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Abstract—Semantic segmentation of crowd images plays
a pivotal role in various applications such as crowd man-
agement, surveillance, and urban planning. In this paper,
we propose an approach for dense and sparse crowd image
semantic segmentation based on semi-automatic labeling by
employing a combination of UNet and Conditional Random
Field (CRF).

We introduce a technique for generating segmentation
maps for crowd images. We utilize UNet for initial rough
segmentation followed by refinement using CRF. Exper-
imental results demonstrate the model performs better
in binary segmentation (crowd and on-crowded regions)
rather than ternary segmentation (dense crowds, sparse
crowds, and non-crowded areas). However the latter shows
better results in terms of crowd detection (regardless of its
type). Besides, we show the CRF refinement is significant
in ternary segmentation.

Also, we highlight some crowd behavior patterns based
on the proposed segmentation model. They differ in people’s
attention types, connections within and between crowds,
and possibilities of emergencies.

Keywords—artificial neural networks, computer vision,
crowd images, crowd detection, crowd behavior, image
analysis, machine learning, semantic segmentation

I. Introduction
Segmentation is the process of breaking the image into

distinct segments or regions that represent objects of in-
terest or their structure. Image segmentation is one of the
pivotal stages in computer vision and image analysis. The
main purpose of segmentation is to highlight key objects
and their features for a more detailed understanding of
the content represented in the image. More rigorously,
during image segmentation, a label representing a certain
class is assigned to each image pixel so pixels in the
same class stand for a joint object and demonstrate some
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shared characteristics, and pixels with different labels
somehow differ from each other.

Image segmentation can be compared with a classifi-
cation task with some initial classes given. However, the
image classification task implies a label for the whole
image as the result, whereas in semantic segmentation,
a label is assigned to each image pixel. Thus, unlike
classification tasks, not only does segmentation have a
purpose to determine the main object of interest but also
to examine its optical and morphological characteristics
like its edges, position on the image, and its position
relative to other objects (if any).

In computer vision, there are two main types of image
segmentation: semantic and instance segmentation. In
semantic segmentation, each pixel must be associated
with one of the predefined classes (e. g. background,
person, vehicle, building, etc.), and such classes are
represented by their colors. In instance segmentation,
each pixel is also classified based on some given classes,
but distinct objects within a class are highlighted by
different colors.

Semantic segmentation of crowd images is an effective
tool for analyzing and understanding crowded scenes,
crowd structure, and behavior. Crowd semantic segmen-
tation can be used in the following applications:

1) Counting and analyzing the crowd. Segmentation
can facilitate such tasks by decomposing the image
into clusters, and some basic techniques could be
applied to them to analyze the crowd structure
within them. It is useful for monitoring crowded
places like stadiums, markets, malls, fairs, social
events, etc. [1]–[4].

2) Security and surveillance. Some segmentation
techniques allow highlighting single persons which
is important for detecting abnormal, troublesome,
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or even potentially dangerous situations, e.g. lost
things, suspicious behavior, civil unrest, etc. [5],
[6].

3) Marketing and analytics. In marketing, crowd seg-
mentation can be used for analyzing customers’
behavior when they wander, seek something, or
stop near a merchant’s place in malls and fairs.
In such context, segmentation can be a helping
tool to improve goods placing, estimate marketing
strategies efficiency, and improve customer service.

4) Transport management. In urban planning and traf-
fic management, crowd segmentation can be used
for pedestrian traffic optimization, crowd preven-
tion, as well as planning more efficient pedestrian
and transport routes.

5) Social behavior research. Nowadays, crowd seg-
mentation is effectively used to research social
behavior, e. g. by analyzing the dynamics of in-
teraction between people in different scenes.

However, semantic segmentation of crowd images is
a challenging task due to the complex and dynamic
nature of crowd scenes, which often exhibit variations in
density, scale, occlusions, and illumination conditions.
Accurate segmentation of individual objects within a
crowd is crucial for the above-mentioned applications.
Traditional methods for crowd segmentation rely on
handcrafted features and manual annotation, which are
labor-intensive and often fail to capture the diverse
characteristics of crowd scenes.

