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Abstract—The paper considers models for investigating
the structure, topology and metric features of a semantic
space using unified knowledge representation.

The classes of finite structures corresponding to ontolog-
ical structures and sets of classical and non-classical kinds
are considered, and the enumerability properties of these
classes are investigated.

The notion of operational-information space as a model
for investigating the interrelation of operational semantics
of ontological structures of large and small step is proposed.

Quantitative features and invariants of ontological struc-
tures oriented to the solution of knowledge management
problems are considered.
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I. Introduction

There are different approaches to the study of topo-
logical, metrical and other properties of signs in texts
leading to the consideration of corresponding semantic
(or meaning (sense)) spaces [56].

Space is convenient because it is connected with some
ordinal or metric scale which allows to reduce the cost of
solving such cognitive tasks as searching (synthesis) or
checking (analysis) the presence of an element (including
for the purpose of eliminating redundancy) in a set
organized as a space.

Knowledge integration based on unification is neces-
sary both to eliminate redundancy and to compute se-
mantic metrics. For this purpose, the developed model of
unified knowledge representation [1], [5] can be adopted.

II. Approaches to the construction of a meaning space

The history of the development of the concept of
“meaning space” and the corresponding models are de-
scribed in the works [2], [11], [32], [56].

As stated in [56], the main approaches to the construc-
tion and research of the organization of meaning space
include:

• exterior studying the physical nature [30], [33], [48]
of processes including thinking processes [29],

• (quantitative) interior using quantitative and soft
models, including probabilistic description of pro-
cesses [11], [34], [35], [42], based on the practice
of using words of language [20], [53],

• (qualitative) interior investigating the structure of
represented knowledge and its dynamics [12], using
formal semiotic models [51].

In some cases, it is possible to combine these elements
of these approaches.

The following models and methods are used to con-
struct and investigate the semantic space:

• mathematical models of spaces [37]–[41], [43],
[44],

• formal and generalized formal languages [45], [56],
• methods of probability theory [11], [36], [54],
• methods of formal concepts analysis [58], [59],
• other models [3], [4], [45], [46], [49].
Further in the paper we consider the main classes of

structures, their attributes and corresponding types of
subspaces of the semantic space using unified knowledge
representation [5], [12].

III. Unified representation and classification of fully
representable finite knowledge structures

At the level of syntax, using syntactic links, it is
possible to represent only finite knowledge structures in
a unified (explicit) way.

Let us consider the principles of unified representation
of knowledge [5], [12] with a structure that is one of finite
structures of different kinds. Let us compare a certain
class of structures to each kind of finite knowledge
structures.

Note that finite structures can be divided into two main
types: oriented finite structures and unoriented finite
structures [21].

The simplest unoriented finite structures are hereditar-
ily finite sets [63]. The class of hereditarily finite sets
can be expressed as follows:

∅(+
∗
1) = Hℵ0
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A(+∗
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⋃
ι∈N/{0}

A(+ι
k)

τ1 (A)
def
= A

ρ1 (⟨A,B⟩) def= ∅

σ1 (⟨A,B⟩) def= 2∅+
∑

x∈(A∪B){x}

According to Ackermann coding [62], all hereditarily
finite sets can be a mutually uniquely matched to natural
numbers and thus enumerated [27]:

f (S) = 0 +
∑
x∈S

2f(x)

A generalization of the class of hereditarily finite sets is
the class of generalized hereditarily finite sets.

A(+∗
1)

Generalized hereditarily finite sets can be embedded
in (classical non-generalized) hereditarily finite sets:

∅ ∼ 2∅

ak ∼ 2{∅}k

g (∅) = {∅}

g (ak) = {{∅}k , ∅}

g (X) = {g (x)|x ∈ X}

or alternatively:

∅ ∼ d (1) = {∅}

ak ∼ d (2 ∗ k + 1)

d (k) =

⌊log2 k⌋⋃
i=1

{
d

(⌊
k

2i

⌋
mod2

)}

d (0) = ∅

d (1) = {∅}

d (2) = {{∅}}

d (3) = {{∅} , ∅}

d (4) = {{{∅}}}

d (5) = {{{∅}} , ∅}

d (6) = {{{∅}} , {∅}}

d (7) = {{{∅}} , {∅} , ∅}

d (8) = {{{∅} , ∅}}

d (9) = {{{∅} , ∅} , ∅}

d (10) = {{{∅} , ∅} , {∅}}

d (11) = {{{∅} , ∅} , {∅} , ∅}

d (12) = {{{∅} , ∅} , {{∅}}}

d (13) = {{{∅} , ∅} , {{∅}} , ∅}

d (14) = {{{∅} , ∅} , {{∅}} , {∅}}

d (15) = {{{∅} , ∅} , {{∅}} , {∅} , ∅}

d (16) = {{{{∅}}}}

· · ·

g (∅) = {∅}

g (ak) = d (2 ∗ k + 1)

g (X) = {g (x)|x ∈ X}

In this way we obtain an ordering of generalized
hereditarily finite sets (as example) in accordance with
the Ackermann numbering and embedding in hereditarily
finite (unoriented) sets.

