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Abstract—Recently, machine learning has become one of
the most promising directions in working with medical data.
Deep neural network models are the most effective and
accurate, but they require large volumes of information for
training. This is a common problem in the case of medical
data, especially images, as their creation involves significant
costs.

One solution to improve the quality of deep neural
network models without increasing the training dataset is
model aggregation. However, a problem arises with preserv-
ing the confidentiality of medical images. For example, if
one model is trained on an image containing information
about a specific patient, other models participating in the
aggregation may also gain access to this information. As a
result, information about a specific patient may be disclosed.

In an attempt to address the problem described above,
this work aims to research and develop methods for
aggregating machine learning models while preserving the
privacy of medical images, particularly federated learning
methods.

Keywords—Computer vision, machine learning, deep
neural network, medical images analysis, image processing

I. Introduction
In the modern world, deep neural networks are one of

the most powerful tools for analyzing medical data, as
they can extract complex relationships between different
features. However, one of the main challenges in training
large and very large neural networks is the computational
limitations during training. This is due to the fact that
training deep neural networks involves using backprop-
agation algorithms, which require a large number of
iterations to achieve good training quality. And as the size
of the neural network increases, the number of iterations
required for training increases exponentially.

Thus, training large neural networks becomes highly
challenging and demands significant computational re-

sources. One way to address this problem is through
model aggregation. Model aggregation in machine learn-
ing is the process of combining multiple models into a
more powerful and efficient one.

II. Idea of federated learning
The idea of federated learning emerged and was first

described in 2016 by researchers from Google in their
paper titled "Communication-Efficient Learning of Deep
Networks from Decentralized Data" [1]. This approach
belongs to the domain of distributed machine learning,
deployed across multiple clients, and enables training a
unified global model on the server using several sources
(clients), each of which is trained on its own dataset.
More formally, let there be N clients C1, C2, ..., CN

participating in the construction of the global statistical
model, each with its own dataset D1, D2, ..., DN . The
server coordinates the work of different clients and their
training.

The process of federated learning can be divided into
three key stages:

1) Initialization: At each step t, clients download the
latest version of the model wt from the server.

2) Local training: Each client Ck performs iterative
training based on its own local dataset Dk and a
hyperparameter η. The client updates the weights
of its local model after several training epochs,
denoted as wk

t ← wk
t−1 (η, Dk), and sends them

back to the server.
3) Model aggregation: The server performs the aggre-

gation of weights received from the local models
and updates the global model.

wglobal
t ← Agregation(wk

t , k ∈ 1, 2, ..., N) (1)
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The goal of the entire process is to minimize the ob-
jective function, which can be expressed by the following
formula:

minw

N∑
k=1

pkFk(w), (2)

where Fk is the local objective function for the k-th
client, pk is a value reflecting the relative influence of
each client, with pk > 0 and

∑N
k=1 pk = 1. In other

words, at each step, each client updates the weights of its
model, and then the server aggregates k sets of weights
using a specific aggregation method (such as averaging
aggregation, progressive Fourier aggregation, FedGKT,
etc.). More detailed, the entire process of federated
learning is shown in the figure 1.

Later, this strategy was referred to as centralized
federated learning, and a decentralized federated learning
strategy was also proposed. In the decentralized federated
learning strategy, there is no need for a central server
with which the model clients exchange data. Instead, each
client individually communicates with some other clients
and aggregates their updates. This strategy helps address
the issue of a single point of failure, where the entire
model does not break down due to isolated errors.

The main advantages of federated learning can be
summarized as follows [2]:

• Scalability: The distributed nature of federated
learning allows the system to easily adapt to changes
in the number of participating devices.

• Model simplification: By enabling different collab-
orating devices to conduct multiple parallel training
cycles with small amounts of data, federated learn-
ing simplifies the traditional centralized approach,
where a single entity has to process a substantial
volume of data each time.

• Faster convergence: By using simpler models, de-
vices participating in federated learning can perform
multiple iterations more quickly since they learn
from the experiences of other devices, leading to
the faster development of a reliable global model.

However, despite the aforementioned advantages, fed-
erated learning methods have limitations when it comes
to the heterogeneity of data and local models. This article
focuses on the analysis and solution of these specific
challenges.

III. Federated Learning Algorithms

A. Federated Stochastic gradient descent (FedSGD)

In a typical machine learning system, an optimization
algorithm like stochastic gradient descent (SGD) works
with a large dataset uniformly distributed across servers
in the cloud. The gradient is computed on a mini-batch,
which is a random subset of the original data, for each
step. However, in the case of federated learning, the data

is distributed unevenly across millions of devices, and
some devices may be unavailable at certain times.

