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Abstract—This research proposes an algoritm for detect-
ing and evaluating signs of optic nerve disc degeneration of
various genesis. This algorithm is based on the analysis
of a diagnostic protocol, which is built by extracting a
semantic map from an ocular fundus image and analyzing
the characteristics of object classes associated with the
manifestations of opticoneuropathies.
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I. Introduction
Optic nerve atrophy, accompanied by destruction of

nerve fibres and progressing death of retinal ganglion
cells (RGCs), is one of the most common causes of
decreased visual function, up to complete blindness. De-
spite the variety of clinical manifestations, optic atrophy
has a common feature — a change in the colour satura-
tion of the optic nerve disc (OND). It has been discovered
that this sign is most often detected before the appearance
of functional disorders associated with the disease. In
this case, pallor of the optic disc and replacement of
its typical pink shades with grey tones turns out to
be an indicator of a latently running disease [1]. The
above is fully applicable to multiple sclerosis (MS) — a
chronic progressive autoimmune-inflammatory and neu-
rodegenerative disease characterized by the formation of
multiple lesion foci mainly in the white matter of the
central nevrous system (CNS) and progression of focal
and diffuse brain atrophy [2]. It is shown that multiple
sclerosis is accompanied by death of retinol ganglion
cell axons and loss of visual functions. Early diagnosis
of MS significantly increases the chances of long-term
remission under the influence of medications that change
the clinical course of the disease.

Various threshold methods measuring the degree of
pallor of the RPE have been used to diagnose MS.
However, when attempting to obtain generalized color
characteristics, the objectivity of the results decreases,
because this approach does not eliminate the dependen-
cies on the settings and accuracy errors of the equipment
used for photoregistration of the ocular fundus. The
reliability of the result, in fact, remains within the limits
of reliability of the results obtained by subjective, visual

evaluation of the color of the optic nerve disc, which is
currently used in practice [3].

Threshold method is quite suitable in cases of pro-
nounced atrophy of the optic nerve disk, when the
diagnosis is without a doubt. However, it is difficult
to apply it in controversial cases when degenerative
changes in the area of the neuroretinal rim of the optic
nerve disc (pallor) have only initial or poorly expressed
character. Meanwhile, detection of such changes is of
special interest because, as it was mentioned above,
degenerative changes can be detected much earlier than
functional manifestations of pathologies (pallor of the
neuroretinal rim) that caused these changes [4].

Fixation of the lesion zones, determination of their
informatively significant characteristics [5] (which, apart
from changes in color and shape of the OND, should
include changes in the pattern of retinal vessels) can be
performed with the help of the most advanced current
methods of computer mathematics that use artificial
intelligence — deep learning neural networks and math-
ematical models of machine learning [6].

The objective of the study is to develop an automated
method for detecting and evaluating signs of optic disc
degeneration of various genesis based on the analysis of
a diagnostic protocol based on the spectrum of possible
manifestations of optic neuropathies recorded on the
surface of the optic disc [7]. The diagnostic protocol
is compiled by extracting the semantic map of the
ocular fundus image and analyzing the characteristics of
class objects (manifestations of opticoneuropathies). The
result of applying the voting algorithm to the diagnostic
protocol of the image is then compared with the result
of the developed neural network model that gives the
assessment-diagnosis of multiple sclerosis.

II. Signs of different classes of neuropathies on ocular
fundus images

Acquired atrophy can be due to two causes - compres-
sion of peripheral optic neurons (so-called primary form)
or optic disc edema (so-called secondary form) [8].
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A. Primary form
The primary or glaucomatous form of optic atrophy

develops due to collapse of the lattice plate of the
sclera which happens due to increased eye pressure.
Glaucomatous optic neuropathy in the initial phase either
does not cause pallor of the optic nerve disc at all, or
the disc color change is very slight and can be spotted
only in one segment. However, the development of the
disease leads to the loss of ganglion cells, thinning of
the optic disc and narrowing of the vessels of the eye
fundus, as well as desolation and death of small vessels
on the disc (Kestenbaum’s symptom). A gradual thinning
of the optic disc is happening. The pallor becomes
more even, spreading over the entire surface of the disc.
However, neither its shape nor size changes. A distinctive
feature of glaucomatous neuropathy is the excavation
zone increasing in size.

Although the growth of the excavation zone indicates
the possible presence of pathology. But the size of
excavation in healthy people is also variable: as a rule, a
larger optic disc has a larger excavation zone, therefore, it
is more important to assess the ratio of the optic disc size
to the excavation zone. An increase in this ratio is most
often evidence of abnormal contraction of glial cells. An
important sign of pathology may be not only a change
in the relative size of excavation, but also a difference in
these parameters for two eyes.

B. Secondary form
The secondary form of atrophy is based on a patho-

logical process in the optic disc itself, in which nerve
fibers are replaced by neuroglia. In this case, there is
a pronounced loss of pink shades of the optic disc neu-
roretinal rim, we can see disc swelling, its size increases,
and its contours lose sharpness of borders.