In recent years, semantic technologies are widely used
in various computer vision applications such as knowl-
edge based computer vision [7]–[9], video and images
annotation [10], and video retrieval [11], [12]. In fact,
they have the potential to significantly enhance the capa-
bilities of crowd segmentation and attention estimation
systems by incorporating semantic understanding into the
analysis process. By leveraging semantic technologies,
such as ontologies and knowledge graphs [13], [14],
as well as semantic reasoning mechanisms [9], [15],
researchers and practitioners can improve the accuracy,
efficiency, and interpretability of crowd segmentation and
attention estimation algorithms.

One key aspect of applying semantic technologies
to crowd segmentation is the incorporation of domain-
specific knowledge about crowd behavior, scene context,
and environmental factors [16], [17]. By encoding this
knowledge into formal ontologies or knowledge graphs,
segmentation algorithms can better understand the se-
mantics of crowd scenes, leading to more robust and
context-aware segmentation results [18], [19]. Further-
more, semantic reasoning mechanisms can be used to
infer higher-level semantic concepts from low-level seg-
mentation outputs, enabling the identification of complex
crowd behaviors and interactions [9].

In context of OSTIS systems, deep learning techniques

have shown remarkable success in various computer
vision tasks, including semantic segmentation. Convo-
lutional Neural Networks (CNNs) have emerged as pow-
erful tools for learning discriminative features directly
from data, enabling end-to-end training for semantic
segmentation tasks [21]–[24].

II. Main Semantic Segmentation Techniques Survey
Semantic segmentation, the task of assigning semantic

labels to each pixel in an image, has witnessed significant
advancements in recent years driven by deep learning
techniques. In this subsection, we provide an overview
of the main semantic segmentation techniques, focusing
on classical and deep learning-based approaches.

A. Sliding Window
A simple semantic segmentation method using a slid-

ing window involves sequentially applying the window
of different sizes to the entire image [25], [26]. This
process consists of several stages like setting the size
of the window, applying it to the image, classifying the
extracted features, and building the semantic map. Such
an approach, however, possesses multiple cons some of
them being:

1) High computational complexity. When working
with high-resolution images, step-by-step window
displacements lead to excessive iterations, during
which several time-consuming operations are per-
formed.

2) The lack of a global context. As far as each region
is processed independently, such a technique grasps
little to no connection between regions. It might
result in a fragmented representation of the object
and a lack of understanding of the whole picture.

3) Different size objects predicament. If the image
depicts multiple objects of interest with different
sizes, then the fixed-sized window might struggle
with extracting features from some of them. Dy-
namic resizing of the window is likely to pose extra
computational difficulties.

4) Objects overlapping. When there are some over-
lapping objects on the image, the sliding window
method is likely to give poorly highlighted edges,
especially if the objects are close to each other or
have the same size.

5) Sensitivity to the parameters. Several parameters
like window size or the step value should be fine-
tuned precisely. Otherwise, the result might get
worse dramatically.

The method can be used in remote monitoring when
an observer is so distant that the scene can be consid-
ered as infinitely distanced from them. Another suitable
condition to use the approach is the equality of sizes of
interesting objects so one could predetermine the window
size.
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B. Fully Convolutional Networks
Fully convolutional networks (FCN) are the type of

neural network designed for semantic segmentation tasks.
Instead of using fully connected layers, FCNs use con-
volutional layers. It allows processing input images of
arbitrary size and generating segmentation maps with the
same size [24]. The main concept of FCN is replacing
fully connected layers with convolutional ones to obtain
a segmentation map of the same size as the initial image.
Besides, some intermediate layers and skip connections
between them could be used to improve the segmentation
and get more detailed information.

Fully convolutional networks possess the following
drawbacks:

1) Ineffectiveness with objects having different sizes.
FCNs might concentrate more on larger objects,
neglecting smaller ones.

