Ci ∩ Ci+1)→ ∃Y (Y ∈ Ci/Ci+1)∧ (∅ ⊂ Y ∩X)

∅ ⊂ C2∗n

∂C =
⋃

X∈C

2X/ {X}

The height of the residual complex is 2 ∗ n.
We will consider simplicial complexes covering points

of subsets of the set of points of the space spanned by the
universal simplicial complex U whose residual simplicial
complex is ⟨U, ∅, ..., ∅⟩.
The complement of U/̂C of the residual simplicial

complex ⟨C1, C2, ..., C2∗n⟩ will be the height complex
2 ∗m(m ≤ n):

D1/(D2/(. . . /D2∗m))

with such smallest T1, Tk (2 ≤ k ≤ n):

U/

(
n⋃

i=1

C2∗i−1/C2∗i

)
⊆ T1 ⊆ U

Ck−1/

(
n−k+1⋃
i=1

C2∗i−1+k/C2∗i+k

)
⊆ Tk ⊆ Ck−1

D1/

(
m⋃
i=1

D2∗i/D2∗i+1

)
= T1/

(
n⋃

i=1

T2∗i/T2∗i+1

)
((m < i) ∧ (i ≤ n))→ (Ti = ∅)

The intersection O = I∩̂E of the two residual simpli-
cial complexes I and E (n ≤ m) is the height complex
2 ∗ l(l ≤ n ∗ (2 ∗m− n+ 1):

O1/(O2/(. . . /O2∗l))

The tiers of the residual simplicial complex are filled in
according to the tables Table III (E0 = E10), Table IV)

in accordance with the order:
The difference O = I/̂E of the two residual simplicial

complexes I and E (n ≤ m) is the height complex 2 ∗
l(l ≤ n ∗ (2 ∗m− n+ 1):

I/̂E = I∩̂
(
U/̂E

)

Table III
Computable operations for calculating the intersection of two residual

simplicial complexes

I1 ∩ E1 I2 ∪ E2 I3 ∩ E1 I4 ∪ E4 I5 ∩ E1 I6 ∪ E0

I2 ∪ E2 I2 ∩ E2 I2 ∩ E2 I4 ∪ E4 I5 ∩ E2 I6 ∪ E0

I1 ∩ E3 I2 ∩ E2 I3 ∩ E3 I4 ∪ E4 I5 ∩ E3 I6 ∪ E0

I4 ∪ E4 I4 ∪ E4 I4 ∪ E4 I4 ∩ E4 I4 ∩ E4 I6 ∪ E0

I1 ∩ E5 I2 ∩ E5 I3 ∩ E5 I4 ∩ E4 I5 ∩ E5 I6 ∪ E0

I6 ∪ E6 I6 ∪ E6 I6 ∪ E6 I6 ∪ E6 I6 ∪ E6 I6 ∪ E0

I1 ∩ E7 I2 ∩ E7 I3 ∩ E7 I4 ∩ E7 I5 ∩ E7 I6 ∪ E0

I6 ∪ E8 I6 ∪ E8 I6 ∪ E8 I6 ∪ E8 I6 ∪ E8 I6 ∪ E0

I1 ∩ E9 I2 ∩ E9 I3 ∩ E9 I4 ∩ E9 I5 ∩ E9 I6 ∪ E0

I6 ∪ E0 I6 ∪ E0 I6 ∪ E0 I6 ∪ E0 I6 ∪ E0 I6 ∪ E0

Table IV
Sequence (transposed) of computable operations to compute the

intersection of two residual simplicial complexes

1 2 3 6 7 12 13 18 19 24
2 4 4 6 8 12 14 18 20 24
3 4 5 6 9 12 15 18 21 24
6 6 6 10 10 12 16 18 22 24
7 8 9 10 11 12 17 18 23 24
24 24 24 24 24 24 24 24 24 24

The residuum O = I→̂E of the two residual simplicial
complexes I and E (n ≤ m) will be the height complex
2 ∗ l (l ≤ n ∗ (2 ∗m− n+ 1)):

I→̂E = U/̂
(
I/̂E

)
The union of O = I∪̂E of the two residual simplicial

complexes I and E (n ≤ m) is the height complex 2 ∗ l
(l ≤ n ∗ (2 ∗m− n+ 1)):

I∪̂E = U/̂
((

U/̂I
)
/̂E
)

The value of a fuzzy expression (predicate) in para-
metric fuzzy logic can be calculated as the length
hvol1 (C), area hvol2 (C), volume hvol3 (C) or hyper-
volume hvoldim(C) (C) of a simplicial complex. For
each simplicial complex with a basis in linear vector
space, a minimal covering simplex can be given, and
its dimension dim (C), equal to the dimension of the
maximal simplex in the complex, can also be computed.
If the space is n-dimensional, the value of the fuzzy
expression can be computed:

1 + 2−dim(C) ∗
(
hvoldim(C) (C)− 2

)
For the corresponding fuzzy operations, the properties

of the fuzzy measure will also be fulfilled:

A∧̃B ≤ A

A ≤ A∨̃B

Another kind of non-classical logics [4], [5] are sub-
structural logics in which (structural) properties of de-
ducibility such as monotonicity, contraction (absorption)
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and others are violated. These include relevance logics
and connexive logics which find out to justify causal
implicative properties. Analyzing the properties of these
logics involves clarifying the similarities and analogies
of the schemes of these logics with other logics and
models such as argumentation logics [2]. One of the
prospects for further research is to study the connection
of non-classical logics of this kind with the fuzzy models
considered in this paper in the framework of causal and
spatio-temporal relations of the semantic space.

III. Conclusions

Approaches and models to the interpretation of fuzzy
logics are proposed. The proposed models can be used
in the interpretation of fuzzy logic formulas on the basis
of metric meaning space for finite structures in order to
analyze or synthesize schemes of fuzzy logic inference
systems relevant to the structures of ontologies of subject
areas.
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ИНТЕГРАЦИЯ НЕЧЁТКИХ СИСТЕМ И
ИХ ПАРАМЕТРИЧЕСКАЯ
ИНТЕРПРЕТАЦИЯ ДЛЯ
УНИФИЦИРОВАННОГО

ПРЕДСТАВЛЕНИЯ ЗНАНИЙ
Ивашенко В. П.

В статье рассматривается проблема устойчивой ин-
терпретации нечётких логических моделей. Предлага-
ется подход на основе параметризованной нечёткой
логики, где каждая логическая формула кроме зна-
чений истинности имеет набор модельных парамет-
ров. Параметризованные нечёткая логика позволяет
объединить различные нечёткие логические системы.
Модельные параметры используются для вычисления
значений нечёткой истинности, как нечёткой меры.
Рассмотрены модели и модельные параметры, связан-
ные с метрическими пространствами, согласуемыми с
метрическим смысловыми пространствами и являю-
щиеся основой для интерпретации нечётких логиче-
ских формул на онтологических моделях.
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