As for oriented structures (oriented, “ordered” sets),
if we take the von Neumann-Bernays-Gödel axiomatics
[63] as a basis then with some “traditional” approach
(representation of oriented pairs according to K. Kura-
towski) [24] an empty string [10], [13], [14], an empty
an oriented set [22] cannot be represented as unfounded
sets in a theory with the von Neumann-Bernays-Gödel
axiomatics [26], [63].

Accepted:
x = ⟨x⟩

in this case, the oriented pair of K. Kuratovsky:

⟨x, y⟩ = {{x} , {x, y}}

also
⟨x1, x2, x3⟩ = ⟨⟨x1, x2⟩ , x3⟩

⟨x1, x2, x3, x4⟩ = ⟨⟨x1, x2, x3⟩ , x4⟩

⟨x1, x2, x3, x4, x5⟩ = ⟨⟨x1, x2, x3, x4⟩ , x5⟩
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⟨x1, x2, x3, x4, x5, x6⟩ = ⟨⟨x1, x2, x3, x4, x5⟩ , x6⟩

⟨x1, x2, ..., xi, ..., xn−1, xn⟩ = ⟨⟨x1, x2, ..., xi, ..., xn−1⟩ , xn⟩

An = {⟨x1, x2, ..., xi, ..., xn−1, xn⟩ |xi ∈ A}

The consequence of this is that strings are conditionally
dimensional, that is, the length of a string is not its
function, and therefore cannot be calculated uniquely
from a string; an empty string cannot be represented by
a set in the von Neumann-Bernays-Gödel theory:

⟨x, x⟩ = {{x}} = ⟨{x}⟩

⟨x, x⟩ = ⟨{x}⟩

2 = length (⟨x, x⟩) ̸= length (x) = 1

n = length (⟨x1, x2, ..., xi, ..., xn−1, xn⟩) ̸=

length (⟨x1, x2, ..., xi, ..., xn−1, xn⟩) = 2

During understanding the string length function, if we
move from a function (as in the formulas above) to a
higher-order function with respect to the set of elements
of an oriented set this does not solve the problem:

2 = length ({⟨x, x⟩ , {x}}) (⟨x, x⟩) ̸=

length ({⟨x, x⟩ , {x}}) (⟨{x}⟩) = 1

Another consequence of this is that the Cartesian power
can exhibit the following non-obvious and non-intuitive
properties:

∃A
(
A = A1 ⊃ A2 ⊃ A3 ⊃ ... ⊃ Ai ⊃ ...

)
Inability to represent the empty string ε when represent-
ing strings as oriented sets.

Let be:
E = {ε}

Required:
En = E

We have:

E2 = {⟨ε, ε⟩} = {{{ε}}}

ε = {{ε}}

E3 = {⟨ε, ε, ε⟩} = {⟨⟨ε, ε⟩ , ε⟩} = {{{⟨ε, ε⟩} , {⟨ε, ε⟩ , ε}}}

E3 = {{{{{ε}}} , {{{ε}} , ε}}}

ε = {{{{ε}}} , {{{ε}} , ε}}

The latter violates the axiom of regularity (foundation),
otherwise:

E2 ̸= E

E3 ̸= E

The use of non-founded sets is evidence of a transition
to non-classical mathematical models.

There are approaches to representing strings in
von Neumann-Bernays-Gödel set theory by equivalence
classes of groupoids (which is complex) over oriented
sets or functions (requires the construction of a set of or-
dinal numbers). In the first case, the representation grows
exponentially, and in the second case, it is necessary to
use oriented pairs [23], [25] (the number of characters for
a string of length n grows no faster than 1+14∗n+p (n),
where p (n) = 1+n ∗ (n+3)/2 – number of characters
to represent ordinal numbers). These approaches do not
require a transition to non-classical mathematical models.
However, a string of one element is not this element.

Let’s consider another approach to representing strings
and oriented sets, which does not require, overcomes the
identified difficulties within the framework of classical
mathematical models and uses pairs not according to
K. Kuratowski, which cannot counter-intuitively have
cardinality (length) equal to one.

Let us define the concept of disposing of a set.

1S
def
= S

(ι+ 1)
S def
=
{
ιT
∣∣T ⊆ S

}
Example.

