
Bringing the Subject Domain Ontology to
Optimal Canonical Form

Anatoli Karpuk
Belarusian State Academy of Communications

Minsk, Belarus
Email: a_karpuk@mail.ru

Abstract—A formal definition of the subject domain
ontology is given. The concept of the canonical form of
a subject domain ontology is considered, which is built on
the basis of an analysis of functional dependencies between
concepts and properties of the subject domain ontology
concepts. An algorithm for bringing the subject domain
ontology to a canonical form is described. The concept of
the optimal canonical form of a subject domain ontology
is introduced, containing the minimum number of classes
and the minimum number of attributes in the classes. A
method for bringing the subject domain ontology to the
optimal canonical form is roposed.

Keywords—ontology, domain, canonical form, functional
dependence, optimal canonical form

I. Introduction

In computer science, ontology is a comprehensive and
detailed formalization of a certain area of knowledge in
the form of a conceptual diagram. A conceptual schema
is a set of concepts and information about concepts,
which includes properties, relationships, restrictions, ax-
ioms and statements about concepts necessary to describe
the processes of solving problems in a selected subject
domain. For each knowledge area, an applied ontology
is built, which consists of a top-level ontology, a subject
domain ontology, and a task ontology. Subject domain
ontology are simultaneously developed and used by
many users. For this reason, in subject domain ontology,
the same property of a concept can be represented in
different ways. Such ambiguity can lead to difficulties
when solving problems using subject domain ontology.
To eliminate this drawback, works [1], [2] propose to
bring the subject domain ontology to the so-called canon-
ical form, which is based on the analysis of functional
dependencies between the concepts and properties of the
ontology. However, the developed algorithm for bringing
the ontology to a canonical form also does not provide
a unique solution. Depending on the order in which the
functional dependencies between attributes are analyzed,
it is possible to obtain a different number of classes
with different numbers of attributes in them. This article
introduces the concept of an optimal canonical form of a
subject domain ontology, containing a minimum number
of classes and a minimum number of attributes in classes,

and proposes a method for bringing a subject domain
ontology to an optimal canonical form.

II. Formal Definition the Subject Domain Ontology

Let us define the subject domain ontology in the form
of a quadruple O = ⟨K,R, F, I⟩ [3], [4] where K is a
finite set of concepts of the subject domain ontology; R
– a finite set of relations between concepts; F – a finite
set of interpretation functions defined on concepts and
relationships; I – a finite set of axioms, each of which is
always a true statement on concepts and relations. The
set of concepts has the form K = ⟨D,A,Q⟩ , where D
is a finite set of domains; A — a finite set of attributes;
Q — a finite set of classes in subject domain ontology.

Domains are used as sets of possible attribute values.
Each domain’s data has one of the data types allowed
in the XML language [5]. Based on the number of data
elements in the value, domains are divided into atomic,
union, and list. An atomic domain consists of indivisible
data elements of a specific type and format. The value
of a federated domain is a data aggregate (structure)
consisting of other aggregates and data elements. The
value of any merged domain can be represented as a
union of the values of its constituent atomic domains. A
list domain value is a list (repeating group) of atomic
or concatenated domain values. The number of list ele-
ments can be any. The value of any list domain can be
represented as a repeating group of values from one or
more atomic domains.

Based on value restrictions, atomic domains are di-
vided into primitive, built-in, and constructed. Primitive
data types of the XML language are used as primi-
tive atomic domains. Built-in domains are derived from
primitive domains by applying fixed constraints to them.
For example, the primitive domain decimal produces the
built-in domains integer, long, int, short, byte, nonNeg-
ativeInteger, positiveInteger, unsignedLong, unsignedInt,
unsignedShort, unsignedByte, nonPositiveInteger, nega-
tiveInteger. Derived domains are derived from primi-
tive and built-in domains by applying various facets to
them. For example, the constraints length, minLength,
maxLength, pattern, enumeration, whiteSpace, assertions
can be applied to the primitive atomic domain string. The

237



constraints totalDigits, fractionDigits, pattern, whiteS-
pace, enumeration, maxInclusive, maxExclusive, minIn-
clusive, minExclusive, assertions can be applied to the
primitive atomic domain decimal.

