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Abstract—This article conducted a study on methods
for clustering multispectral images by terrain classes us-
ing semantic technologies. Using Word2Vek technology, a
semantic form of the image is constructed, which is used
to determine the class of the image.
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I. Introduction

Semantic scene segmentation based on images is
one of the most important tasks in computer vision.
Although we have made enormous progress in recent
years using sophisticated image descriptors [1], [2] and
more advanced machine learning techniques [3], [4], seg-
mentation remains a challenging task. Although humans
can easily interpret images semantically, this remains
challenging for computer vision systems, primarily due to
the ambiguity of the effect of light and surface reflections
on a given pixel value. For example, dark pixels may be
the result of reflections from dark surfaces under normal
lighting conditions or reflections from light surfaces
in shadows. Deciphering the contribution of light and
reflection to images is a challenging task [5]. To solve
this problem, we either need to make assumptions about
the world or get more information.

In this work, we explore semantic segmentation of
multispectral images using the latter approach. In par-
ticular, multispectral images from the Sentinel-2 satellite
will be used.

The spectral imaging is imaging using multiple bands
in the electromagnetic spectrum. While a conventional
camera captures light in three wavelength ranges in the
visible spectrum, RGB, spectral imaging involves a wide
range of techniques beyond RGB. Spectral imaging can
use infrared, visible light, ultraviolet, x-rays, or any
combination of the above. This may involve acquiring
image data simultaneously in the visible and non-visible
ranges, illuminating beyond the visible range or using
optical filters to capture a specific spectral range, and
the ability to capture hundreds of wavelength ranges for
each image pixel.

Multispectral remote sensing includes visible, near-
infrared, and short-wave infrared imaging. These images
were obtained over several broad wavelength ranges.
Thus, multispectral imaging captures image data in a
specific range of wavelengths across the entire elec-
tromagnetic spectrum. Different materials caught in the
frame reflect and absorb rays at different wavelengths
differently. In remote sensing, materials can be distin-
guished by their spectral reflectance signatures observed
in remote sensing (Earth remote sensing) images. In this
case, it is very difficult to make a direct identification,
as described in [6].

A higher level of spectral detail in multispectral im-
ages provides a better ability to recognize subtle differ-
ences. For example, multispectral remote sensing makes
it possible to distinguish three minerals due to the high
spectral resolution. At the same time, the multispectral
Landsat Thematic Mapper system cannot distinguish
between these three minerals.

II. Multispectral satellite imaging

One of the priority areas for processing multispec-
tral information and deciphering remote sensing data
is theoretical and applied research aimed at increasing
the efficiency of multispectral information processing. In
theoretical and practical terms, the creation of systems
that support the information processing process requires
the development of new and improvement of existing
methods and algorithms for information analysis, as well
as the development of special mathematical, algorithmic
and software for information processing and decision-
making systems, which is explained by the following
reasons. Firstly, the algorithms used to decipher remote
sensing data do not provide the required accuracy and
reliability of the results. Secondly, the use of clustering
algorithms for multispecies data is not qualitatively sat-
isfactory for expert assessment by specifying reference
areas. Thirdly, the development of fundamentally new
clustering algorithms is often not effective compared to
improving existing algorithms, in terms of increasing
processing speed and reducing the number of iterations.
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In addition, measuring the degree of similarity of sensing
objects is much simpler than forming feature descrip-
tions.

One of the priority areas for processing multispec-
tral information and deciphering remote sensing data
is theoretical and applied research aimed at increasing
the efficiency of multispectral information processing. In
theoretical and practical terms, the creation of systems
that support the information processing process requires
the development of new and improvement of existing
methods and algorithms for information analysis, as well
as the development of special mathematical, algorithmic
and software for information processing and decision-
making systems, which is explained by the following
reasons. Firstly, the algorithms used to decipher remote
sensing data do not provide the required accuracy and
reliability of the results. Secondly, the use of clustering
algorithms for multispecies data is not qualitatively sat-
isfactory for expert assessment by specifying reference
areas. Thirdly, the development of fundamentally new
clustering algorithms is often not effective compared to
improving existing algorithms, in terms of increasing
processing speed and reducing the number of iterations.
In addition, measuring the degree of similarity of sensing
objects is much simpler than forming feature descrip-
tions.