2{χ} =
{
1{χ}, 1∅

}
= {{χ} , ∅}

3{χ} =
{
2{χ}, 2∅

}
=
{
{{χ} , ∅} ,

{
1∅
}}

= {{{χ} , ∅} , {∅}}

4{χ} =
{
3{χ}, 3∅

}
= {{{{χ} , ∅} , {∅}} , {{∅}}}

5{χ} =
{
4{χ}, 4∅

}
= {{{{{χ} , ∅} , {∅}} , {{∅}}} , {{{∅}}}}

4∅ =
{
3∅
}
=
{{

2∅
}}

=
{{{

1∅
}}}

= {{{∅}}}

Also, let us define the concept of an individual set.

{x}1
def
= {x}

{x}ι+1

def
= {{x}ι}

note that:
(ι+ 1)

∅
= {∅}ι

Finite oriented set:
k⋃

i=1

{
(k − i+ 1)

{ai}
}
i

The number of characters to represent it is no more than
1+n ∗ (5 ∗ n+ 1) /2+ q (n) where q (n) = 2 ∗n+1 is
the number of characters per representation of individual
sets of the empty set.

Examples:
⟨⟩ = ∅

⟨χ⟩ = {{χ}}
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A pair like a Wiener pair [23]:

⟨χ, γ⟩ = {{{χ} , ∅} , {{γ}}}

Other examples:

⟨χ, γ, ζ⟩ = {{{{χ} , ∅} , {∅}} , {{{γ} , ∅}} , {{{ζ}}}}

Also let it be true:

An = {⟨x1, x2, ..., xi, ..., xn−1, xn⟩ |xi ∈ A}

From the above this follows:

∃A
(
A1 ̸= A

)
Based on the introduced concepts, we can give a defini-
tion of the Kleene closure:

A∗ def
= A∗A

where

A∗Σ
def
= A ∪

 ⋃
ι∈N∪{0}

Aι

⊕Σ

Λ⊕Σ =
⋃
χ∈Λ


|χ|⊕
ι=1

κ (⟨χι,Σ⟩)


κ (⟨γ,Σ⟩) ∈ {γ|τ (⟨γ,Σ⟩)} ∪ {⟨γ⟩ |¬τ (⟨γ,Σ⟩)}

τ (⟨γ,Σ⟩) =
(
(|γ| ∈ N ∪ {0}) ∧

(
∃B
(
γ ∈ B|γ|/Σ

)))
∧(

γ⋃
ι=1

γι ⊆ Σ

)
Kleene closure properties:

|∅∗| = |{⟨⟩}| = 1∣∣{∅}∗∅
∣∣ = ∣∣∣{⟨⟩}∗∅∣∣∣ = 1

if 0 < |A| ≤ |N| then |A∗| = |N|.
Extensiveness property of the Kleene closure:

A ⊆ A∗

Monotonic property of the Kleene closure:

A∗ ⊆ (A ∪∆)
∗A

Idempotency property of the Kleene closure:

(A∗)
∗A = A∗

The formal language through the introduced Kleene
closure is defined:

Λ ⊆ A∗/
(
A/A1

)
Generalized strings differ from strings in that their

elements can be not only elements of the alphabet but
also strings and other generalized strings.

Let us define a generalized Kleene closure (the set of
all generalized strings with respect to the alphabet A,
extending the alphabet A).

A(∗∗) def
=

⋃
ι∈N/{0}

A(∗ι)

where
A(∗1) def

= A∗

A(∗ι+1) def
=
(
A(∗ι) ∪A

)∗
Properties of the generalized Kleene closure: if 0 ≤

|A| ≤ |N|, then
∣∣A(∗∗)

∣∣ = |N|.
Extensibility property of the generalized Kleene clo-

sure:
A⊆ A∗ ⊆ A(∗∗)

Monotonicity property of the generalized Kleene clo-
sure:

A(∗∗) ⊆ (A ∪∆)
(∗∗)

Idempotency property of the generalized Kleene clo-
sure: (

A(∗∗)
)(∗∗)

= A(∗∗)

A generalized formal language is defined:

Λ ⊆ A(∗∗)/
(
A/A1

)
The following is true:

∅(∗
∗) ⊆ ∅(+

∗
1)

Generalized formal languages are included in general-
ized hereditarily finite (unoriented) sets:

A(∗∗) ⊆ A(+∗
1)

By embedding generalized strings (generalized heredi-
tarily finite sets) into hereditarily finite sets, they can be
ordered according to Ackermann coding.

Besides, all generalized strings can be mutually unam-
biguously mapped to strings of a formal language whose
alphabet (extended alphabet) differs from the alphabet of
generalized strings by two additional symbols: the start
symbol and the end symbol of the string. Accordingly,
given a linear ordering of the symbols of the extended
alphabet, all generalized strings can be lexicographically
ordered as corresponding strings of a formal language
on the extended alphabet.

It is possible to consider unoriented sets that are not
oriented sets such sets we will call ultra-unoriented sets.