Depending on the identification method, domains can
be unnamed or named. Unnamed domains do not carry
semantic load and are used only as data types. Unnamed
domains cannot be merged or list domains. Named
domains are distinguished from unnamed domains by
having a user-defined domain name and can be atomic
primitives, inline and derived domains, as well as feder-
ated and list domains.

Concepts from set A represent properties (attributes)
of subject domain classes. Each attribute is specified by
its unique name and the domain to which the attribute
values belong. Depending on what domain the attribute
is defined on, it can be atomic, aggregated, or list.

Concepts from set Q represent classes (objects, en-
tities) of the subject area. One class includes real or
abstract people, objects, phenomena, events, processes
that have the same or similar set of properties (attributes),
knowledge about which is stored in the ontology and used
when solving problems from a given subject domain.
When constructing a subject domain ontology, classes are
first described, and then knowledge about the individuals
of each class is recorded in the ontology. In Russian-
language literature, individuals of classes are often called
instances of classes or objects. Each class is given its own
unique name and its own set of attributes.

Each attribute within a class can have cardinality
and functional properties. Cardinality values indicate the
minimum and maximum number of attribute values that
one individual of a class can have. By default, a class
individual can have any number of attribute values. If
an attribute value may not be present in an individual
of a class, then the ontology must indicate a minimum
cardinality equal to 0. The functionality sign shows that
any individual of a class can have no more than one
attribute value. If the functionality attribute is set, then
the maximum cardinality of this attribute should not
be specified, or should be equal to 1. The set of class
attributes, the values of which uniquely determine an
individual of the class, is declared as the key of the class.
A class can have more than one key.

The set of relations between concepts R includes
relations between domains for constructing derived do-
mains, relations between attributes and domains for
determining the scope of attributes, relations between
classes and attributes for determining the composition
of the attributes of each class, and relations between
classes. Relationships between classes reflect “whole-
part”, “genus-type” connections, as well as hierarchical
and other connections between classes that exist in the
subject domain. Each relationship between classes can
also have cardinality and functionality properties. In

addition, relationships between classes can be inverse,
inverse functional, transitive, symmetric, asymmetric,
reflexive, and irreflexive.

The set of functions F consists of n-ary relations
between classes or attributes in which the value of an
element with a number n is uniquely determined by the
values of previous (n − 1) elements. Using functions,
you can describe class keys, hierarchical relationships
between classes and attributes, and any other functional
dependencies between classes and attributes that exist in
the subject domain.

The set of axioms I serves to represent in the on-
tology statements about classes, attributes, domains and
relations that are always true. Each axiom is formulated
in the form “if <condition on the values of domains for
given attributes of given classes or relations> then <state-
ment about the values of domains for given attributes
of given classes or relations>”. Axioms are included
in the ontology to check restrictions on the values of
attributes, to check the correctness of the description of
the ontology, to derive new true statements about classes,
attributes, domains and relationships.

III. Functional Dependencies between Attributes of the
Subject Domain Ontology

Let X ⊂ A be a subset of attributes of the subject
domain ontology, Z ∈ A — some attribute. We will say
that in the subject domain ontology there is a functional
dependence (FD)X → Z, if any combination of attribute
values from X always corresponds to a single value of
the attribute Z.

The FD structure on a set of attributes A satisfies
Armstrong’s axioms [6]:

if X ⊆ A then A → X (reflexivity axiom);
if X → Y and Y C → D, then XC → D (axiom of

pseudotransitivity).
If there is a FD X → Y , then they say that X

functionally determines Y or Y functionally depends on
X . From the given axioms, one can derive a number of
properties of the FD structure, which in the literature (for
example, [7]) are often also called axioms, although it is
more accurate to call them rules of inference. The most
important are the following inference rules:

if X → Y C, then X → Y and X → C (decompo-
sition rule), indeed, by the axiom of reflexivity we have
XY C → Y and XY C → C, then by the axiom of
pseudotransitivity we obtain X → Y and X → C;
if X → Y , then XC → Y C (replenishment rule),

indeed, by the axiom of reflexivity we have XY C →
Y C, then by the axiom of pseudotransitivity we obtain
XC → Y C;
if X → Y and X → C, then X → Y C (the union

rule), indeed, by the completion rule we have X → XY
and XY → Y C, then by the axiom of pseudotransitivity
we obtain X → Y C.

