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Abstract—This article examined methods for using GANs
in medicine, their prospects, as well as problems with
training generative adversarial networks associated with
the increasing use of generated images for training other
networks. The analysis of single-layer and multi-layer GANs
concluded that although multi-layer GANs perform better
statistically, they do not exactly match the distribution
of the original dataset and, without medical supervision,
such synthetic data should not be used when training new
networks. Problems associated with the phenomenon of
recursive learning, biased assessments of image realism,
and non-optimized structures are considered. Approach is
described in context of integrating generative adversarial
network models into the OSTIS Technology based hybrid
computer systems.

Keywords—Multi-level GANs, recursive learning, syn-
thetic data

I. Introduction

Generative adversarial networks (GANSs) are a remark-
ably popular technique for generating realistic synthetic
data. Modern GANs can have different layers, back-
grounds , complexity and be trained by semi-supervised
and unsupervised learning. They gain their popular-
ity because of the ability to implicitly modeling high-
dimensional data distributions. [1] GANs are of particu-
lar interest in the processing, classification and evaluation
of medical images, in the future making it possible to
speed up and improve the analysis of the results of
magnetic resonance imaging, computed tomography, X-
rays and others. This can be solved by integrating a GAN
neural networks into the OSTIS Technology. [2]

Integration with third-party technologies based on
neural networks allows the development of universal
hybrid systems. GANs are capable of not only processing
images, but also creating new synthetic data on de-
mand, which makes them valuable for creating datasets,
anonymous educational materials, etc. GANs are actively
changing during development and all these changes can
be formalized in the OSTIS system using SC code. [3]

Thus, network artifacts of the processes of creation,
training and further tuning, such as numbers and types
of layers, weights, activation functions, can be stored in a
general form and saved, supporting further replenishment
and expansion of the general knowledge base. [4] The
OSTIS intelligent system is also capable of saving several
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Figure 1. Model collapsing. Over generations, the generated data
begins to look unimodal.

versions of the same model for later use, even restoration
from a previous point. [5]

But one of the worst challenges facing GANs in
medicine is that medical images are susceptible to var-
ious noise and artifacts common to different modalities
and, what most important is, have a very little variety of
datasets to be used. It should also be noted that much
medical information is 3D structures, which can make it
difficult to train a GAN on only 2D images.

A. The recursive learning problem

No generative adversarial network can reliably recreate
the distribution of the original sample data. It may make
mistakes or recreate the same data, that is, clone it. We
must train the network so that it does not go beyond the
distribution, but also does not repeat the picture. This
solution allows us to avoid modern problems with GAN.

Generative adversarial networks are able to generate
high-quality images on demand using the same distribu-
tion that is given, the score is also high. However, this
does not mean that GAN can be used as a universal
method or classifier, since it is impossible to assume
that the distribution will be reliable or true. Likewise,
the images produced by networks cannot be considered
representative for training other networks.

However, more and more people are using GANs for
reconstruction and generation, but this only leads to the
fact that it can be used for a training set, since the
generated materials are in the public domain. As a result,
the networks degenerate, and the results of reconstruction
and generation deteriorate. And as a result, the so-called
mode collapse occurs (Fig. 1). [6]

This phenomenon (using generated images as train-
ing materials) is most dangerous for image generation,
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because in this case the networks mutually degrade.
The problem of degradation of the second derivative
of the loss of the original distribution leads to the fact
that the learning network will take everything that the
network gives without a critical attitude. It is particularly
dangerous for GAN involved in the reconstruction of
medical images. It is main case when a medical specialist
plays a leading decisive role.

At the moment there is no complete solution to this
problem. The search for ideal hyperparameters or best
evaluation metric is still ongoing. Degradation can only
be prevented by correct data preparation and correct
interpretation of data. Even in the case of realistic results,
a specialist’s hand is still needed, otherwise it leads to
the original problem. Partly, the problem of network
degradation is related to the lack of training materials
in the public domain, because all materials in one way
or another relate to personal data, although they are as
depersonalized as possible (but there is still a diagnosis
verified by a specialist), which limits the number of
networks available for training databases. In view of this
fact, any decision of the GAN is only to some extent
true.