Together with the corresponding generalized oriented
sets, generalized ultra-unoriented hereditarily finite sets
can be constructed as the class A(+∗

2) according to the
expressions:

τ2 (B)
def
= B

ρ2 (⟨A,B⟩) = (A ∪B)
∗
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σ2 (⟨A,B⟩) = π2

(
2∅+

∑
x∈A∪B{x}

)
π2 (B) = {h (x) |x ∈ B}

h (∅) = ∅{
h (a)

∣∣∣(a ∈ A)
∧

(h (a) = a)
}
= A

h (X) = ∅ ∪
⋃
x∈X

{
2{h(x)}

}
where h defines a mutually unambiguous mapping of
generalized unoriented hereditarily finite sets into gener-
alized ultra-unoriented hereditarily finite sets.

In this case:
A(+∗

2)⊆ A(+∗
1)

Together with generalized unoriented finite sets, general-
ized ultra-unoriented finite sets can be mapped mutually
unambiguously to inherited finite sets.

The classical mathematical model works with jus-
tified (grounded) sets, but some non-classical models
correspond to other structures. While the structure of
hereditarily finite sets is acyclic and involves various
hierarchies, other (e.g., cholarchical [65] structures con-
sist of elements where each element is a part and is a
whole (composed of parts). Some such structures can
be visualized as periodic or cyclic structures. Another
example of structures that may not fit within the frame-
work of classical mathematical models are non-trivially
automorphic structures, since such models adhere to the
abstraction of identity,. However, despite this, some of
these “non-classical” structures can (under certain con-
ditions) be represented by classical mathematical models.
First of all, among such structures we will be interested
in enumerable structures, i.e., such structures that can be
enumerated.

Let us consider the representation of A(+∗
3) in gen-

eralized hereditarily finite sets of the class of countably
non-identically-equal generalized hereditarily finite sets
on the alphabet Ȧ, which can be given according to the
expressions:

τ3 (B)
def
= B

ρ3 (⟨A,B⟩) = C × (A ∪B)
∗

σ3 (⟨A,B⟩) = D × π3

(
2∅+

∑
x∈A∪B{x}

)
π3 (B) = B

a2k+1 =

 ȧk

∣∣∣k ≤
∣∣∣Ȧ∣∣∣

d (2 ∗ k + 1)
∣∣∣k >

∣∣∣Ȧ∣∣∣
a2k = d (2 ∗ k)

C ∪D = E

E =
˙{

a2k

∣∣∣(a2k ∈ A)
∧

(k ∈ N)
}

E ⊆ A

If
C ∩D = ∅

then the representations of oriented sets in A(+∗
3) will

not intersect with the representations of unoriented sets
in A(+∗

3).
Fulfilled:

A(+∗
3)⊆ A(+∗

1)

Together with generalized finite sets, representations of
countable non-identically-equal generalized hereditarily
finite sets can be mapped one-to-one onto hereditarily
finite sets.

The representation of A(+∗
4) is analogous to A(+∗

2).
The representation of classes of unorient mixed count-

ably non-identically-equal generalized hereditarily finite
sets can be given according to the expressions:

τ5 (A) = 2(∅+
∑

x∈A{x})

ρ5 = ρ3

σ5 = σ3

π5 = π3

The representation of classes of orient mixed countably
non-identically-equal generalized hereditarily finite sets
can be given according to the expressions:

τ6 (A) = A(∗1)

ρ6 = ρ3

σ6 = σ3

π6 = π3

Consider the representation of A(+∗
6) in generalized

hereditarily finite sets of the class of countably non-
identically-equal generalized hereditarily finite sets on
the alphabet Ȧ with codes Ä, which can be given
according to expressions:

τ7 (B)
def
= B

ρ7 (⟨A,B⟩) = C × (A ∪B)
∗

σ7 (⟨A,B⟩) = D × π7

(
2∅+

∑
x∈A∪B{x}

)
π7 (B) = B

a2k+1 =

 ȧk

∣∣∣k ≤
∣∣∣Ȧ∣∣∣

d (2 ∗ k + 1)
∣∣∣k >

∣∣∣Ȧ∣∣∣
a2k = d (2 ∗ k)

C ∪D = E

E =
˙{

a2k

∣∣∣(a2k ∈ A)
∧

(k ∈ N)
}
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E ⊆ A

where
Ä ∩ N ̸= ∅

If a number in Ä is the Ackermann coding of the cor-
responding set in the representation of enumerably self-
founded generalized hereditarily finite sets by hereditarily
finite sets, then such a set is self-founded, i.e. this set is
considered as an element of the alphabet at the same
position in Ȧ as its code Ä.

To ensure the enumerability of self-founded gener-
alized hereditarily finite sets, it is required to ensure
that they are all finitely mutually-founded, that is, that
they are not infinitely mutually-founded. In this case, the
extensional closure will be reduced to a finite structure
and there will be an algorithm for comparing these
structures provided they are reduced to canonical form.