238



Obviously, the inclusion relation ⊆ determines the FD
structure on the set A, which is called the trivial structure
of the FD, and the FDs included in it are called trivial
FDs. To specify a FD structure that differs from the trivial
one, it is necessary to postulate a finite set of FD F =
{Fj = Xj → Yj | Xj ⊂ A, Yj ⊆ A, j = 1,m}, which in
the article [8] was called a system of generators of the
FD structure on the set of attributes A. The FD structure,
specified by the system of generators F , will be denoted
by S(F ).

It is obvious that from Z ∈ X it follows that X → Z.
Such an FD, in which the dependent attribute is part of
the left side of the FD, is called trivial. In what follows,
we will consider only non-trivial FDs between attributes.
In the subject domain ontology, the following non-trivial
FDs between attributes can be distinguished:

• each functional attribute of a class that is not a
subclass of another class, that is not a subordinate
attribute of another class attribute, functionally de-
pends on each class key;

• each functional attribute of a subclass that is not
a subordinate attribute of another attribute of a
subclass is functionally dependent on each subset
of attributes obtained by combining each key of the
parent class with each key of the subclass;

• each functional attribute of a class that is not a sub-
class of another class that is a subordinate attribute
of another class attribute functionally depends on
each subset of attributes obtained by combining
each class key with a parent attribute;

• each functional attribute of a subclass, which is
a sub-attribute of another attribute of a subclass,
functionally depends on each subset of attributes
obtained by combining each key of the parent class
with each key of the subclass and the parent at-
tribute;

• each functional relationship between classes from
the set R specifies the FD of attributes of each key
of the parent class from each key of the subordinate
class;

• each function from the set F , defined on the at-
tributes of the subject domain ontology, sets the FD
of the last attribute of the relation from the previous
attributes of this relation;

• each function from the set F , defined on the classes
of the subject domain ontology, specifies the FD of
the attributes of each key of the last class of the
relation from each subset of attributes containing
any one key of the previous classes of this relation.

When defining the FD between the attributes of the
subject domain ontology, it is possible to write more
than one attribute on the right side of the FD, since
for the FD between attributes the property of the cluster
decomposition of the right side is valid, namely, if
Y1 ∈ A, Y2 ∈ A and Y = Y1 ∪ Y2, then the record

X → Y corresponds to the simultaneous presence of
FD X → Y1 and X → Y2. Moreover, instead of
the last two FD, you can write X → Y1Y2. Each FD
between attributes in the subject domain ontology can
be considered as the simplest rule for deriving new
knowledge from the knowledge available in the ontology.
Indeed, if the values of the attributes of the left side
of the FD are known, then either the ontology already
contains uniquely corresponding values of the attributes
of the right side of the FD, or the values of the attributes
of the right side of the FD can be obtained by solving
the problem from the ontology of tasks. The input data
of this problem are the values of the attributes of the left
side of the FD, and the output data are the values of the
attributes of the right side of the FD.

Let us single out in the subject domain ontology
all FDs between attributes and represent them as a set
of FDs P = {Pj = Xj → Yj | Xj ⊂ A, Yj ⊆
A, j = 1,m}, which is called the system of forming FD
structures on the set of attributes of the ontology. The
structure of the FD, given by the system of generators
P , will be denoted S(P ).
The closure of the set of attributes X ⊂ A concerning

to the structure of FD S(P ) is a set X+(P ) ⊆ A such
that for any Y ⊆ A from X → Y follows Y ⊆ X+(P ).
In other words, the closure of the set of attributes X
includes all the attributes, the values of which can be
obtained from the known values of the attributes of
set X , using the FD derivation from the set P . The
algorithm for constructing the closure X+(P ) consists
of the following steps [8].

1) Put X+(P ) = X and pj = 0, j = 1,m.
2) Put q = 0 and for each j = 1,m perform step 3.
3) If pj = 0 and Xj ⊆ X+(P ) then put X+(P ) =

X+(P ) ∪ Yj , q = 1 and pj = 1.
4) If q = 1, then go to step 2, otherwise finish the

job.