B. Evaluation of GAN

1) Density estimation: Density estimation is a chal-
lenging unsupervised learning problem. Existing max-
imum likelihood approaches for density estimation are
either limited or unable to generate high-quality sam-
ples. However, the lack of density estimation limits the
application of sample data.

Density estimates are needed in a wide range of practi-
cal computer vision problems, especially when the likeli-
hood of the generated samples is critical. This occurs, for
example, when it is important to simultaneously explore
and optimize the search space, when confidence estimates
of a hypothesis are required, or when control over the
level of generalization is important. Typical sampling
quality metrics are inadequate because the generative
model may simply remember the data or miss important
modes.

Such methods are effective for determining whether
a generative model has learned the correct statistics,
but they are somewhat limited. Most techniques define
the statistic to be zero if the generated GAN and the
true samples belong to the same distribution. Difference
between distributions is measured only on the basis
of certain statistics, ignoring other. In particular, the
manifold representation ignores the densities that the
generator assigns to different parts of space, as well as
whether the manifold is more abundant in regions around
the true distribution.

Alternative density estimators, such as auto-regressive
models, stream methods, or non-parametric methods
such as kernel density estimation (KDE), are either too

computationally intensive or require significant neural
network engineering [7].

2) Log-likelihood: Log-likelihood is widely used to
evaluate other families of generative models. On top of
that, log-likelihood has been used before to demonstrate
that a wide family of generative models assigns a greater
likelihood to images outside of the training distribution.
In [8] states that probability-controlled models that have
much worse FID show better performance and overall
distribution evaluation than state-of-the-art GANs. By
evaluating GANs with low FIDs, we show that multi-
level GANs are superior to single-level models in terms
of average test log likelihood and generate subjectively
better images on medical datasets. [9] indicates that
AIS (Monte Carlo method that estimates an equation’s
integral by utilizing various intermediate distributions) is
accurate enough to make reliable comparisons between
models and can compete with other alternative density
estimators. There is no guarantee that such approximation
metrics will hold for real data, although [9] found that
the behavior of AIS closely matches real and simulated
data.

C. Multi-layer GAN

A multi-layer GAN, also can be called hierarchical or
nested GAN, is a type of generative adversarial network
(GAN), comprising with multiple networks of generators
and discriminators organized in a hierarchical or nested
structure. The main idea of multi-layer GANs is to
improve the quality and variety of generated samples
by using multiple layers of abstraction. By training
generator and discriminator networks at different levels
of abstraction, multi-layer GANs are able to learn more
complex and diverse data distributions. In such a GAN,
the generator network creates a sequence of samples
that become increasingly refined and detailed, and the
discriminator network evaluates the quality of these
samples at each level of abstraction. Multi-layer GANs
can be implemented using various architectures and
techniques such as progressive growth, ladder networks,
and recursive networks. These approaches differ in how
they organize hierarchical or nested connections between
networks of generators and discriminators, and in how
they convey gradients and losses between layers.

II. Related work
A. Preparing of the data

In order to evaluate the realism of images based
on medical data, two sets of datasets, The Automated
Cardiac Diagnosis Challenge (ACDC) [10] and The
Indian Diabetic Retinopathy Image Dataset IDRID) [11],
were selected to evaluate the quality of synthetic image
reproduction using GAN. These datasets were chosen not
only because of the high quality of the various types of
images, but also because of the low number of uses in
GAN research.
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Figure 3. ACDC MRI image slices

ACDC dataset contains 150 studies of short-axis car-
diac cine MRI of the University Hospital of Dijon
patience, 1902 2D slices for training and 1078 2D slices
for testing [10]. The 516 photos in the IDRID collection
include both pathological and normal retinal fundus [11].

For the purpose of metrics analysis, we sampled a large
number of images from each of our trained GANs to see
how well it could learn the original data distribution.
According to [12], although GANs are characterized
by sensitivity to hyperparameters, a subset of GANs
are characterized by their oversensitivity, as shown by
the sharp change in FID score under different sets of
hyperparameters.