In general, it is not possible at this stage to can-
onize the representation of a structure that is a union
of structures of all sets of a given class. To canonize
the representation of such structures requires a separate
investigation of the conditions under which this may be
possible.

The embedding of structures in hereditarily finite sets
and natural numbers (Fig. 1), using Ackermann coding,
gives a structure isomorphic to the Rado graph [62]
which is universal for any graph, i.e. it allows us to
isomorphically enclose any graph and its supergraphs.
Stability is one of the important properties of Rado
Graph has. There are known studies of universal un-
countable structures and corresponding theories includ-
ing studies of the property of their stability [60]. As for
uncountable structures [31] associated with operational
semantics [16], [55] one direction of research is to study
an approach based on the use of decision procedures
without the presence of enumeration procedures as well
as the use of Büchi automata [61] and their hierarchy.

Using the considered classes of structures, one can
represent arbitrary finite graph, pseudograph, multi-
graph, metagraph, hypergraph structures, including ab-
stract simplicial complexes [28], their combinations and
others.

The applied value of the considered classes is the
possibility of algorithmic construction of canonical forms
(representations) of knowledge structures.

IV. Similarity, proximity, other attribute and invariants
of structures of meaning space and corresponding

models

The analysis of structural properties implies consider-
ation of topological relations and relations of similarity
(similarity and analogies) and difference. These relations
can be algorithmically realized within the framework of
the knowledge specification model in accordance with

the knowledge integration model. The knowledge speci-
fication model, by considering finite structures, allows for
the decidability of the corresponding analysis algorithms.

As for the similarity relations, they can be formed from
property detection relations or non-detection relations.
A property detection relation itself can be a similarity
relation when the property itself is revealed in its spec-
ification (i.e., the relation is reflexive); as a rule, such
relations are transitive. If a property is not revealed in
its specification, but is revealed in other structures, then
all these structures can be united into a class of (pairwise)
similar structures.

In the first case, such relations can be reduced to the
identification of full or partial embeddings, and mor-
phisms: isomorphic, homomorphic or homeomorphic
embedding.

The composition of two binary similarity relations is
a binary similarity relation.

The union of two ij-similarity relations is a ij-
similarity relation.

The intersection of two ij-similarity relations is a ij-
similarity relation.

The difference of a ij-similarity relation and a ij-
difference relation is a ij-similarity relation.

The difference of two ij-similarity relations, the first
of which is a subset of the second, is a ij-difference
relation.

The difference of a ij-difference relation and a second
relation is a ij-difference relation.

The difference of two ij-difference relations is a ij-
difference relation.

The union of two ij-difference relations is a ij-
difference relation.

The intersection of two ij-difference relations is a ij-
difference relation.

In the second case, similarity can be formed as an
equivalence relation or a partial order relation on the set
of structures for which no enumerated embeddings are
identified (in the first case).

Topological properties [47] can be investigated
through the consideration of operations on structures that
correspond to topological closure.

Among the topological similarities we can distinguish:
similarity on the inclusion of closures, similarity on the
inclusion of derived sets, similarity on the inclusion of
touch points and others.

Among topological similarities we can distinguish:
similarity by equivalence of closures, similarity by equiv-
alence of derived sets, similarity by equivalence of touch
points and others.

In addition to search operations for extensional clo-
sures, we can identify closure operations on the class of
automorphic elements of the structure.

It is also possible to identify search operations by a sin-
gle (simple) pattern (reverse homomorphism) in exten-
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Figure 1. General finite structures classes

sional closures covering all elements of some distance-
defined neighborhood of a concept, and all elements
incident to the concept must be all elements of the
automorphism class in this neighborhood. Among such
neighborhoods we can choose a maximal neighborhood.
The corresponding neighborhood can be considered as
a closed set if it is not included in any other such
neighborhood. In this case, the search operation on the
corresponding pattern can also be considered as a closure
operation.

The number of mappings of a pseudograph to the
ordinal scale distinguishable with precision up to the
order of vertices does not exceed |V ||V |. |V ||V |.
The number of mappings of the pseudograph

to the metric scale distinguishable with order-of-
magnitude accuracy of pairwise distances does not
exceed

(∣∣V 2
∣∣− |V |

)(|V 2|−|V |) (k-ary generalized dis-
tances –

(∣∣V k
∣∣− |V |

)(|V k|−|V |)).
For finite pseudographs and other representations of

G for which the smallest A is found:

G ∈ A(+∗
7)

a quantitative attribute model can be based on the fol-
lowing class of quantitative features:

Nr+A(+∗
7)

where
R ⊆ Nr

All closures defined on finite structures are finite. Fi-
nite structures, including finite (extensional) closures,
have the following (global) characteristics: length, width,
graph dimension, neg-entropy, sets (sets) of local char-
acteristics and others.