To address these challenges, a modification of SGD
called Federated SGD has been introduced. In this ap-
proach, the gradients are averaged by the server in pro-
portion to the number of training samples on each node
and used for performing the gradient descent step [3].

Fk(w) =
1

nk

∑
i∈Pk

Fi(w) (3)

gk = ∇Fk(wt) (4)

wt+1 ← wt − η

K∑
k=1

nk

n
gk (5)

B. Federated averaging (FedAvg)
Federated averaging is a generalization of FedSGD

that allows local nodes to perform more than one batch
update on their local data before exchanging weights
with other models. Now, instead of exchanging gradients,
local models exchange weights. The rationale behind
this generalization is that if all local models start from
the same initialization, averaging gradients is strictly
equivalent to averaging the weights themselves.

∀k,wk
t+1 ← wt − ηgk (6)

wt+1 ←
K∑

k=1

nk

n
wk

t+1 (7)

C. Federated learning with dynamic regularization (Fed-
Dyn)

In cases where the data from different client models
is not homogeneous, minimizing the local loss functions
of the clients may not decrease the global loss function.
Therefore, it has been proposed to use regularization with
the use of data statistics, such as data volume, transmis-
sion speed, and cost. This modification transforms the
values of local loss functions into values of global loss
functions.
D. FedProx

This method is an improvement over the previous
approach and aims to mitigate the issue of local op-
timization inherent in stochastic gradient descent-based
methods.

The problem at hand is as follows: performing numer-
ous local iterative training steps in FedAvg can cause
each client to prioritize achieving its own local objective
rather than the global one, leading to suboptimal conver-
gence or model divergence.

The solution proposed by this method involves adding
a term µ

2 ||w
t
k − wt

global||2 to the objective function to
regulate the influence of local models and ensure conver-
gence guarantees. When µ = 0, FedProx is equivalent to
FedAvg, meaning that subsequent model aggregation and
global updates are performed using the same principles
as in FedAvg.
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Figure 1. Diagram of the federated learning process.

E. FedNova
In the FedNova algorithm, the model aggregation stage

of the FedAvg algorithm is modified to address the issue
of model non-identicality. Before updating the global
model, the algorithm applies normalization and scaling
to the local updates from each client based on their local
iteration number.

IV. The Problem of Heterogeneity in Federated
Learning

Existing methods of federated learning have the fol-
lowing drawbacks that limit their use for medical imag-
ing:

Data privacy concerns: During the aggregation phase,
the server receives all model weights from the clients,
which leads to a loss of data confidentiality. By having
access to all weights and information about the model’s
hyperparameters, it becomes possible to reconstruct the
images on which the local models were trained with some
level of accuracy.

Difficulty in aggregating models with different archi-
tectures: In cases where the architectures of the local
models differ significantly, the number and dimensions
of weight matrices also differ greatly. This makes it
impossible to apply basic federated learning methods.

Difficulty in aggregating heterogeneous data: Often,
the data on clients may undergo different preprocessing.
Moreover, the data may differ in class imbalance, which
further complicates the use of basic federated learning
methods.

To address these issues, a method is proposed that
distinguishes itself from other approaches by having

the server receive only a specific portion of the model
weights during the aggregation phase. This feature allows
for the preservation of the privacy of the local model and,
consequently, the data on which it was trained.

Weight aggregation still occurs on the server, but now
the server itself is a machine learning model (specifically,
a neural network) trained on a similar task and data that
is similar to the data used to train the local models.

1) Clients send a specific portion (not all) of the
trainable weights to the server.
wt

k, k ∈ [1, 2, ..., N ]
2) The server uses a transformation F : Rk → Rh

to convert the received weights wt
k from the Rk

space (the weight space of the k-th client, where
the weights transmitted by the clients may have
different dimensions) to the hidden space Rh. This
is done for the convenience of aggregating the
weights, which are now in a unified space.

wt
k ← F (wt

k) (8)

3) Next, using the transformation G : Rh− > Rh,
the server aggregates the weights obtained in the
previous step as follows:

wglobal ← G(wt
k) (9)

4) Then, for all clients, the server applies the inverse
transformation F−1 : Rh− > Rk to convert the
aggregated weights wglobal back to the original
weight space of the client Rk and sends them back
to the client.