Firstly, evaluating set of hyperparameters require some
computational time to acxhive best performs for all the
GANSs described below.

Secondly, GANs are sensitive to the reference dataset:
as it increases, image quality improves. To represent
difference in GAN characteristics due to dataset size
difference all estimation metrics will be evaluated on
each dataset with different numbers of training samples.

Each GAN described below produced a batch of two
thousand images without additional post processing.

B. GAN approaches for realistic data generation

1) Deep Convolutions in GAN: Deep convolutional
GANs [13] were one of the first GANs to use con-
volutional layers and made significant contributions to
balanced GAN learning. Although convolutional layers
have been used in GAN architectures before, DCGAN
offers an adapted architecture. Several rules have been
proposed to create a stable convolutional architecture.
Although convolutional networks have been used in
GAN architectures before, DCGAN offers an adapted
architecture. Several rules have been proposed to create
a stable convolutional architecture. These rules are as
follows [13]:

o Don’t use merge layers. Instead, use straight line
convolutions for the discriminator and fractional
line convolutions for the generator.

o Use batchnorm in generator and discriminator lay-
ers.

e Do not use fully connected structures in hidden
layers.

o In the output layer of the generator, use the Tanh
function, in other layers - the Relu function.

o Use the LeakyReLU activation function on all dis-
criminator layers.

Deep neural networks with a large number of param-
eters are very powerful machine learning systems. How-
ever, a serious problem for such networks is brute force.
Large networks are also slow to use, making it difficult
to combat overfitting by combining the predictions of
many different large neural networks during testing. To
solve this problem, the dropout technique is used [14].
Although DCGAN has a variety of advantages over non-
convolutional models, in further chapter we show, that
multi-level non-convolutional GANs outperforms it in
terms of the quality of generative image for medical data.

2) Supervised vs Unsupervised networks: The variety
of image structure is determined by the criteria of
realism, which must be described, but at the end of
training, such an approach is already meaningless, since
the criteria need to be adjusted during the work process.
Networks with this approach are called semi-supervised.

In recent years, deep generative models have dramati-
cally pushed forward in generative modelling, achieving
state-of-the-art semi-supervised learning results. Unsu-
pervised networks also show good results, but they do
not have the same advantages:

o The ability to predict H+1 classes (number of
classifiers) during training time, forces class labels
to be displayed. This extra class correlates with
the outputs of generative models and can produce
higher quality outputs. This may affect the results
of the generative model. We can pass through this
class to the corresponding outputs of the generative
model, which allows us to improve performance and
quality (fewer epochs). This can be compared to the
feedback between a discriminator and a generative
model.

e We can submit softmaxes of fake and original
images.

« Better pictures and at the same time fewer epochs.

« Possibility of reducing the impact of type I error:
fake images that are perceived as real [15].

The common approaches that have been used in
most multi-layer GANSs is a progressive growth [16]

3) Progressive growth: A GAN training methodology
that starts with low-resolution images and then gradually
increases the resolution by adding layers to the network,
as shown in the figure 4. This gradual nature of learning
allows you to first detect the large-scale structure of the
distribution of images (the small size of which, as noted
by [16], is characterized by greater stability), and then
switch attention to increasingly smaller details, refining
and complementing the image, rather than studying all
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scales simultaneously. Accordingly, the following advan-
tages can be identified:

e« More stable image generation in the early
stages.This is due to less information about classes
and fewer modes. The resolution enhancement ap-
proach simplifies the task for generating the final
images. And this ultimately leads to image stabi-
lization with reliable synthesis of results.

o Reduced training time.When using progressively
growing GANSs, most iterations are performed at a
lower resolution, and comparable result quality is
often achieved 2-6 times faster, depending on the
final output resolution.

o Relatively low GPU requirement [17]. Because
GANs at each scale are trained separately, the
training process never exceeds a certain maximum
size, so GPU requirements remain consistently low,
making it easier to generate arbitrarily large images.