Global characteristics can be considered as invariants
[17], [68], on the basis of which characteristics similarity
or proximity measures (metrics or pseudo-metrics) can
be calculated.

Local (conditional) numerical characteristics include:
centrality, metrics [10] and others.

Another example of numerical features are measures
of scalar and coscalar product for introorthogonal sets
considered in taxonomy management problems [].
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The features for a finite set can be computed as a
generalized or stepped average:

p

√∑
x∈S xp

|S|

For a finite set of objects (an element of the product
of metric spaces), metrics based on the (stepped) mean
can be considered

d (⟨P,Q⟩) = p

√∑
x∈P

∑
y∈Q

d (⟨x, y⟩)p

The transition from an unbounded metric to a metric
as a bounded monotone (fuzzy) measure, can be realized
according to:

lim
z→d(⟨x,y⟩)

z

1 + z

or any other semi-additive monotonically increasing
bounded function from the point (0; 0):

f (x+ y) ≤ f (x) + f (y)

For a metric on linear representations by generalized
strings, we can use either the edit distance between them
or the minimum of the edit distances between the results
of the action of a subgroup of the symmetric group
of permutations of linear representations by generalized
strings.

Let us consider an algorithm for finding the exten-
sional closure of a concept:
1 The distensible set of the extensional closure is

empty.
2 Include a concept in the current front.
3 Construct a new next front by going deep down the

extensional.
4 Subtract the current front from the next front.
5 Add the elements of the current edge to the disten-

sional set of the extensional closure.
6 If the next edge is empty return the extensional

closure.
7 Make the next edge the current edge, go to step 3.
Consider an algorithm for computing the metric

(quasi-metric) on the union of (finite) extensional clo-
sures of concepts:
1 Find the extensional closure of the first concept.
2 Find the extensional closure of the second concept.
3 If the intersection of the found closures is empty

then return the metric equal to infinity.
4 If one concept lies in the extensional closure of

another, then find the distance from the other to
the first and return the metric equal to the smallest
of the found ones.

5 Descend from each concept deep into the exten-
sional closure to the intersection of the extensional
closures and remember the lengths of descent as A
and B.

6 Stepwise descent in the intersection of closures to
continue until the moment of meeting, calculate the
corresponding lengths A′ and B′.

7 Return the metric A+A′ + (B +B′) ∗ 1.
Each static structure (with its own denotational se-

mantics [19]) and its characteristics can be related (see
Fig.6, Fig.7) to the dynamic structure of a (formal) infor-
mation processing model based on that static structure
and its operations (possibly within A(+∗

7)) [57]. Such
dynamic structures and their corresponding operations
are described by a big-step operational semantics. The
connection between small-step [16], [52] and big-step
operational semantics [6] can be revealed through the
connections between the operational-information space
and the (formal) information processing model.

Operational information space can be described as
follows. A set of data instances V , a set of channels P , a
set of operators K, a set of (commutative) operations O,
a set of configurations C, a sequence of configurations
R

R ⊆ C × C

O ⊆ 2V
2×V ∪ 2V×V 2

C ⊆ 2K∪P∪(P×(V ∪K))∪(K×(O∪P ))

If a new parameter (with a value) is added to a config-
uration operation, it is possible to jump to the updated
configuration that contains it.

If a new operation is added to the configuration param-
eters, it is possible to switch to the updated configuration
that contains it.

It is possible to switch to a configuration that does not
contain an operation.

It is possible to jump to a configuration that does not
contain a parameter that is not used by an operation.

Consider the flows of an open (acyclic (Fig.2)) or
closed path (cyclic (Fig.3)) for the corresponding open or
closed structures and assume the following requirements
for its flow cij [57].
Each edge is mapped to a flow (energy) cij . To each

vertex s there is a flow cs =
∑n

j=1 csj . In addition to
the forward flow, the reverse flow c−1

ji , c
−1
s =

∑n
j=1 c

−1
sj

is also computed. Their difference is equal to: dij =
cij − c−1

ji , ds = cs− c−1
s . The direct (local) amplitude is

calculated as follows pij = dij

ci+c−1
i

+ 1∑V
j=1 aij

.

N∑
j=1

cij =

N∑
j=1

cji

cij =

∑N
j=1 cij∑N
j=1 aij

∗ aij ; cij ∗
N∑
j=1

aij = aij ∗
N∑
j=1

cij

Also in matrix form we have:

AT ∗ C = (A ∗ 1) • C
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For the structure in Fig.3 and its forward flow we have:
c11 = c12
c56 = c57
c89 = c814

c1112 = c1113

Let us find the minimum solution in natural numbers.
As a result of fulfillment of these requirements we

obtain the following table of results (see Fig.3, Fig.4,
Fig.8, Fig.5).