The structures of FD S(P 1) and S(P 2) on the set of
attributes A with systems of generators P 1 = {Xi

1 →
Yi

1 | Xi
1 ⊂ A, Yi

1 ⊆ A, i = 1,m1} and P 2 =
{Xj

2 → Yj
2 | Xj

2 ⊂ A, Yj
2 ⊆ A, j = 1,m2} ,

respectively, are called equivalent if for any X ⊂ A
the equality X+(P 1) = X+(P 2). In article [9] it
is proven that necessary and sufficient conditions for
the equivalence of structures FD S(P 1) and S(P 2) on
the set of attributes A are the fulfillment of equalities
Xi

1+(P 1) = Xi
1+(P 2) and Xj

2+(P 1) = Xj
2+(P 2)

for all i = 1,m1, j = 1,m2. The system of generators
E = {Hj → Tj | Hj ⊂ A, Tj ⊆ A, j = 1,m} is called
an elementary basis of the structure of FD S(E) if the
removal of any attribute from the left or right side of
any FD from E leads to the structure of FD that is not
equivalent to S(E).

239



IV. Canonical Form of the Subject Domain Ontology
We will say that the subject domain ontology is in

canonical form if the following conditions are met [1]:
• all attributes from the set A participating in the

definition of classes, functions, and axioms ontology
are atomic;

• all attributes of each class have a functionality flag
and have no subordinate attributes;

• the system of FD structure generators between the
attributes of the ontology is the elementary basis of
this FD structure.

The algorithm for reducing the subject domain ontol-
ogy to the canonical form consists of the following steps.

1) For each composite attribute, add to set A the
atomic attributes that make up the com-posite
attribute. If this composite attribute is part of some
class with a flag of functionality, then replace it
in this class with atomic attributes with a flag of
functionality. If a composite attribute is a part of
a class without a functionality flag (it is a list
attribute), then represent it as a subclass consist-
ing of atomic attributes with a functionality flag
included in the composite attribute. At the same
time, determine the keys of a new class depending
on the presence of an FD between atomic attributes
within a composite attribute.

2) Each composite attribute included in the functions
and axioms of the ontology should be replaced
with atomic attributes included in its composition.

3) Each atomic attribute that is part of some class
without a flag of functionality, to represent in the
form of a subclass consisting of this attribute with
a flag of functionality, and the class key consists
of this atomic attribute.

4) Each atomic attribute that is part of a class and has
subordinate attributes in it should be represented as
a subclass consisting of this attribute and subordi-
nate attributes with a flag of functionality. If this
attribute was without the functionality flag, then
the key of the new class consists of this atomic
attribute otherwise all of its attributes are included
in the key of the new class.

5) Select non-trivial FD between attributes according
to the rules described above and form a system of
generators of FD structure on the set of attributes
P = {Pj = Xj → Yj | Xj ⊂ A, Yj ⊆ A, j =
1,m}.

6) Remove redundant attributes from the left sides of
the FD from set P . Attribute B ∈ Xj is considered
redundant in Xj , if B ∈ (Xj\B)+(P ).

7) Remove redundant attributes from the right sides
of the FD from set P . Attribute B ∈ Yj is
considered redundant in Yj , if B ∈ Xj

+(P ′),
where P ′ denotes the system of generators of the
FD structure, obtained from P by replacing FD

Xj → Yj with Xj → (Yj\B). As a result of
performing steps 6 and 7, an elementary basis of
the FD structure on a set of attributes E = {Hj →
Tj | Hj ⊂ A, Tj ⊆ A, j = 1,m} will be obtained.

8) Bring the subject domain ontology in accordance
with the obtained elementary basis of the FD struc-
ture between attributes by performing the following
steps:

• remove from the classes the attributes that
turned out to be redundant in the right parts of
the corresponding FD of the elementary basis;

• remove from the composition of the keys of
the classes the attributes that turned out to be
redundant in the left parts of the corresponding
FD of the elementary basis;

• unite into one class those ontology classes that
have the same closures of their keys concern-
ing the elementary basis of the FD structure;

• remove functions from the set F , in which
all the attributes of the right-hand sides in
the corresponding FD of the elementary basis
turned out to be redundant;

• from the left-hand sides of the functions from
the set F , remove the attributes that turned out
to be redundant in the left-hand sides of the
corresponding FD of the elementary basis.