In addition, remote sensing systems are currently being
constantly improved, which makes it possible to obtain
images of increasingly higher spectral and spatial resolu-
tion. There are systems that allow shooting in hundreds
of spectral ranges. The spatial resolution of images is
also constantly being improved. If in the 70s each pixel
of a space image corresponded to 80 meters of the
Earth, now there are images with a resolution of 1 meter,
and sometimes better. Older techniques developed for
lower-resolution imagery do not extract all the useful
information contained in modern imagery. Therefore,
there is a need for new methods for interpreting images
of area objects that take into account the advantages of
modern multispectral imaging.

As a rule, color satellite images are formed based on
the absorption or reflection of certain radiation waves
of the spectrum. As a result, in most cases, the color
is formed based on filling the areas with different dyes
with different concentrations. The color is formed by
decomposing the absorption values of dye mixtures into
the absorption values of individual spots, in this case,
a simple decomposition according to the coordinates of
color systems. Such decomposition does not allow to
obtain a linear relationship between the dye concentration
and absorption, which corresponds to the spectral line
under monochromatic conditions. Most of the tasks of
monitoring the Earth’s surface are focused on polychro-
matic conditions, for which it is impossible to obtain
accurate spectral values.

A. Landsat-8

One example of a multispectral sensor is Landsat-8.
For example, Landsat-8 produces 11 images using the
following bands:

1) Coastal aerosol (COASTAL AEROSOL) in range
1 (0.43-0.45 µm).

2) Blue (BLUE) in the range 2 (0.45-0.51 µm).
3) Green (GREEN) in the range 3 (0.53-0.59 µm).
4) Red (RED) in the range 4 (0.64-0.67 µm).
5) Near infrared (NIR) in the range 5 (0.85-0.88

microns).
6) Shortwave infrared 1 (SWIR 1) in the range 6

(1.57-1.65 µm).
7) Shortwave infrared 2 (SWIR 2) in the range 7

(2.11-2.29 µm).
8) Panchromatic (PANCHROMATIC) in the range 8

(0.50-0.68 microns).
9) Cirrus (CIRRUS) in the range 9 (1.36-1.38 µm).
10) Thermal Infrared 1 (TIRS 1) in the 10 range

(10.60-11.19 µm).
11) Thermal Infrared 2 (TIRS 2) in the 11 range

(11.50-12.51 µm).
Each band has a spatial resolution of 30 meters, with

the exception of bands 8, 10 and 11. Band 8 has a spatial
resolution of 15 meters, and bands 10 and 11 have a pixel
size of 100 meters. In this case, there is no range between
0.88 and 1.36 µm because the atmosphere absorbs light
at these wavelengths, as in Figure 1.

Figure 1. Ranges of spectral channels of Landsat satellites.

III. Description of the dataset

In [7] proposes a set of multispectral images captured
by the Sentinel-2 satellite imagery. Sentinel-2 satel-
lite imagery is publicly and freely available through
the Copernicus Earth observation program. In [8], we
present a new dataset based on Sentinel-2 satellite im-
agery, covering 13 spectral bands and consisting of 10
classes, containing a total of 27,000 tagged and georefer-
enced images. An example of one Industrial class image
with the displayed spectral bands Red, Green, Blue can
be seen in Figure 2. Of these, we have selected 8 of the
most informative strips.

The dataset has the following classes:
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Figure 2. Industrial-1011 in RGB spectral bands.

A. Annual Crop class
The Annual Crop class is a satellite image of an

agricultural area represented by fields of annual crops. A
feature of the class is the presence of both large areas of
immature vegetation and large areas of mature vegetation,
brightly illuminated by infrared radiation.

B. Forest class
The Forest class is a collection of satellite images of

forested areas. A feature of this class is the overwhelming
presence of vegetation, brightly illuminated by infrared
radiation.