Table I
Table of dynamic structure characteristics

Edge Flow Forward Backward
number difference amplitude amplitude

0 3 19/32 35/35=1
1 -3 13/32 29/29=1
2 3 35/35=1 35/35=1
3 -3 29/29=1 29/29=1
4 3 35/35=1 19/34
5 -1 15/29 15/34
6 -2 14/29 30/30=1
7 2 34/34=1 34/34=1
8 -2 30/30=1 30/30=1
9 0 16/34=8/17 16/30=8/15
10 2 18/34=9/17 18/35
11 -2 30/30=1 14/30=7/15
12 -2 30/30=1 30/30=1
13 1 17/30 33/33=1
14 -3 13/30 29/29=1
15 1 33/33=1 17/35
16 -3 29/29=1 29/29=1
17 3 35/35=1 35/35=1
18 -3 29/29=1 13/32
19 3 35/35=1 19/32

An analogous result can be obtained for an open (non-
closed) structure (Fig. 2).

Each strongly connected structure has an (own) period
T , which is the GCD of all periods (lengths of simple
cycles) in this structure, and has a partition by levels of
wave fronts corresponding to this period. We will call the
number of these levels the length of the structure L = T .
The length L of an acyclic structure is the maximum
length of the shortest route for two connected vertices.
Each (acyclic) structure has a mapping W of the set of
numbers of moments of time [9] to the set of subsets
of vertices by levels of wavefronts at given moments of
time, the number of which does not exceed the length
and diameter of the structure. Each wavefront has an
energy E (t) =

∑
s∈W (t) cs. The wavefront energy can

be different from 1. The amplitude at the top of the
wavefront pts = cs

E(t) is in the interval [0; 1]. The average
amplitude is inversely proportional to the number of front
elements E(t)

|W (t)| .
The amount of information of the wavefront at the

moment t is expressed.

−
∑

s∈W (t)


∣∣∣U (t)

s

∣∣∣
pts

∗ ln

∣∣∣U (t)
s

∣∣∣
pts



Figure 2. Acyclic orgraph weighted structure.

Figure 3. Strong connected flow difference weighted orgraph.

Set of undistinguishable vertices of the wavefront

{s} ⊆ U
(t)
s ⊆ W (t)

The average (arithmetic) amount of information of the
structure:

− 1

T
∗

T∑
t=1

∑
s∈W (t)


∣∣∣U (t)

s

∣∣∣
pts

∗ ln

∣∣I(t)∣∣ ∗ ∣∣∣U (t)
s

∣∣∣
T ∗ pts



Figure 4. Strong connected orgraph forward flow.
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Figure 5. Strong connected orgraph flow difference weights matrix.

Figure 6. Asymmetric ontological structure with corresponding dynamic structure.

A set of indistinguishable moments in time

{t} ⊆ I(t) ⊆ Dom (W )

The information in a strongly connected structure will
be called real (elliptic), and in an acyclic structure will
be called imaginary (hyperbolic).

Two kinds of structures are considered: a (finite)
acyclic graph and a strongly connected pseudograph. An
arbitrary (finite) pseudograph structure can be decom-
posed into its connected components. An arbitrary (fi-

nite) connected pseudograph structure can have different
kinds of substructures and, in particular, can be broken
down into the two kinds of structures discussed ear-
lier: strongly connected components (subpseudographs),
acyclic graphs (subgraphs). However, within a structure,
these substructures can have different relationships and
fulfill different roles [66]. Let us describe different types
of substructures according to their roles (relations) per-
formed (available) in the structure [66].

Resonators are maximal strongly connected subpseu-
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Figure 7. Asymmetric ontological structure with corresponding dynamic structure.

Figure 8. Strong connected orgraph backward flow.

dographs.
Sensors (receptors) are acyclic subgraphs whose ele-

ments are not reachable from any resonator.
Dispensers (effectors) are acyclic subgraphs whose

elements are not reachable from any resonator.
Transmitters are acyclic subgraphs whose elements

are reachable from at least one resonator and from

whose elements at least one other (different) resonator
is reachable.

Transmitters and transmitters are consumers.
Sensors and transmitters are suppliers.
We can also consider generating resonators (not reach-

able from other resonators) and consuming resonators
(reachable from other resonators).

Among resonators, we can distinguish unimodal (har-
monic) resonators and multimodal (non-harmonic) res-
onators (multimodal waveform). All multimodal res-
onators are consuming resonators. Each mode is phase
shifted by less than a period.

A resonator-free subgraph can be extracted from any
structure, which is the set of all vertices and edges
reachable from the receptor elements.

The remaining edges together with their initial and
final vertices form the resonator subpseudograph.

A receptor element is called a sensor element if it has
no supplier.

A dispenser element is called a dispenser element if
it has no consumer.