4) Multi-scale discriminator: The [17] used a multi-
scale discriminator consisting of two parts of the same
structure, which made it possible to solve problems
that single-scale discrimination could not handle. The
first discriminator, D1, looked at the smaller images
to process the overall structure, and the second, D2,
helped to reconstruct the finer details of the image.
This approach allows you to train a network to find
structures in an image more efficiently than single-level
GANs. It is also worth noting that this way we can
conclude that multi-layer GANs are inherently multi-
layer discriminators. In [18], images are generated in
several stages (Primary GAN, Subsequent GAN-1,
Subsequent GAN-N) (Figure 4).

The output of one phase serves as input to the subse-
quent GAN in the next phase, explicitly guided by the
attention map derived from the uncertainty estimates.
Using multi-level generators and discriminators, the au-
thors achieved comprehensive correction of artifacts and
noise, potentially replacing additional imaging proce-
dures, which can reduce examination costs and time [18].

A similar approach was used in [19] and [20], where
the image was also generated sequentially using en-
hancement modules (Fig. 6). At the same time, in [21]
multi-level generators were used instead of a multilevel
discriminator, since it was noted that the instability of the
discriminator interferes with focusing on noise removal.
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Figure 5. Results of Multi-Scale GANs (MSGANSs)

This fact is important, since medical images are sus-
ceptible to various noises and artifacts characteristic of
different modalities, so it makes sense to consider GAN
network architectures where there are no discriminators
at certain levels. The [21] architecture is discussed in
more detail in a separate paragraph.

III. Material and Methods
A. Modern multi-layer GAN architectures

Unlike conventional GANs, multi-layer architectures
produce higher-quality images. Since, presumably, the
discriminator is the largest part responsible for the
quality of image synthesis (a similar conclusion can
be made based on [22]), in order to avoid errors of
the second type. In the case of multi-leve]l GANSs, to
improve the quality of generation, a load with additional
discriminators is used. Also, a significant part of the
result depends on the settings of the output layer loss
function. In the case of multi-layer GANs, the result
of the previous layer goes to the output layer function,
which is scaled to the next layer. Thus, such an algorithm
is not a multi-level synthesis, but a separation of correct
characteristics from incorrect ones. The main advantage
of the multi-level GAN architecture is that, unlike single-
level ones, it is capable of such separation.

1) Uncertainty-Guided Progressive GANs (ProGANs):
In Fig. 4 [18] shows a model consisting of cascaded
GANs, where each generator is capable of estimating
aleatory uncertainty as well as generating images. This
solution removes the above-mentioned limitations of
modern methods. Getting rid of them by modeling the
underlying distribution of residuals across pixels as an
independent but non-identically distributed zero-mean
generalized Gaussian distribution (GGD), so

bij = bij + €ij€ij ~ GGD(E;0,0éij,ﬂij) =
Bij (20, T(8;1))~ exp(—ag; el *)

2) Hierarchical GANs (HierGANs): HI-GAN [21]
consists of four sub-networks, namely Gy, G, discrimi-
nator D, and boost network G .. Both G}, and G, genera-
tors are DCNNs used for image desaturation. In addition,
G, is trained together with D, to improve its ability
to desaturate damaged images and preserve details. The
advantage of GG, is its ability to solve the problem of
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Figure 6. Results of Cascaded Refinement Networks (CRN)
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General scheme for image generation using Multi-scale

loss of high-frequency characteristics such as edges and
texture, constantly competing with D,, in a repeated zero-
sum game. In contrast, G, learns on its own and does
not need to compete with any network. G,’s strategy
is to avoid the influence of discriminator instability and
focus only on noise removal. Overall, Gyand Ga have
different strategies and use different criteria to evaluate
reconstruction performance, and neither is better than
the other. For this reason, G, is used to help G} and
Ga cooperate more efficiently and improve reconstruction
efficiency. G takes the bleached images of G} and Ga
as input and generates a synthesized image whose PSNR
is close to that of (G, and details are recovered more
accurately than that of G,.