V. Optimal Canonical Form of the Subject Domain
Ontology

The canonical form of a subject domain ontology
is called optimal if it contains a minimum number
of classes with a minimum number of occurrences of
attributes in them. The task of bringing the subject
domain ontology to optimal canonical form comes down
to finding the optimal elementary basis of the structure
FD between the attributes of the ontology, which contains
the minimum number FD with the minimum number of
occurrences of attributes in them.

In article [9], the concept of P -dependencies in the
elementary basis of the FD structure was introduced and
studied. Let E = {Hj → Tj | Hj ⊂ A, Tj ⊆ A, j =
1,m} be the elementary basis of the FD structure S(E)
on the set A on the set A. We will say that in the FD
(Hs → Ts) ∈ E there is a P -dependence of a non-
empty Ts

′
⊆ Ts on Hs if there exists an P ⊂ Hs

+(E),
P ̸= Hs such that Ts

′
⊆ (P+(E)\P ) and no subset

of P possesses these properties. Let E′ us denote the
system of generators of the FD structure obtained from
E by replacing the FD Hs → Ts with Hs → Ts\Ts

′
.

We will distinguish three types of P -dependence: P1-
dependence occurs if P ⊆ Hs

+(E′), P2-dependence if
simultaneously P ⊈ Hs

+(E′) and Ts

′
⊈ (P+(E′\P ),

P3-dependence if simultaneously P ⊈ Hs
+(E′) and

Ts

′
⊆ (P+(E′\P ).

240



We formulate the main properties of P -dependencies
in the form of the following statements, the proof of
which is carried out by checking the fulfillment of suffi-
cient conditions for the equivalence of the FD structures.

If in the FD (Hs → Ts) ∈ E there is a P1-dependence
of Ts

′
⊆ Ts on Hs, and the system of generators of the

structure of the FD Q is obtained from E by replacing
the FD Hs → Ts with Hs → Ts\Ts

′
and adding the FD

P → Ts

′
to the E, then the structures of the FD specified

by the systems of generators E and Q are equivalent.
If in the FD (Hs → Ts) ∈ E there is a P2-dependence

of Ts

′
⊆ Ts on Hs, and the system of generators of

the FD structure Q is obtained from E by replacing
the FD Hs → Ts with Hs → ((Ts\Ts

′
) ∪ (P\Hs))

and adding the FD P → Ts

′
to the E, then the FD

structures specified by the systems of generators E and
Q are equivalent.

If in the FD (Hs → Ts) ∈ E there is a P3-dependence
of Ts

′
⊆ Ts on Hs, and the system of generators of the

FD structure Q is obtained from E by replacing the FD
Hs → Ts with Hs → ((Ts\Ts

′
)∪ (P\Hs)), then the FD

structures specified by the systems of generators E and
Q are equivalent.

The given properties of P -dependencies make it pos-
sible to move from one elementary basis of the FD
structure to other elementary bases and find the optimal
elementary basis of the FD structure.

In article [10], the concept of a cycle in the elementary
basis of the FD structure is introduced and it is proved
that the presence of cycles in the elementary basis of the
FD structure is a necessary condition for the existence of
P -dependencies in the elementary basis. The elementary
basis of the FD structure on set A can be associated with
a bipartite oriented graph (A,E,H, T ), in which A – the
set of vertices of the first part of the graph, E – the set
of vertices of the second part of the graph, H – the set
of arcs of the graph directed from the vertices of the
first part to the vertices of the second part of the graph
(showing the occurrence of elements from A to the left
parts of the FD), T is a set of arcs of the graph directed
from the vertices of the second part to the vertices of
the first part of the graph (showing the occurrence of
elements from A in the right parts of the FD). It is easy to
verify that each cycle in an elementary basis corresponds
to a family of cycles in the corresponding bipartite graph.