2) The spatial information loss. Using maximal pool-
ing layers and image upscaling might lead to spatial
information loss, especially if some features are
neglected in the convolutional layers.
Furthermore, FCNs are characterized by a vast
amount of parameters. As far as FCNs use con-
volutional layers, the number of parameters might
significantly exceed compared to simple models.
This issue raises even more drawbacks:

3) Computational complexity. Estimating the param-
eters and fine-tuning the FCN requires vast time
and computational resources.

4) Training data requirements. A large number of
parameters arise need in big training data which
must be well-prepared to avoid network overfitting
which causes poor ability of the model to make
general results.

5) FCNs are prone to overfitting.

C. Convolutional Neural Networks
Convolutional neural networks (CNN) are one of the

key frameworks in image processing and computer vi-
sion. They combine such tools as image convolution, im-
age pooling, feature extracting, and classification based
on those features [27]. The main idea is to use mul-
tiple layers of different types: convolutional (to extract
features), pooling (to solve image size-related issues),
and fully connected layers (to classify the image based
on the extracted features). CNNs have established their
place in computer vision and image processing thanks to
many advantages like effectiveness in extracting seman-
tic, morphological, and spatial features, their ability to
process images of different sizes, as well as their ability
to identify the image context.

D. Conditional Random Fields
Conditional random fields (CRF) is a statistical model

effectively used with CNNs to refine semantic segmen-
tation maps. A CRF takes part in postprocessing the

results of a CNN prediction to refine and improve the
segmentation spatial structure [28], [29]. The common
way to use CRF in image semantic segmentation features
the next stages:

1) Receiving predictions from the CNN. The predic-
tion includes a segmentation map with probabil-
ities for each pixel belonging to each considered
class.

2) Preparing the features for the CRF. The probabil-
ities from the segmentation map are used to form
features given to the input of the CRF. Spatial
coordinates of separate pixels or objects may also
be such features.

3) Applying the CRF to refine the segmentation. The
CRF uses context and spatial data from the CNN
to refine the segmentation. CRF usually models
interconnections between neighbor pixels and im-
plements that information into the semantic map.

4) MAP optimization. The CRF uses the MAP
method (Maximum A Posteriori) to tune its pa-
rameters to maximize the a posteriori probability
for each pixel to fit in the appropriate class.

CRFs provide context information based on the infor-
mation on interconnections between pixels. That allows
us to improve edge detection and highlighting object
details. Besides, CRF might reduce noise and smooth
predictions which is extremely important in applications
where high-quality object separation is crucial.

III. Methodology

In the research, we consider the following task of
crowd semantic segmentation. Based on various charac-
teristics (e. g. crowd density, people’s spatial distribution,
their visual texture), crowds can be classified as dense
and sparse. Different approaches can be employed to
determine if the given crowd is dense or sparse, e.g.
manual annotation, crowd density maps, computer vision
methods considering the texture of the image, as well as
social force models [30], [31]. In this paper, we use a
semi-automatic approach to generate ground truth maps
for binary (non-crowded and crowd regions) and ternary
(non-crowded, sparsely crowded, and densely crowded
areas) semantic segmentation. This features the following
steps:

• An annotated crowd images dataset is used (Fig. 1a).
For each image, the annotations present the loca-
tions of the labels assigned to each individual’s
head.

• Based on the labels’ locations, a 2D binary array
is assigned to each image where 0 indicates the
absence of a person’s head, and 1 stands for a label.

• The array is Gaussian blurred to obtain density
maps (Fig. 1b).
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Figure 1. A crowd image (a), the corresponding density map (b), ground truth segmentation (purple is dense crowd, green is sparse crowd,
and black is non-crowded areas) (c), predicted segmentation after employing UNet (blue is dense crowd, white is sparse crowd, and black is
non-crowded areas) (d), and the segmentation refined after using CRF (e). Each row presents an example of binary and ternary prediction (first
two rows and last two rows respectively) using either dice (first and third lines) or focal (second and fourth) loss function

• The resulting density maps are segmented into
two or three areas based on thresholding values
(Fig. 1c).