Analysis of optic disc color should not be performed
over the entire area, but only within the neuroretinal
rim located in the area between the edge of the optic
disc and the excavation zone. In this area ganglion cell
axons are localized. In norm the color is pink and its
change is a sign of retinal ganglion cells death. Blood
vessels located in the optic disc area should also be
excluded from the analysis of the color of the neuroretinal
rim. Their selection as separate objects is necessary not
only because they will influence the generalized color
characteristics of the neuroretinal rim, but also because
the condition of blood vessels is a diagnostic sign in
itself. A decrease in the number of small blood vessels
on the disc surface (Kestenbaum’s sign), as well as
weakening (thinning) of blood vessels around the disc
may indicate the presence of pathology.

III. ResNet50 classifier for pathology detection
To realize the qualitative performance of the

ResNet [9] classifier, the input parameters are tensors

with dimensionality 16 x 256 x 256 x 256 x 3, where 16
is the batch size, 256 x 256 are the spatial dimensions of
the images compatible with the neural network architec-
ture, and 3 corresponds to the number of image channels.
The model is trained and tested on a dataset of images
obtained by semantic segmentation of the original images
and containing classes of disk and excavation area and
a region around the disk equal to its radius. The model
contains 49 convolutional layers and defines 2 classes of
pathology. Model’s architecture is shown in Fig. 1.

Binary classification is performed using the Sigmoid
function. After a fully connected layer, the values are
brought to the range [0, 1], which means the probabil-
ity of disease. A threshold = 0.5 is used for decision
making and subsequent comparison with the true image
label. The model was trained for 20 epochs with a
gradual decrease in the learning rate parameter using
torch.optimize.lr_scheduler. On the test data, the model
concludes the diagnosis with 94% accuracy. Table I
shows the error matrix for the test data on 203 patients.

Thus Recall of the model is about 0.95 and Precision
is about 0.93.

Table I
Results as error matrix

Class Result
TP (correctly predicted patient) 96

FN (incorrectly predicted healthy) 5
FP (incorrectly predicted sick) 7
TN (correctly predicted healthy) 101

IV. Semantic formation of disease description

According to our research to identify informative fea-
tures for further analysis (as it is shown in Fig. 2) we
should segment:

• neuroretinal rim;
• the excavation zone;
• blood vessels.
To form a semantic map of the image of informative

objects (the optic nerve disk, excavation zone and vascu-
lar network) was chosen a convolutional neural network
of Unet [10] architecture with a resnet18 backbone pre-
trained on the ImageNet dataset.

The model contains 23 convolutional layers and con-
sists of convolutional (encoder) and up-convolutional
(decoder) parts. To reduce each 64-component vector
to the required number of classes, 1×1 convolutions
are applied on the last layer. The input image size is
determined by the need for even values of height and
width for adequate application of subsampling operation
(2×2 max pooling).

The network is trained by stochastic gradient descent
based on the input images and their corresponding
segmentation maps (masks). Applied function, soft-max

320



Figure 1. Classifier architecture.

Figure 2. Semantic cart of an image.

brings the model prediction to the mask view. The loss
function is a binary cross-entropy + jaccard functions.
The accuracy is calculated by the BinaryIOU() [11]
function, which finds the ratio of the correctly predicted
mask to the union of the predicted and true masks.

A. Segmentation of blood vessels
The training of the model extracting the vascular

network of the image was carried out in 2 stages. In
the first stage, the network was trained on an additional
set of 300 labeled data from publicly available datasets
such as DRIVE [12], CHASE DB1 [13] and HRF [14].
In the second stage, the network was trained on target
images.

Initially, the analyzed three-channel (RGB) image was
compressed to a size of 996 x 996. After that, it was split
into 9 slices with a resolution of 352 x 352 so that each
slice captures a part of the neighboring slices (10 pixels).
This is to eliminate distortion at the boundary between

two tiles. Vessel segmentation by the neural network was
performed for each tile. After the tiles were merged into a
single image with the boundary 5 pixels cropped on each
of them. They were then merged into rows. To smooth the
transition between two tiles, their 5-pixel boundaries are
overlaid and the resulting brightness is calculated using
alpha blending to obtain a smooth transition. This process
is shown in Fig. 3.

Figure 3. left — result of segmentation model on neighboring tiles,
right — tiles merged with alpha blending

The same way the obtained 3 rows of tiles are com-
bined into a vessel mask of the whole image. After that
the obtained mask is stretched to the size of the original
image.

The results of segmentation model for vascular net-
work on training set and validation set are shown in Fig. 4
and their losses on training and validation set are shown
in Fig. 5.
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Figure 4. IoU score. first — training, second — validation. Blue — disk segmentation, red — excavation zone, orange — blood vessels

Figure 5. Jaccard loss. first — training, second — validation. Blue — disk segmentation, red — excavation zone, orange — blood vessels
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B. Segmentation of optic nerve disk and excavation zone
Initially, the optic disc itself is segmented on the ocular

fundus images compressed to a size of 352 x 352 using
the same binary segmentation neural network (Fig. 6).
The approximate radius of the disk is calculated, then the
area of the original image containing the disk and having
dimensions equal to three diameters of the disk is cut out.
This image is transformed and used for segmentation of
the excavation zone (Fig. 7).