The described method has the same advantages as ba-
sic federated learning approaches, but it has an additional
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key advantage that other methods lacked: preserving the
privacy of images.

Data leakage does not occur because clients only
exchange a portion of the weights with the server, which
is insufficient to reconstruct the original data on which
the model was trained.

It is precisely this advantage that enables the use of this
algorithm for training models used for medical images,
ensuring the privacy and confidentiality of sensitive
patient data.

Among the drawbacks of this approach, the following
can be identified:

• The need for additional training of the server model:
This requires extra time and additional data for
training the server model.

• Lack of improvement in model quality when the
number of weights transmitted by clients for ag-
gregation is too small: If the amount of weight
information shared by clients is insufficient, the
overall model quality may not improve significantly.

• Potential degradation in model quality when the
architectures of the models differ significantly: If
the models used by the clients have vastly different
architectures, the aggregation process may lead to a
decrease in model quality instead of improvement.

V. Experiments and Results

For the analysis of the effectiveness of the developed
method, a dataset of 12,000 histological images was
used, divided into two classes: malignant tumors and
benign tumors. The dataset consisted of 8,400 images
for training and 3,600 images for testing. The training
dataset was randomly divided into five parts: four clients
and one server.

The training process involved a cycle of weight ex-
change between the clients and the server, followed by
aggregation and sending back of the weights. This cycle
was performed every 3 epochs of training, and a total of
10 cycles were conducted. The weights for aggregation
were sent from each client. Therefore, the total number
of training epochs for each client was 30.

The weights of the models for exchange (Rk space)
were the weight matrices of the linear classification layer
of the network, with a dimension of 1024x1024 for all
clients.

The evaluation of the method was done by comparing
the following values obtained with and without the
application of this method during training (traditional
training without weight aggregation for 30 epochs):

• The meaning of the loss function (cross-entropy)
during training.

• The value of the loss function on the test dataset.
• The accuracy of predictions on the test dataset.

A. Models with the same architecture
For analyzing the effectiveness of the developed

method in the case of homogeneity of local models, was
used a simple neural network with the architecture shown
in the figure 2:

Figure 2. Simple neural network architecture.

As the global model (server), a pre-trained resnet18
network was used, fine-tuned on 1170 histological images
for 30 epochs. For weight aggregation from clients, the
last layer designed for classification was modified to the
following:

For weight aggregation, a linear layer called "aggre-
gate" is used. It takes weights from clients as input
for aggregation and produces modified weights for each
client as output.

In the figure 4 is a graph showing the evaluation of
various quality metrics for client 0 (the graphs for other
clients are similar).

Based on the analyzed data graphs, the following
conclusions can be drawn about the performance of this
method on simple models of the same architecture:

• For all clients, there is a decrease and stability in
the values of the loss function during training when
the method is applied.

• For 3/4 of the clients, there is higher stability in the
accuracy of predictions on the test dataset when the
method is applied.

• The average prediction accuracy did not change
when the method was applied.

B. Models of various architectures
The following pretrained neural networks were used to

analyze the effectiveness in the case of heterogeneity of
local models:

• Client 1: SimpleModel (see above);
• Client 2: MobileNetV3 Large;
• Client 3: MobileNetV3 Small;
• Client 4: DenseNet121.
For each local model, the last layer of the neural net-

work was replaced with the layer shown in the figure 5:

The transferred weights are the weights of the shared
linear layer. The model for the server is similar to the
model from the previous section.
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Figure 3. The last layer of the resnet18 network for weight aggregation.

Figure 4. Graphs of analyzed metrics (SimpleModel).

Figure 5. The last layer of the local models.

In figures 6 and 7 are the plots showing the evaluation
of various quality metrics for clients 0 and 2.

Based on the analyzed data graphs, the following
conclusions can be drawn about the performance of this
method on pre-trained models of various architectures:

• For all clients, there is a decrease and stability in
the values of the loss function during training when
the method is applied.

• There is higher stability in the prediction accuracy
on the test dataset for simpler models and some pre-
trained networks when the method is applied.

• On average, the prediction accuracy with the method
applied has not changed.

C. Heterogeneous data
In real life, it is possible for data to be stored on differ-

ent media. Additionally, the data can be heterogeneous.
To analyze the effectiveness in the case of data hetero-

geneity, consider a scenario where the original dataset
is divided into two clients. The data of the first client
contains 95% of class 0 objects and 5% of class 1 objects.