Based on the analysis given above, we decided to use
a CNN + CRF model for the task. We use UNet as the
network to calculate initial predictions. The initial images
and the corresponding ground truth segmentation maps
are divided into training, validating, and testing samples
to train the UNet neural network which effectively takes
advantage of the depicted objects’ semantic, morpholog-
ical, and spatial characteristics. The neural network gives
an initial segmentation map (Fig. 1d). After obtaining the
initial segmentation map, a CRF is used to refine it. As
a result, we get the final crowd segmentation based on
the individuals’ head location (Fig. 1e).

After obtaining the final segmentation maps, some
metrics based on the relations between ground truth
and obtained maps are calculated to evaluate the final
prediction accuracy. Based on such metrics, we can
compare the impact of various parameters on the final
semantic segmentation.

A. ShanghaiTech Dataset
For the experiment, we use a highly recognized Shang-

haiTech dataset [32]. It consists of two parts. Part A
features 482 crowd images taken from the Internet. In

each image, there are from 33 to 3138 individuals, and
the majority of the images represent dense crowds. Part B
consists of 716 images. The images contain mainly sparse
crowds from 9 to 576 people. Hence, we decided to use
the B part to train the model for binary segmentation
(crowd and non-crowded regions), and the A part for
ternary segmentation (dense crowd, sparse crowd, no
crowd). In both parts, 100 images form the training
sample, 100 images — the validating sample and other
ones are used to test the trained model.

To generate ground truth segmentation, we build den-
sity maps first. We do so by using Gaussian blurring
(Fig. 1b). After that, we segment density maps based on
thresholding values. We use two thresholds:

µ1 = 0.001M,
µ2 = 0.01M,

where M stands for the maximal value in the considered
density map. For binary segmentation, only µ2 is used
(Fig. 1c).

B. UNet
UNet, one of the deep learning networks with an

encoder-decoder architecture, is a popular neural network
architecture designed for semantic segmentation tasks,
particularly in biomedical image segmentation [21]. It
makes maximal use of feature maps in full scales for
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accurate segmentation and efficient network architecture
with fewer parameters.

The architecture is characterized by its U-shaped de-
sign, consisting of a contracting path (encoder) followed
by an expansive path (decoder) allowing for precise local-
ization while capturing contextual information (Fig. 2).
The EfficientNetB3 was used as the encoder [33], [34].
It consists of convolutional (Fig. 2, blue blocks) and bot-
tleneck layers (Fig. 2, yellow blocks) [35]. In the middle
column of Fig. 2, dashed arrows denote skip connections
between layers in the encoder and the decoder which help
the decoder part recover spatial information lost during
downsampling in the encoder part. In the research, we
used Segmentation Models, a Python library with Neural
Networks for Image Segmentation based on well-known
Keras and TensorFlow frameworks [36].

The input images must have 3 channels (e. g. RGB)
and have the same size. To effectively use the network,
we resize initial images and the corresponding ground
truth segmentations to 256x256. This allows us to get the
results quickly without significant quality loss. However,
other sizes could also be used, e. g. 224x224 which is a
standard input size for EfficientNetB3, as well as bigger
sizes. Also, the following parameters were used during
the training: batch size is 5, optimizer function is Adam,
the learning rate is 0.0001, the activation function on the
last layer is softmax, and the number of epochs is 50.

Besides, we consider two loss functions that take
into consideration the spatial characteristics of segments.
Dice loss is widely used as a metric showing how much
two images are similar to each other [23], [37], [38]:

GDL = 1− 2

C∑
l=1

wl

N∑
n=1

rlnpln + ε

C∑
l=1

wl

N∑
n=1

(rln + pln) + ε

,

where N is the number of pixels on each of two
compared images, C is the number of classes, pln and
rln are probabilities for the n-th pixel from both images
to be in the l-th class, wl is a normalizing coefficient, ε
is a term to avoid division by zero. In the paper, value
ε = 10−7 is used.