C. HerbaceousVegetation class
The HerbaceousVegetation class represents satellite

imagery of hilly or steep terrain. A feature of the class
is the rare presence of vegetation in the image.

D. Highway class
The Highway class is satellite imagery of the area in

which a major highway passes. They are characterized by
the fact that after image processing the highway should
be clearly visible.

E. Industrial class
The Industrial class presents satellite images of indus-

trial areas. A special feature of the class is a large number
of buildings and a small area of terrain with vegetation.
Also, after processing, the outlines of buildings are often
lost, but they can be restored to construct an outline using
the difference in the images.

F. Industrial class
The Pasture class contains satellite images of flat ter-

rain. A feature of the class is the abundance of vegetation,
brightly illuminated by infrared radiation.

G. PermanentCrop class
The PermanentCrop class is a satellite image of an

agricultural area represented by fields of permanent
crops. A special feature of the class is the presence of
large areas of mature vegetation, brightly illuminated by
infrared radiation.

H. Residential class
The Residential class represents satellite images of

populated areas. A special feature of the class is the large
number of buildings throughout the image.

I. River class
The River class is satellite imagery of an area where

there is a river. They are characterized by the fact that
after image processing the river should clearly stand out.

J. SeaLake class
The SeaLake class contains satellite images of the

seascape. They are characterized by the overwhelming
presence of water.

IV. Calculating the covariance matrix
To classify the image class represented by 8 spectral

channels, it is proposed to use an algorithm to calculate
the covariance matrix, where each cell i,j will denote the
covariance of the i-th spectral layer and the j-th layer, as
in Figure 3.

Figure 3. Visualization of the image covariance matrix with 8
spectral bands.

One such algorithm is the principle of principal com-
ponents. He decides:

1) Approximate the data by linear manifolds of lower
dimension: find a linear manifold of a given di-
mension k < d, the sum of squared distances to
which is minimal.

2) Find a subspace of a given dimension, in the
orthogonal projection onto which the spread (dis-
persion) (sample variance for k = 1) is maximum.

3) Find a subspace of a given dimension, in the
orthogonal projection onto which the root-mean-
square distance between each pair of points is
maximum.
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The principal component method consists of calcu-
lating eigenvectors and eigenvalues of the covariance
matrix of the data space, then constructing projections in
such a way that the direction of the maximum dispersion
of the projection always coincides with the eigenvector
having the maximum eigenvalue equal to the value of this
dispersion. The covariance matrix after PCA processing
can be seen in Figure 4.

Figure 4. Visualization of the image covariance matrix with 8
spectral bands.

The next step of the algorithm is to reduce the dimen-
sion of the data space, but in the case of multispectral
images this is not a necessary step: each projection
is a new image layer that stores the necessary data.
Instead, in [9] it is proposed to work only with the most
informative image from the resulting projections.

Different images of the same class will have almost
identical spectral data ratios. Indeed, for Forest class
images the frequencies of 560 nm will prevail. and 842
nm., when for the SeaLake class 490 nm. and 945 nm.
As a consequence, since each cell of the covariance
matrix denotes either the variance of some layer of the
multispectral image if that cell lies on the diagonal, or
the covariance of two specific layers if it does not lie on
the diagonal, the covariance matrices for each class will
have the same patterns of dominant relationships.

V. Construction of a semantic form of the area

If we consider the matrix as a vector, then using
the Word2vec technology from [10], from the previous
statements we can conclude that the image is converted
into a word that has metric characteristics, as shown in
Figure 5.

Figure 5. Illustration of how Word2vec technology works.

Following the Word2vec principle, we can build a
semantic model to determine the semantic image of an
image. Thus, the image is converted into a covariance
ratio vector, where each cell uniquely defines the covari-
ance of the two spectral layers. Consequently, if defining
vectors are selected for each class, then by the difference
between the vectors of the vector space, the dimension
of which is n*n, where n is the number of spectral bands
in the image, it will be possible to predict which class
the image belongs to by the semantic difference of the
vectors.