Conversely, the second client has 5% of class 0 objects
and 95% of class 1 objects. Architecture of client models
is shown below

As the global model a pre-trained resnet18 network
was used. For weight aggregation from clients, the last
layer designed for classification was modified to the layer
in the figure 9

During the training process of the second and third
models, federated learning was used. The FedAVG al-
gorithm was selected for aggregating information from
client models.

The exchange of model weights between the client
models and the server occurred every 3 epochs. Each
of the client models was trained for a total of 30 epochs.
The cross-entropy loss function was used.

The goal of the experiment was to study the depen-
dence of model prediction accuracy on the partitioning
of the dataset among clients.

Thus, we simulate a situation where the data from
different clients is highly heterogeneous

In such a situation, it is not possible to achieve
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Figure 6. Graphs of analyzed metrics (SimpleModel).

Figure 7. Graphs of analyzed metrics (MobileNetV3 Large).

Figure 8. Client model architecture.

Figure 9. The last layer of the resnet18 network for weight aggregation.
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stable learning and good results when using sequential
learning, where one client is trained first and then the
other. However, by using federated learning methods, we
were able to achieve the same metric values as in the
case of balanced data. This is primarily because, during
aggregation, the global model aims to acquire knowledge
from all clients and average them.

Each of the client models learned to predict the classes
present in its own dataset very well. However, when it
comes to predicting classes that were rarely encountered
before, the client models struggle on the test data.
Nonetheless, the central model aggregated information
from all the data, which can potentially improve its ability
to predict such classes.

Thus, federated learning methods enable us to mitigate
the impact of data heterogeneity when training models.

In the figure 10 is shown the graph of accuracy for
heterogeneous data.

Figure 10. Graph of accuracy for heterogeneous data.

VI. Semantic technologies application
In addition to the above applications, you can use

semantic technologies in federated learning. For example
as follows.

• Distributed knowledge representation: Semantic
technologies enable the representation of knowledge
in a structured manner using formal languages. This
can be useful in distributed model training, where
each device can have its local knowledge represen-
tation and then combine these representations on a
central server.

• Semantic data analysis: Semantic technologies can
assist in the analysis and understanding of data
collected from distributed devices. For example,
they can be used to extract meaning and relation-
ships between data, which can be beneficial for
aggregation and merging of models on a central
server.

• Unification of semantic understanding: Semantic
technologies can help unify the understanding of
data across different devices or servers. They can
be used to create a shared model of knowledge
or a semantic network, which can be utilized for
harmonizing and collaboratively training models on
different devices.

VII. Conclusion

In this article, the main problems arising in the task of
biomedical image analysis were described, and a method
to avoid them was proposed. Furthermore, experiments
were conducted to demonstrate its practical applicability.
Has been shown that federated learning helps preserve
data confidentiality and also provides a significant im-
provement in quality when different clients have data
from different classes. Various approaches to solving the
problem of heterogeneous learning have been considered.
The obtained conclusions and recommendations can be
valuable for researchers in the field of biomedical in-
formatics and medicine who aim to utilize advanced
machine learning methods for image analysis in privacy-
preserving conditions.
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ПРОБЛЕМЫ
КОНФИДЕНЦИАЛЬНОСТИ И

НЕОДНОРОДНОСТИ ПРИЛОЖЕНИЙ
ФЕДЕРАТИВНОГО ОБУЧЕНИЯ ПРИ

АНАЛИЗЕ МЕДИЦИНСКИХ
ИЗОБРАЖЕНИЙ

Гимбицкий А. В., Зеленковский В. П.,
Жидович М. С., Ковалёв В. А.

В последнее время машинное обучение стало одним
из самых многообещающих направлений в работе с
медицинскими данными. Модели глубоких нейронных
сетей являются наиболее эффективными и точными,
но требуют больших объемов информации для обу-
чения. Это общая проблема в случае медицинских
данных, особенно изображений, так как их создание
включает значительные затраты. Одним из решений
для повышения качества моделей глубокого обучения
без увеличения обучающего набора данных являет-
ся агрегация моделей. Однако возникает проблема
сохранения конфиденциальности медицинских изоб-
ражений. Например, если одна модель обучается на
изображении, содержащем информацию о конкретном
пациенте, другие модели, участвующие в агрегации,
также могут получить доступ к этой информации. В
результате информация о конкретном пациенте может
быть раскрыта.

В попытке решить описанную выше проблему, дан-
ная работа направлена на исследование и разработку
методов агрегации моделей машинного обучения с
сохранением конфиденциальности медицинских изоб-
ражений, в особенности методов федеративного обу-
чения.
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