Focal loss is the metric widely used in image classifi-
cation and segmentation tasks [37], [39]. It derives from
the cross entropy concept and addresses the one-stage
object detection scenario in which there is an extreme
imbalance between foreground and background classes
during training. The loss function is calculated according
to the formula:

FL(p) = −(1− p)γ log(p),

where p is the model’s estimated probability for a pixel to
belong to a certain class, and γ is the focusing parameter
to down-weight easy examples and focus on training on
hard ones. We used the default value which is γ = 2.

Both functions are suitable for binary and ternary
semantic segmentation. Besides, they require only a few
parameters to define, so the models don’t become too
hard to tune.

C. CRF
In the research, we use PyDenseCRF, a Cython-based

Python wrapper for a fully connected CRF with a highly
efficient approximate inference algorithm implemented
in which the pairwise edge potentials are defined by
a linear combination of Gaussian kernels [28], [40].
Concepts of appearance and smoothness are used in
the network to calculate a posteriori probabilities for
each pixel belonging to each class. Appearance is the
property of a segmentation map to have nearby pixels
of the same color likely belonging to the same class. In
smooth models, large classes must absorb small isolated
regions nearby. The formalization of both concepts can
be expressed by the formula:

k(f⃗i, f⃗j) = w(1) exp

(
−|pi−pj |2

2θ2α
− |Ii−Ij |2

2θ2
β

)
+

+w(2) exp

(
−|pi−pj |2

2θ2γ

)
,

where pi and pj – positions of two pixels, Ii and Ij –
their colors, f⃗i and f⃗j – their features vectors, k – the
similarity function to be maximized, w(1) and w(2) –
linear combination weights, θα, θβ , θγ are initially de-
fined parameters. In the research, we used the following
values: θα = 10, θβ = 20, θγ = 1.

D. The Results Processing
After evaluating the final segmentation maps, some

metrics functions are calculated to perform pixel-wise
comparison ground truth maps with obtained results.

For binary segmentation, we calculated four values for
each pair:

TP = |{(i, j) : pij = 1 ∧ p̂ij = 1}| ,
FP = |{(i, j) : pij = 1 ∧ p̂ij = 0}| ,
TN = |{(i, j) : pij = 0 ∧ p̂ij = 0}| ,
FN = |{(i, j) : pij = 0 ∧ p̂ij = 1}| ,

where (i, j) stands for the position of two pixels to be
compared, p̂ij is the value for the ground truth pixel (1
stands for crowded region, and 0 means the pixel belongs
to non-crowded area), and pij is the value for the pixel
on predicted map. After that, accuracy, crowd predictive
value, and non-crowded predictive value are calculated:

acc = TP+TN
TP+FP+TN+FN

,

cpv = TP
TP+FP

,

npv = TN
TN+FN

.

Besides, for each image, we calculated the number of
annotation labels that fell into each class (according to
ground truth and predicted segmentation maps):
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Figure 2. The crowd segmentation prediction framework consisting of image preprocessing (left column), the UNet network (middle column),
and dense CRF to refine the predicted segmentation (right column)

N0 = |{i : phi = 0}|
N̂0 = |{i : p̂hi = 0}| ,
N1 = |{i : phi = 1}| ,
N̂1 = |{i : p̂hi = 1}| ,

where Ni stands for the number of annotation labels felt
in the class labeled by the number i, and hi is the location
of the i-th annotation label. Then, to estimate the rate of
the crowd detection, we calculated the N1/N̂1.

For the ternary segmentation, the following character-
istics are calculated:

DD = |{(i, j) : pij = 2 ∧ p̂ij = 2}| ,
DS = |{(i, j) : pij = 2 ∧ p̂ij = 1}| ,
DN = |{(i, j) : pij = 2 ∧ p̂ij = 0}| ,
SD = |{(i, j) : pij = 1 ∧ p̂ij = 2}| ,
SS = |{(i, j) : pij = 1 ∧ p̂ij = 1}| ,
SN = |{(i, j) : pij = 1 ∧ p̂ij = 0}| ,
ND = |{(i, j) : pij = 0 ∧ p̂ij = 2}| ,
NS = |{(i, j) : pij = 0 ∧ p̂ij = 1}| ,
NN = |{(i, j) : pij = 0 ∧ p̂ij = 0}| ,

where 0 stands for non-crowded pixels, 1 is sparse crowd,
and 2 is dense crowd. Based on these values, we calculate
metrics that we call accuracy, dense crowd predictive
value, crowd predictive value, and non-crowded predic-
tive value:

acc = DD+SS+NN
DD+DS+DN+SD+SS+SN+ND+NS+NN

,

dpv = DD
DD+DS+DN

,

cpv = DD+DS+SD+SS
DD+DS+DN+SD+SS+SN

,

npv = NN
ND+NS+NN

.

In the same manner, as for binary segmentation, we
calculate the number of annotation labels corresponding
to all three predicted classes:

N0 = |{i : p̂hi = 0}| ,
N̂0 = |{i : p̂hi = 0}| ,
N1 = |{i : p̂hi = 1}| ,
N̂1 = |{i : p̂hi = 1}| ,
N2 = |{i : p̂hi = 2}| .
N̂2 = |{i : p̂hi = 2}| .

Based on such characteristics, we can calculate the rate
of dense crowd detection equalling N2/N̂2.

E. Crowd Dense Semantics
After obtaining and refining the segmentation maps

(Fig. 3a), we clusterize the people in crowd images
based on their positions provided as annotations for the
considered dataset. For this, we divide all annotation
points according to the corresponding connected areas
of resultant segmentations (Fig. 3b) and clusterize each
group separately (Fig. 3c). We don’t clusterize points
falling into non-crowded areas. Any clustering method
for 2D points can be used. We decided to use DBSCAN
as it demonstrated its benefit in various researches in
logistics, spatial analysis, and behavior patterns detec-
tion [41], [42].

After the clustering, all points are divided into multiple
clusters represented as convex hulls of the points inside
them (Fig. 3c). Each cluster is characterized by its loca-
tion, density, people count, as well as spatial connections
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Figure 3. Semantics in a crowd: the initial image and the segmentation map for it (a), connected areas in the segmentation map (b), clusterization
of annotation labels within connected areas (c), the clusters connectivity graph (d), crowd semantic clusters (e)

with other clusters. All clusters and such connections are
presented as the graph where each vertex is assigned
to a cluster, and two vertices are adjacent if only two
clusters overlap or share a border (Fig. 3d). The size of
a vertex is proportional to the density of the crowd in
the corresponding cluster, and the thickness of each edge
is proportional to the area shared between two adjacent
clusters. Based on the separate clusters’ properties and
the graph’s connectivity, we can interpret semantics for
the depicted crowd in the image. In Fig. 3e, the red
cluster is a dense crowd (more than 1 individual per
1000 pixels), the orange one is a regular crowd (0.5-
1.5 individuals), and the yellow clusters present a sparse
crowd (less than 0.7 individuals). Different clusters can
share their borders, overlap, or even be a part of another
cluster. Considering such facts, we can evaluate the
crowd semantics.

IV. Results and Discussion

A. Segmentation Evaluation

After training neural networks and obtaining predicted
segmentation maps for images in testing samples (Fig. 1,
3a), we received the results presented in Table I. Statistics
on calculated accuracies and predictive values through
the testing samples (from ShanghaiTech dataset’s part B

for binary segmentation and part A for ternary segmen-
tation) are presented there.

As we can see, the CRF refinement significantly
improves the ternary segmentations in terms of overall
quality (acc.) and dense crowd detection (DPV). In other
cases, it didn’t demonstrate better results. Comparing
dice and focal loss functions’ results, we can conclude
that the neural network with focal loss can predict crowd
regions slightly better (according to the CPV). Neverthe-
less, dice loss allows us to predict dense crowds slightly
better (DPV). Also, binary segmentation gave better
results than ternary one in terms of overall performance.
However, it takes place due to its ability to detect non-
crowded areas (NPV) whereas the ternary segmentation
model is more successful in detecting crowded areas
(CPV).