Using this semantic approach, we convert the image
into a covariance ratio vector. Each element in this vector
encapsulates the covariance between the two spectral
layers, encoding not only spectral information but also
semantic nuances. By selecting definition vectors for each
terrain category, we create a semantic reference frame.
Subsequently, using the semantic differences between
these vectors within a vector space (which is expanded
according to the number of spectral bands in the im-
age), images can be accurately classified based on their
semantic properties. By leveraging semantic techniques,
we overcome the limitations of traditional pixel-based
analysis and gain a deeper understanding of the semantic
landscape of multispectral images.

VI. Demonstration of the method
To demonstrate how the method works, consider matri-

ces for three different classes: Industrial, Forest, SeaLake.
All three classes have different spectral characteristics
that will uniquely determine the covariance matrix for
the images representing the class. By calculating the
average value of the covariance matrix for classes whose
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sample included 1000 images, as well as the vector of
eigenvalues of these matrices.

A. Calculation of class matrices
Matrix for class Industrial:
[[1 0.981 0.971 0.839 0.328 0.33 0.583 0.676]
[0.981 1. 0.976 0.876 0.414 0.426 0.64 0.696]
[0.971 0.976 1. 0.877 0.347 0.348 0.653 0.738]
[0.839 0.876 0.877 1. 0.549 0.45 0.823 0.823]
[0.328 0.414 0.347 0.549 1. 0.886 0.59 0.323]
[0.33 0.426 0.348 0.45 0.886 1. 0.504 0.255]
[0.583 0.64 0.653 0.823 0.59 0.504 1. 0.903]
[0.676 0.696 0.738 0.823 0.323 0.255 0.903 1. ]]

Eigenvalues:
[5.566 1.449 0.706 0.145 0.059 0.012 0.024 0.041]

Matrix for class Forest:
[[1. 0.878 0.907 0.853 0.724 0.75 0.841 0.854]
[0.878 1. 0.907 0.888 0.805 0.856 0.861 0.863]
[0.907 0.907 1. 0.917 0.738 0.731 0.882 0.907]
[0.853 0.888 0.917 1. 0.888 0.793 0.972 0.976]
[0.724 0.805 0.738 0.888 1. 0.898 0.901 0.857]
[0.75 0.856 0.731 0.793 0.898 1. 0.794 0.755]
[0.841 0.861 0.882 0.972 0.901 0.794 1. 0.992]
[0.854 0.863 0.907 0.976 0.857 0.755 0.992 1. ]]

Eigenvalues:
[5.568 1.259 0.627 0.218 0.015 0.066 0.136 0.112]

Matrix for class SeaLake:
[[1. 0.492 0.446 0.366 0.27 0.23 0.295 0.289]
[0.492 1. 0.477 0.408 0.32 0.26 0.329 0.296]
[0.446 0.477 1. 0.532 0.418 0.394 0.402 0.373]
[0.366 0.408 0.532 1. 0.583 0.552 0.537 0.501]
[0.27 0.32 0.418 0.583 1. 0.582 0.585 0.519]
[0.23 0.26 0.394 0.552 0.582 1. 0.54 0.482]
[0.295 0.329 0.402 0.537 0.585 0.54 1. 0.561]
[0.289 0.296 0.373 0.501 0.519 0.482 0.561 1. ]]

Eigenvalues:
[4.047 1.147 0.589 0.506 0.492 0.383 0.413 0.425]

And also consider two images from the dataset,
Industrial-1011, shown in Figure 2, and SeaLake-1016,
shown in Figure 6.

B. Calculation of image matrices
The first proposed method for determining the class

of an image will be the difference in the metrics of the
matrix space L0. This method allows you to quickly and
even visually determine whether an image belongs to a
class. The main problem of this method is reducing the
dimension of space from eight stripes to one number,
as a result of which collisions arise when semantically

Figure 6. SeaLake-1016 in RGB spectral bands.

different vectors return a measure that is close in value.
Because of this, a significant number of errors arise when
determining the class of an image.