In general, the problem of finding all cycles in a
bipartite directed graph is NP -hard, but its difficulty
is determined by the fact that the maximum possible
number of cycles in a graph depends exponentially on
the dimension of the graph. The search time for one
cycle in a directed graph using a standard depth-first
search algorithm depends linearly on the dimension of
the graph. In real optimization problems of the canonical
form of a subject domain ontology, with the number of
attributes on the order of 103, the number of cycles in

the elementary basis of the FD structure does not exceed
102, therefore all cycles in the elementary basis of the
FD structure can be found in an acceptable time.

VI. Software for Bringing the Subject Domain
Ontology to Canonical Form

The input data of the software is the subject domain
ontology in the OWL-2 language in the input file. The
output data is the equivalent subject domain ontology,
which is in the canonical form, presented as an owl-
file. The software extracts from the original owl-file and
presents attributes, classes, class hierarchy, links between
attributes and classes in the form of database tables.
Then, atomic attributes and the system of forming the
FD structure between the attributes are extracted from
the database tables. The software for bringing the subject
domain ontology to the canonical form includes the
Attribute, AttributeSet, FuncDepen, FDStructure classes
developed in C++.

The Attribute class is used to represent a single atomic
attribute. The class data is an attribute identification
number, an attribute name, and an attribute purpose.

The AttributeSet class is used to represent any subset
of atomic attributes. The class data is an array of attribute
identification numbers. The class methods return the
number of attributes in a subset, add an attribute to a
subset, remove an attribute from a subset, check for the
presence of an attribute in a subset, check if a given
subset of attributes is in a subset, get the union and inter-
section of a given subset of attributes with a subset.

The FuncDepen class is used to represent a single
functional dependency between atomic attributes. The
data of the class are an object of the AttributeSet class,
corresponding to the left part of the FD, and an object
of the AttributeSet class, corresponding to the right part
of the FD. Class methods add an attribute to the left or
right part of the FD, remove an attribute from the left or
right part of the FD.

The FDStructure class is used to represent a system
of generators and an elementary basis for a structure of
functional dependencies between atomic attributes. The
class data is an array of objects of the FuncDepen class.
The class methods return the number of FDs in the
structure, add FDs to the structure, remove FDs from
the structure, obtain the closure of a given subset of
attributes with respect to the FD structure, and find the
elementary basis of the FD structure.

Software for bringing the subject domain ontology to
the optimal canonical form is under development.

The software for bringing the subject domain ontology
to canonical form was used in the development of the
domain ontology of radio communication networks. As
a result, the main ontology classes and their subclasses
were obtained.

The TransmiterTypes class and its subclasses are
designed to store data about transmitter types. The

241



classes include attributes: name of the transmitter type,
boundaries of operating ranges frequencies, power range
boundaries, emission codes, emission bandwidth for each
emission code, dependence of the attenuation of out-of-
band and noise emissions on detuning from the operating
frequency, attenuation of radiation at harmonic and ref-
erence oscillator frequencies, attenuation of radiation at
combination and intermodulation frequencies.

The ReceiverTypes class and its subclasses are de-
signed to store data about receiver types. The classes
include attributes: the name of the receiver type, the
boundaries of the operating frequency ranges, sensitivity,
codes of received emissions, bandwidth and the required
signal-to-noise ratio for each received radiation, the
dependence of the sensitivity attenuation on detuning
from the operating frequency, intermediate frequencies,
the radiation power of the receiver at local oscillator
frequencies, weakening of sensitivity at intermediate
frequencies, local oscillator frequencies, mirror local
oscillator frequencies, combination and intermodulation
frequencies.

The AntennaTypes class is designed to store data about
antenna types. The class includes the following attributes:
antenna type name, antenna type code, polarization
code, minimum and maximum electrical center height,
isotropic gain for horizontal and vertical polarization,
antenna half power beamwidth in horizontal and vertical
plane, side lobe attenuation relative to to an isotropic
antenna, attenuation in the feeder.

The RadioDevTypes class is designed to store data
about types of radio devices (RD). The class includes
the following attributes: name of the RD type, code of
the RD type (transmitter, receiver, radio station), code of
the RD operating mode (simplex, duplex).

The ObjectCommInds class is designed to store data
about individuals of communication objects. The class
includes the following attributes: name of the commu-
nication object, geographic coordinates of the center
of the stationary communication object or the center
of the movement zone of the mobile communication
object, the radius of the movement zone of the mobile
communication object, the height of the point of standing
of the stationary communication object above sea level.