Statistics on crowd detection rates are presented in
Table II. Here we can see the poor performance of the
model using the focal loss function in detecting sparse
crowds (low values of N1/N̂1), but for dense crowds
detection, both dice and focal functions results are ap-
proximately equal (dice function demonstrates slightly
better results though). On average, the model is prone to
overlook some parts of sparse and dense crowds (from
3 % to 22% according to average and median results).
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Table I
Accuracy and Predictive Values

UNet Segmentation CRF Segmentation
Acc. CPV DPV NPV Acc. CPV DPV NPV

Binary Segmentation, Dice Lose
Minimal 0.2629 0.0108 - 0.3144 0.2556 0.0086 - 0.3141
Average 0.7427 0.3962 - 0.8984 0.7440 0.3978 - 0.8987
Median 0.7580 0.3933 - 0.9464 0.7589 0.3939 - 0.9479

Maximal 0.9243 0.8968 - 1 0.9217 0.9001 - 1
Binary Segmentation, Focal Lose

Minimal 0.3379 0 - 0.3330 0.3389 0 - 0.3322
Average 0.8308 0.4023 - 0.8513 0.8098 0.4185 - 0.8292
Median 0.8671 0.3960 - 0.8891 0.8412 0.4110 - 0.8635

Maximal 0.9785 0.9897 - 0.9965 0.9780 1 - 0.9950
Ternary Segmentation, Dice Lose

Minimal 0.0685 0.1310 0 0 0.0622 0.1271 0 0
Average 0.3175 0.6830 0.3746 0.5127 0.4498 0.6819 0.5169 0.5132
Median 0.3067 0.7412 0.3245 0.5017 0.4386 0.7447 0.5616 0.5132

Maximal 0.7331 0.9992 0.9992 1 0.9168 0.9983 0.9947 1
Ternary Segmentation, Focal Lose

Minimal 0.0053 0.0466 0 0 0.0534 0.0899 0.0002 0
Average 0.3178 0.7028 0.2437 0.4929 0.5026 0.7014 0.4890 0.4765
Median 0.3012 0.8016 0.0771 0.4913 0.4952 0.7785 0.4911 0.4693

Maximal 0.7775 0.9998 1 1 0.9381 1 0.9911 1

Sometimes the rates N1/N̂1 and N2/N̂2 are greater than
1. It may indicate situations where separate persons are
detected as crowds and sparse crowds are recognized as
dense crowd regions. According to our calculations, from
15% to 25% images have such values. Hence, the model
might both under- and overestimate the crowd density.
Also, data from Table II prove again using the CRF is
crucial for ternary segmentation prediction.

Table II
Crowd Detection Rates

UNet segmentation CRF segmentation
Dice Focal Dice Focal

Binary Segmentation (N1/N̂1)
Minimal 0.0097 0 0 0
Average 0.7896 0.1719 0.7909 0.1687
Median 0.8454 0.1189 0.8473 0.0872

Maximal 1.3235 0.8868 1.3235 0.9057
Ternary Segmentation (N2/N̂2)

Minimal 0 0 0.0402 0
Average 0.5298 0.0199 0.8785 0.7896
Median 0.5215 0 0.9704 0.8517

Maximal 1.2971 1 1.2971 1.2971

B. Crowd Semantics

Most of the ShanghaiTech datasets images are captured
by a camera observing a nearby scene from above.
Hence, the typical clusterization consists of distant dense
clusters, closer regular clusters, and near sparse clusters
(Fig. 4a). However, the crowd in an image can be divided
vertically if there is a tall object like a pole or a flag (Fig.
4b).

Sometimes the pattern doesn’t hold, which could in-
dicate a group with interest. Some examples where we
can detect a people’s interest include:

• Multiple clusters with equal density spanning most
of the image (Fig. 4c). Those usually present a
uniform crowd with regular attention.

• A small cluster within or near a bigger one of the
different type (Fig. 4, d-e). Those situations usually
present a concentration of interest in particular
groups within or near the crowd.