3) Multi-scale GANs (MSGANs): As shown on Fig. 7
[20], different generator architectures were chosen for G
and (G ,, because the tasks of generating low-resolution
whole images and high-resolution patches differ in a
number of requirements. LR GAN uses U-Net architec-
ture, which is able to filter out many irrelevant details
and generalize better due to its bottleneck. Its tendency
to produce blurrier images is negligible in the context
of low-resolution images. ResNet blocks were chosen
to generate patches using HR GAN because they are
known to produce clear results while maintaining the
same resolution of the input image [20]. The risk of
overkill in the absence of a bottleneck is reduced by
stronger conditioning (on previous scales) and an overall
higher number of patches compared to the number of
images used. For discriminators Dy, , the usual fully
convolutional architecture [20] is chosen.

B. Evaluation metrics and network optimization

Let’s consider popular metrics for assessing the quality
of generative image models.

1) Inception Score (IS): Inception Score is a metric
for automatically assessing the quality of generative

Figure 8. Examples of images with IS equal to 900.15

image models. This metric has been shown to correlate
well with human assessment of the realism of generated
images from the CIFAR-10 dataset. Inception Score
uses an Inception v3 network pre-trained on ImageNet
and calculates statistics of the network’s outputs when
applied to the generated images.

15(G) = exp(Bynp, Drr(p(y|)[lp(y))) where o ~
pg means that x is an image sampled from py, D .(p ||
q) — KL-divergence between distributions p and ¢,
p(y|z) is the conditional class distribution, p(y) =
[,y | x)py () — marginal class distribution. exp is
present in the expression to make it easier to compare
values, so we will ignore it and use In(IS(G)) without
loss of generality [23].

In other words, IS can be interpreted as a measure
of the dependence between the images generated by G
and the marginal distribution of classes in y. The mutual
information of two random variables is also related to
their entropies:

Inception Score does show a reasonable correlation
with the quality and variety of generated images, which
explains its widespread use in practice. However, it is
not entirely correct because it only evaluates Pg as an
image generation model and not its similarity to Pr.
Such gross violations as mixing in natural images from a
completely different distribution completely deceive the
Inception Score. As a result, this may push models to
simply learn sharp and varied images (or even some
unfavorable noise) instead of Pr. This also applies to
Mode Score. Additionally, Inception Score is unable to
detect overfitting because it cannot use the validation
set [24].

Applying Inception Score to generative models trained
on non-ImageNet datasets produces unreliable results.
Most often, Inception Score is used for generative models
trained not on ImageNet sets, but on CIFAR-10, since it
is slightly smaller and more convenient for training than
ImageNet.
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Figure 9. Example of the FID manipulation problem

2) Frechet Inception Distance (FID): Frechet Incep-
tion Distance, or FID for short, is a metric for assessing
the quality of generated images, specifically designed to
evaluate the performance of generative adversarial net-
works. This metric was proposed as an improvement to
the existing Inception Score, or IS. The Inception Score
evaluates the quality of a collection of synthetic images
based on how well the best Inception v3 image classi-
fication model classifies them as one of 1,000 known
objects [22]. The scores combine both the confidence in
the conditional class predictions for each synthetic image
(quality) and the integral of the marginal probabilities of
the predicted classes (diversity). The inception score does
not reflect the comparison of synthetic images with real
ones.

The FID score was designed to evaluate synthetic
images based on the statistics of synthetic images datasets
compared to the same statistics of real images from
the goal distribution. As with inception estimation, FID
estimation uses the inception v3 model. In particular,
the model’s encoding layer (the last pooling layer before
output image classification) is used to capture specific
features of the image, they will be generalized as a
multivariate Gaussian, computing the mean and covari-
ance of the images. These statistics are then calculated
correspondingly for the collection of real and generated
images.

However, it should be noted that this metric cannot
fully evaluate images on an equal level with a person
and it does not fully comply with human standards for
image evaluation [22].