The second method for determining the class member-
ship of an image is the nearest neighbor search algorithm.
This algorithm consists of three steps:

1) The distance between each image and the eigen-
vectors of each class is calculated. The distance is
taken to be the quadratic difference of vectors.

2) Find the minimum distance for each image.
3) The class to which the image belongs is determined

by comparing the minimum distances.
This method requires a little more calculations, but

it takes into account the ratio of the spectral bands of
the matrices in a certain order, as well as the difference
between the corresponding bands.

The image Industrial-1011 obtained the following
values of the covariance matrices and eigenvectors:

Matrix for class Industrial-1011:
[[1. 0.982 0.957 0.841 0.136 0.195 0.564 0.774]
[0.982 1. 0.975 0.873 0.214 0.275 0.604 0.778]
[0.957 0.975 1. 0.899 0.18 0.216 0.63 0.818]
[0.841 0.873 0.899 1. 0.383 0.321 0.816 0.929]
[0.136 0.214 0.18 0.383 1. 0.925 0.69 0.36 ]
[0.195 0.275 0.216 0.321 0.925 1. 0.608 0.302]
[0.564 0.604 0.63 0.816 0.69 0.608 1. 0.894]
[0.774 0.778 0.818 0.929 0.36 0.302 0.894 1. ]]

Eigenvalues:
[5.47 1.862 0.487 0.089 0.042 0.032 0.006 0.014]

Based on the calculation results, image Industrial-
1011, the quadratic distance between the image vector
and the Industrial class vector is 0.482, the Forest class
vector is 0.662, and the SeaLake class vector is 1.839.
For clarity, distances are rounded to the third decimal
place. The probability of an image belonging to the
Industrial class is 84%, to the Forest class is 78%, and
to the SeaLake class is 38%. Thus, we can conclude that
the image belongs to the Industrial class, but it is worth
noting the presence of local vegetation in the image.
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The SeaLake-1016 image obtained the following
values of covariance matrices and matrix space norms:

Matrix for class SeaLake-1016 :
[[1. 0.465 0.383 0.433 0.409 0.306 0.316 0.124]
[0.465 1. 0.56 0.621 0.605 0.459 0.477 0.137]
[0.383 0.56 1. 0.546 0.512 0.439 0.386 0.172]
[0.433 0.621 0.546 1. 0.647 0.51 0.481 0.202]
[0.409 0.605 0.512 0.647 1. 0.553 0.562 0.238]
[0.306 0.459 0.439 0.51 0.553 1. 0.42 0.174]
[0.316 0.477 0.386 0.481 0.562 0.42 1. 0.095]
[0.124 0.137 0.172 0.202 0.238 0.174 0.095 1. ]]

Eigenvalues:
[3.981 0.955 0.746 0.611 0.553 0.453 0.371 0.331]

Based on the calculation results, image Industrial-
1011, the quadratic distance between the image vector
and the Industrial class vector is 1.902, the Forest
class vector is 1.823, and the SeaLake class vector is
0.310. For clarity, distances are rounded to the third
decimal place. The probability of an image belonging
to the Industrial class is 47%, to the Forest class is
49%, and to the SeaLake class is 92%. Thus, we can
conclude that the image belongs to the SeaLake class,
and unambiguously.

Diagram of the algorithm
The general diagram of the algorithm is presented in

Figure 7.

Figure 7. General diagram of the algorithm.
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ОПРЕДЕЛЕНИЕ КЛАССА
МУЛЬТИСПЕКТРАЛЬНОГО

ИЗОБРАЖЕНИЯ ПО
СЕМАНТИЧЕСКОЙ РАЗНОСТИ
КОВАРИАЦИОННЫХМАТРИЦ

Бу Цин, Недзьведь А. А., Белоцерковский А.
Аннотация: В данной статье проведено исследова-

ние спутниковых мультиспектральных изображений,
спектральных данных местности, а также представлен
метод определения принадлежности изображений к
классам местности с использованием семантического
анализа вектора собственных значений ковариацион-
нойматрицы спутниковогомультиспектрального изоб-
ражения.
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