• A significant overlapping between clusters of differ-
ent types. (Fig. 4f). This one can indicate a spread-
ing interest or joining the people groups. Real-time
surveillance systems must detect such actions to
prevent any dire situations.

• Elongated clusters presenting regulate or dense
crowds may indicate the presence of a queue in
the region (Fig. 4g, the bottom orange cluster).
If the density is high enough, some extraordinary
situations might take place like queue crushes or
evacuation panic which must be dealt with immedi-
ately.

• A wide sparse cluster at the bottom of the image
might indicate a group of people that is very close to
the observer (Fig. 4, d, h). Overlapping between the
close cluster and other, distant ones is another fea-
ture of such a situation. Depending on the people’s
behavior, such a close group might be considered
an outlier or an interest group, especially when it
grows or approaches the observer.

V. Conclusions
This paper presents an approach for semantic segmentation

of dense and sparse crowd images, addressing the critical
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Figure 4. Semantic segmentation of crowds of different types: regular crowds with no attention (a, b), uniform crowd with regular attention (c),
diverse crowd containing groups with increased interest (d, e), diverse crowd with a spreading group with interest (f), crowd with a queue (g),
crowd with a close cluster (h)

need for accurate crowd analysis in various applications such
as crowd management, surveillance, and urban planning. Our
proposed method leverages a combination of UNet and CRF
networks, augmented by a semi-automatic labeling technique
based on Gaussian blur and thresholding methods to generate
ground truth maps. Furthermore, we highlight some typical
crowd behavior patterns based on clustering the people groups
by their density and interconnections between them. Indicating
those patterns is important for understanding crowd structures
and dynamics as well as establishing crowd management and
safety.

Through extensive experimentation and evaluation, we have
demonstrated the effectiveness of our approach in accurately
segmenting crowd images, particularly in binary segmentation
tasks distinguishing crowded from non-crowded regions. While
our model excels in binary segmentation, we acknowledge the
challenges encountered in ternary segmentation tasks involving
dense crowds, sparse crowds, and non-crowded areas. Despite
this, our model shows promising results in crowd detection
regardless of crowd density. Besides, we prove the necessity of
CRF refinement to get better results in ternary segmentation.
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АВТОМАТИЗАЦИЯ ОЦЕНКИ ВНИМАНИЯ
СКОПЛЕНИЙ ЛЮДЕЙ НА ОСНОВЕ

ПОЛУАВТОМАТИЧЕСКОЙСЕМАНТИЧЕСКОЙ
СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ С

ИСПОЛЬЗОВАНИЕМ СЕТЕЙ UNET И CRF
Шолтанюк С. В., Малёнкин Я. О.,

Лэй Б., Недзьведь А. М.
Семантическая сегментация изображений скоплений лю-

дей играет ключевую роль в различных приложениях, таких
как управление толпой, наблюдение и городское планиро-
вание. В данной статье предложен подход к семантической
сегментаций изображений с плотной и разреженной тол-
пой на основе полуавтоматической разметки, использующий
комбинацию UNet и условных случайных полей (CRF).

Представлена методика генерации карт сегментации для
изображений скоплений людей. Сеть UNet используется для
первоначальной, грубой сегментации, после которой следует
её уточнение с использованием CRF. Результаты экспери-
ментов показали, что модель лучше выполняет бинарную
сегментацию (области, занятые толпой, и области, свободные
от толпы), нежели тернарную сегментацию (области плотной
толпы, разреженной толпы, и области, свободные от толпы).
Однако, в ходе тернарной сегментации получились лучшие
результаты по сегментации толпы в целом (без учёта типа
толпы). Кроме того, показана значимость уточнения сег-
ментации при помощи CRF в задаче тернарной сегментации
толпы.

Также на основе предложенной модели сегментации вы-
делены некоторые закономерности поведения скоплений
людей. Они различаются по типу внимания людей, связями
внутри скоплений людей и между ними, а также вероятно-
стью возникновения чрезвычайных ситуаций.
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