If there are no suppliers (sensors or transmitters)
whose elements are suppliers to the generating resonator,
then all its elements are sensor elements.
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If there are no consumers (dispensers or transmitters)
whose elements are consumers of the resonator, then all
its elements are dispenser elements.

The method for determining the capacitive characteris-
tics of structures used in problem solving is summarized
in the following principles.

Each resonator has a period, which is the partial GCD
T of its own period and periods of all (its) suppliers,
from which it consumes, to the GCD of this GCD (T )
and all its divisors k, for which the convolution of the
phases k ∗ n with the phases (taking into account their
shifts) of all modes (waveforms) of the signal is equal to
k T − k ∗ ((T − k)!).

For each consumer (dispenser or transmitter) element,
the period is calculated similarly, except that instead
of the GCD of the period itself and the periods of all
(its) suppliers from which it consumes, the GCD of the
periods of all its suppliers is taken.

For each supplier element, the potential period, which
is the period of the consumer in the inverted pseudo-
graph (inverse ratio pseudo-graph), can be similarly
determined.

For sensor elements, it may be assumed, unless other-
wise accepted, that their period is equal to their potential
period.

For each sensor element (supplier), a period can be
calculated that is equal to the LCM of the periods of all
its consumers (taking into account the phase shift).

The entropy of a set of resonators is calculated on a
period equal to the GCD of periods of all resonators of
this set.

If resonators are present, then the (maximum possible)
entropy of the entire pseudograph is valid and can be
computed as the greatest entropy of the greatest entropy
of the greatest entropies of the smallest sets of resonators
cutting the set (paths) of the set of smallest sets of paths
connecting all sensor elements to all dispenser elements.

If all sensor elements and dispenser elements are
resonator elements, then the (minimum required) entropy
of the entire pseudograph is valid and can be computed
as the smallest entropy of the smallest entropies of the
smallest sets of resonators cutting the set (paths) of
the set of smallest sets of paths connecting all sensor
elements to all dispenser elements.

If all sensor elements and dispenser elements are
not resonator elements, then the (minimum necessary)
entropy of the whole pseudograph is invalid (imaginary)
and is computed on the period equal to the LCM of
all periods (elements) of the subpseudographs of the
pseudograph and the maximum of the lengths of the
(simple) paths from the sensor element to the dispenser
element.

The entropy of an unbound pseudograph can be cal-
culated as the average (minimum, maximum, etc.) of the
entropies of its components on a period equal to the LCM

of periods (on which calculations for) its components
were performed.

Conclusions

The classification of enumerable finite structures and
their representations is proposed, relations between
classes of this classification are considered. The clas-
sification is oriented on unification of knowledge rep-
resentation with finite structure and algorithmization of
solutions of problems of investigation of topological
and metric properties of structures of meaning space in
order to exclude redundant fragments of knowledge at
representation in meaning space.

Approaches are considered and concepts for investi-
gation of structural-topological and metric properties of
structures of the sense space for the purpose of opti-
mization of structures of knowledge bases are proposed.
General quantitative evaluations of mappings of finite
structures with accuracy up to order preservation to
ordinal and metric scales in the study of corresponding
properties of these structures are given. An approach to
the classification of quantitative features of finite struc-
tures is proposed. An algorithm for metric computation
on the union of extensional closures of sense space
concepts is proposed.

A model and a method for computing entropy (as
one of the invariants) for finite dynamic structures of
information processing models (in accordance with the
models of graph dynamical system and generalized finite
automaton [64]) based on analytical calculation of tran-
sition probabilities on the state graph in accordance with
its structure are proposed.

The features of structures of semantic space that can
be used as invariants in order to reduce the time to
identify redundant fragments in the semantic space are
considered.

A model of operational-information space is proposed,
which corresponds to the model of model-parametric
space [67], is oriented to solving the problems of
knowledge management [15], [50], [56] in information
processing and the study of the relationship between
the attributes of structures with operational semantics
expressed by the operational semantics of small and large
step.

An approach to the consideration of infinite structures
through (limit) sequences of finite structures converging
to them is proposed in accordance with the classification
of finite structures, the model of knowledge specification
[5], the algebraic system of extensible sets and the
metamodel of semantic space [56].
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К ТЕОРИИ СМЫСЛОВОГО
ПРОСТРАНСТВА
Ивашенко В. П.

Статья рассматривает модели для исследования
структуры, топологии и метрических признаков смыс-
лового пространства, использующего унифицирован-
ное представление знаний.

Рассмотрены классы конечных структур, соответ-
ствующие онтологическим структурам и множествам
классического и неклассического вида, исследованы
свойства перечислимости этих классов.

Предложено понятия операционно-
информационного пространствм, как модели для
исследования взаимосвязи операционной семантики
онтологических структур большого и малого шага.

Рассмотрены количественные признаки и инвари-
анты онтологических структур, ориентированные на
решение задач управления знаниями.
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