3) LL computation: As a high test LL corresponds
to a low KL divergence between the generative distribu-
tion and the genuine data distribution, many generative
models, aside from GANs, employ it as an additional
evaluation variable. When decoder is not created to
be reversible log-likelihood estimation in decoder-based
models is typically intractable ( [25], [26]). For GANSs it
is not obvious how to compute a good lower bound, un-
like in the case of VAE-based models. Even when lower
bounds are available, they have only been calculated in
relatively few studies ( [9], [27]). LL has received little
attention and is never utilized specifically in GANs. [25]

Monte Carlo techniques such as AIS and non-
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Figure 10. FID score for different GAN types

parameteric density estimation methods such as KDE get
around this by assuming a Gaussian observation model
pb(x|z) for the generator. In particular, [28] demon-
strated that LL of GANs may be precisely approximated
via annealed significance sampling. The AIS implemen-
tation in this study adheres to the [29] approaches. We
applied a Metropolis-Hastings (MH) adjustment and 10
leapfrog steps with the HMC transition operator. The
optimal 65 percent acceptance rate for HM [29] was used
to tune the HMC. AIS algorithm used 16 independent
chains, approximately 8000 intermediate distributions. It
was found that AIS is precise enough to enable thorough
comparisons between generative models for the majority
of the models we looked at.

IV. Results

We used AIS to estimate log-likelihoods for all models
under consideration, also was calculated FID and In-
ception metrics for all GANs specified at tables below.
As the result, the log-likelihood assigned to the GAN
does not correlate FID or Inception scores. As GAN
tend to favor images with larger regions, with less local
variance, there is little to no correlation between actual
distribution of GAN generated images and common
statistics approaches. All AIS results from represented
GANSs are listed in the table I. All FID and Inception
results, if calculated from represented GANS, are listed
in the table below. Examples of generated images from
multi-layer GANs are shown in the figure 11.

V. Discussion

Training a GAN requires significant hyperparameter
tuning and powerful computing resources. With the
OSTIS system, it has become possible to automate the
selection of the optimal neural network architecture and
protects the core of the intelligent system from the
formation of redundant approaches and confusing terms.

Neural network models as components of the ostis
system are accelerated by reducing the number of param-
eters used. In the case of optimization and complexity
reduction, it is sufficient to determine the maximum
upper value of the number of neurons of each layer
without the need to select these parameters during a
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series of experiments. Deep models can often be slow
and resource-intensive, which impacts overall system
performance, leading to severe lags, especially in the
absence of efficient and powerful computers and video
adapters.

However, the trained model may not produce the
desired result when considering the subsequent tasks for
which the generated data is intended. Even if ProGAN
or MSGAN achieve better results, they can produce
unreliable images. There is no objective way to evaluate
whether a medical image actually involves in gathering
data responsible for the diagnosis with GAN approach
without involvement of a medical expert. Due to the
smaller scale of medical datasets not every GAN archi-
tecture is adapted to capture specific features of medical
images.

The OSTIS technology promotes and supports integra-
tion of various neural network models. This system helps
user achieve compatibility between different Al systems,
effectively use knowledge to create code-based transcrip-
tions and graphical interpretations of models. [2]

The OSTIS system also simplifies network develop-
ment, expands functionality by using and reusing existing
designs. This technology is capable to summarize results
of a GAN training and testing and store different model
versions.

VI. Conclusions

As a result of the literature review, it was concluded
that the realism of the generated GAN images largely
depends on the distribution of the original training data

Table T
AIS ACDC results

(Nats) AIS Test AIS Train
DCGAN 448.43+£7.40 447.23+£2.24
HiGAN 349.17+£4.51 546.73+5.08
ProGAN | 571.64+10.22 | 721.37+8.76
MSGAN 651.65+9.10 732.42+2.43

Table 11

AIS ACDC results.
Evaluation for half of 2D slices

(Nats) AIS Test AIS Train
DCGAN 348.25 + 6.32 44413 + 2.24
HiGAN 294.21 + 7.52 446.73 + 9.38
ProGAN | 571.64 + 10.22 652.50 = 7.5
MSGAN 551.65 £ 9.74 73242 + 243

and how similar the output results are to the training
ones. Viewing different parameters at different levels
allows you to determine the most optimal ones for
training multi-level GANSs.