The results of disk and excavation zone segmentation
model on training set and validation set are shown in
Fig. 4 and their losses on training and validation set are
shown in Fig. 5.

Figure 6. Image and mask of a disk

Figure 7. Image and mask of excavation zone

C. Signs of pathology manifestation
From the semantic segmentation map of these objects

we need to extract such signs as:
• loss of clarity of the optic disc boundaries;
• enlargement of the cup in relation to the disk;
• Dying off of small vessels on the disk;
• branching characteristics of vessels.
Also from the provided image, should be extracted

information about color signs of neuroretinal rim (disc
area without excavation zone):

• graying of the neuroretinal rim (parameter H in HVS
color model);

• graying of the neuroretinal rim (parameter S in HVS
color model).

We should keep in mind that there is no clear rela-
tionship between these signs and the presence of early

stage pathology, while at later stages of the disease the
manifestation of primary optic atrophy increases, but
perhaps the whole collection of signs will allow us to
make some conclusions. Fig. 8 shows a scheme of the
proposed automated method using the extracted features.

Now let’s enlarge upon informative features and meth-
ods of their extraction. We will also consider methods of
numerical expression of these signs.

1) Loss of clarity of the optic disc borders: Let’s
assume that this sign is manifested by the fact that the
contour of the optic disc is clearer for images without
pathology. To estimate the boundary clarity, we use the
estimate of the intensity gradient on the contour and the
variance of this gradient (Fig. 9), which is expected to
be lower on the images with pathology. Specifically, we:

• extract the optic disc boundary obtained using the
semantic map of the whole image as the image to
be evaluated;

• apply the gradient operator, in our case the Sobel
operator, to the boundary;

• calculate the total intensity gradient using the Eu-
clidean norm of gradients along the horizontal and
vertical axes.

2) The enlargement of the cup (excavation zone) rela-
tive to the disk: To estimate the enlargement of the cup
(excavation zone) relative to the disk using information
from the semantic map (Fig. 10), we calculate the ratio
of the area of the excavation zone to the area of the optic
nerve disk.

3) Dying off of small vessels on the disk: For this
feature on the mask of the vascular network obtained
from the semantic map, we will find and count the
number of small vessels.

In this method, we will use the built-in functions of
the cv2 library that remove "noise" in the image.

Let’s assume that we call "small" vessels those that
are less than 5 pixels wide. Then, taking them as noise,
we use a kernel of 5 x 5 pixels to traverse the vascular
network mask obtained from the semantic map and paint
all small vessels. The obtained mask with only large
vessels will be subtracted from the mask of all vessels
and we will get only small vessels (Fig. 11).

4) Vascular network area: Calculating the area occu-
pied by vessels can provide insight into the density and
distribution of vessels. The method of measurement:

• counting all pixels that make up the vascular system.
This can be done by simply counting the number of
mask pixels that have a value corresponding to the
vessel class;

• convert this number of pixels to area, given the scale
of the image.

5) Vessel branching:
• we apply a skeletonization operation to the selected

vessels to obtain their skeletal representation. In this
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Figure 8. Pipeline of the automated method of semantic description generation for eyes diseases

Figure 9. Mean gradient is 0.48. Gradient variance is 51

way, each vessel will be compressed to a width of
1 pixel;

Figure 10. All classes highlighted

• then for each pixel on the vessel skeleton, we
perform the following steps:
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Figure 11. Small vessels extraction

– define the 9-neighbor neighborhood of the
pixel;

– count the number of neighboring "active" pixels
in the neighborhood;

– if the number of neighboring "active" pixels is
more than 3, it means that there is a branching
of vessels in this place;

– mark this pixel;
• since this algorithm can mark one branching several

times, we will consider the number of connected
marked components as the number of branching.
Fig. 12 illustrates skeletonized vessel mask and it’s
branching points

Figure 12. Number of branching points: 46

V. Conclusion
Systems capable of making semantic description for

eyes diseases based on feature analysis represent a pow-
erful tool for detecting and classifying pathologies. Such
systems can be useful for monitoring and detecting early
stages of different diseases.

However, we understand that the method requires ad-
ditional research and validation on more diverse clinical
data. It is also important to keep in mind that the final
decision and diagnosis should always be based on a
combination of data, expertise and clinical context.
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ГЕНЕРАЦИЯ ОПИСАНИЯ ДЛЯ
ЗАБОЛЕВАНИЯ ГЛАЗНОГО ДНА

Гимбицкая Е. В., Ермаков В. В.,
Недзведь А. М.

В данной работе предлагается алгоритм для детек-
ции и оценки клинических проявлений рассеянного
склероза на снимкахфундус-камерой глазного дна. Так
как симптомы заболевания проявляются на различных
объектах снимка, с помощью создания семантической
карты исходного изображения, для каждого отдель-
ного объекта оцениваются проявления симптомов. В
результате работы данного алгоритма составляется
диагностический протокол снимка. Далее получен-
ный протокол можно сравнить с результатом модели-
классификатора, работающей только с областью диска
и оценивающей вероятность заболевания.
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