The AntennaInds class is a subclass of the Anten-
naTypes class and is intended to store data about antenna
individuals. The class includes the following attributes:
the name of the antenna, the height of the electrical
center of the antenna above the communication object,
the direction angles of the antenna in the horizontal and
vertical plane, the coordinates of the antenna relative to
the center of the communication object.

The Radiolines class and its subclasses are designed
to store data about radio lines (RL) and radio networks.
The classes include the following attributes: name of RL,
RL importance code, RL type code (with fixed radio

frequencies, with pseudo-random switching of the oper-
ating frequency, radio relay line interval), RL operating
mode code (simplex, duplex with time division, duplex
with frequency division), codes of emissions used in RL,
frequencies or average frequencies of frequency bands
assigned to RL for transmitting and receiving in the main
RD.

VII. Conclusion
To eliminate ambiguity and redundancy in the domain ontol-

ogy, the concept of the canonical form of the domain ontology
was introduced and algorithms were proposed for bringing the
domain ontology to a canonical form and an optimal canonical
form. Software has been developed that implements bringing
the domain ontology to a canonical form.

References
[1] A. A. Karpuk and A. V. Havorka, “Bringing the Subject Do-

main Ontology of Radio Communication Networks to Canonical
Form”, Problems of Infocommunications, № 2(14), pp. 25–30,
2021, (in Russian).

[2] A. V. Havorka and A. A. Karpuk, “Reduction the Subject Domain
Ontology to Canonical Form”, International Journal of Informa-
tion and Communication Technologies. Special Issue, pp. 43–47,
May 2022.

[3] A. V. Palagin, S. L. Kryvy and N. G. Petrenko “Ontological Meth-
ods and Means of Processing Subject Knowledge: Monograph”,
Lugansk, 324 p., 2012, (in Russian).

[4] A. A. Karpuk and A. V. Havorka, “Construction of an Applied
Ontology of Radio Communication Networks”, Vestnik suvjazi,
№ 6, pp. 36–40, 2021, (in Russian).

[5] “W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes. W3C Recommendation”, 5 April 2012 [Electronic
resource] URL: http://www.w3.org/TR/xmlschema11-2.

[6] W. W. Armstrong, “Dependency structure of data base relation-
ships”, Proc. IFIP Congress. Geneva, Switzerland, pp. 580–583,
1974.

[7] S. D. Kuznecov, “Database. Models and Languages”, M., Binom–
Press, 720 p., 2008, (in Russian).

[8] A. A. Karpuk and V. V. Krasnoproshin, “Methodology of Data
Domain Description for Databases Design in Complex Systems”,
International Academy Journal Web of Scholar, Vol. 1, № 4(13),
pp. 11–20, 2017.

[9] A. A. Karpuk, “Analysis of Structure of Functional Dependencies
between Attributes of a Relational Database”, Economics and
Management of Control Systems, № 3(25), pp. 64–70, 2017, (in
Russian).

[10] A. A. Karpuk and V. V. Krasnoproshin, “Cycles in Structures of
Functional Dependencies”, International Journal of Open Infor-
mation Technologies, Vol. 5, № 7, pp. 38–44, 2017.

ПРИВЕДЕНИЕ ОНТОЛОГИИ ПРЕДМЕТНОЙ
ОБЛАСТИ К ОПТИМАЛЬНОЙ
КАНОНИЧЕСКОЙ ФОРМЕ

Карпук А.

Дано формальное определение онтологии предметной
области. Рассмотрено понятие канонической формы он-
тологии предметной области, которая строится на основе
анализа функциональных зависимостей между понятиями
и свойствами понятий онтологии. Описан алгоритм при-
ведения онтологии предметной области к каноническоой
форме. Введено понятие оптимальной канонической формы
онтологии предметной области, содержащей минимальное
количество классов и минимальное количество атрибутов в
классах. Предложен метод приведения онтологии предмет-
ной области к оптимальноой каноническоой форме.

Received 13.03.2024

242


	‎D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\pdf\5. papers OSTIS24.pdf‎
	‎D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\papers\25. OSTIS24_ID10_karpuk_BringtSDOtOCF.pdf‎