It was determined that multi-scale GANs are char-
acterized by sensitivity to changes in hyperparameters,
and some multi-scale GANs are hypersensitive to such
changes. The main advantages for integrated computer
ostis-systems that appear when using reduction as a
way to reduce the dimensionality of neural networks are
determined. The authors see the further development of
the proposed approach in obtaining practical results for
known deep architectures of models used to solve prob-
lems of computer vision and natural language processing.

The multi-layer GAN architecture coupled with a
progressive learning method allows you to better per-
form with medical dataset, showing improved results in
popular evaluation metrics such as FID and Inception.
Having considered the problem of recursive learning,
we can conclude that it is impossible to obtain a real
data distribution using GSN. And when using generated

Table III
AIS IDRIiD results
(Nats) AIS Test AIS Train

DCGAN 343.11+6.07 352.45+4.7
HiGAN 289.96+5.22 498.21+£9.32
ProGAN 434.71£12.54 551.15+6.13
MSGAN 532.23+6.56 678.02+15.21

Table IV

FID and Inception results

Score FID (IDRiD) Inception (IDRiD)
DCGAN 77.34 -
HiGAN 66.54 -
ProGAN 27.21 721.10
MSGAN 32.8 832.82
FID (ACDC) | Inception (ACDC)
DCGAN 59.34 -
HiGAN 46.54 -
ProGAN 47.21 755.16
MSGAN 37.8 712.45
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images to train networks, it leads to complete degradation
of the neural network. This problem can only be solved
with the help of human control of neural networks.
Another problem with CT scans data, which is obtained
in 3D: common GANs may not produce a good quality
image if trained solely on 2D images. This makes the
study of GANSs specifically built for medical data an
interesting avenue of research and could lead to improve-
ments in quality and ultimately clinical usability. Thus,
we can conclude that it is impossible to obtain a real
pseudo-real image of a medical nature without adjusting
their structure, like in multi-level discriminators, and
evaluate proper metrics to correctly estimate generated
distribution to make reliable synthetic data.
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METPUKH OIIEHKH 1 IIPUMEHEHUE
MHOI'OYPOBHEBBIX GAN /1JI
MEJIUIIUHCKUX N30BPAKEHNN
KosbGacaT. A.

B 1aHHO# cTaThe ObLIN PACCMOTPEHBI METO/IbI HCTIOIB30BAHHUS
GAN B MejMIMHE, UX NEPCHEKTUBBI, a TaKke MpoOJeMbl B
00y4YeHHH TeHepaTHBHO-COCTS3aTENIbHbIX CEeTed, CBSI3aHHBIC C
YBEJIMYCHHEM HCHIOJIb30BAHUS CTEHEPUPOBAHHBIX N300paKeHHI
1151 00yYeHH S APYTHX ceTeil. AHAIN3 OHOYPOBHEBBIX ¥ MHOIO-
ypoBHeBbIX GAN mpuiies K BBIBOIY, 4TO, XOTS 110 CTATUCTHKE
MHOroypoBHeBbie GAN pafoTaioT Jiydllle, OHU HE COBCEM CO-
OTBETCTBYIOT PaCIpe/IeIeHUI0 UCXOJHOro Habopa JaHHBIX, U 0e3
HaOJIIOICHH ] MEIULIMHCKOTO CHEIMAINCTA TAKHE CHHTETUYECKIE
JlaHHbIE HE CJIeJyeT UCIOJIb30BATh IIPU O0YYCHHH HOBBIX CETEil.
PaccMOTpeHsI TPOGJIeMBl, CBSI3aHHBIE C SIBJICHAEM PEKYPCHUBHOTO
00yueHus1, IPEAB3ATHIMU OLEHKAMU PETMCTHYHOCTH M300paxe-
HUii 1 HEONITUMH3UPOBAHHBIMU CTPYKTypamu. [Togxop orvca B
KOHTEKCTE MHTErpaliii MOJeNel TeHepaTUBHO-COCTSA3aTEbHbIX
cetell B TMOPH/IHBIE KOMITHIOTEPHBIE CUCTEMbI Ha OCHOBE TEXHO-
noruit OSTIS.
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