
Methods and Means of Constructing Plans for
Solving Problems in Intelligent Systems on the
Example of an Intelligent System on Geometry

Natallia Malinovskaya and Anna Makarenko
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: natasha.malinovskaya.9843@gmail.com, anna.makarenko1517@gmail.com

Abstract—In this paper we propose an approach to the
development of methods and tools for constructing plans for
solving problems in intelligent systems on the example of
an intelligent system for geometry. The described approach
is aimed at improving the accuracy of answers due to
the possibility of decomposition of problems into simpler
ones, and also aims to overcome the shortcomings of
modern intelligent systems. An intelligent system realizing
the proposed approach is described.

Keywords—problem solving, knowledge, knowledge base,
intelligent systems.

I. Introduction
Nowadays, the use of intelligent systems in various

fields is becoming relevant. However, the quality of ISs
is largely determined by its answers and the ability to
solve complex problems, which is why it is necessary that
its answers are as accurate and reliable as possible. In
order to increase the accuracy of answers it is necessary
to be able to decompose problems into simpler ones, in
turn, the automation of this process will allow the IS to
solve not only simple problems, but also complex, non-
trivial ones. The relevance of systems that have the ability
not only to perform the above functions, but also have
the ability to partially satisfy the human need for quick
answers, allowing you to automate some of the routine
actions.

Problem solver is one of the key components of
ISs, allowing them to solve a wide range of problems.
Unlike other modern software systems, the peculiarity of
problem solvers in ISs is the necessity to solve problems
in conditions when the necessary information for their
solution is not explicitly localized in the knowledge base
of the IS and must be found in the process of problem
solving on the basis of certain criteria.

The composition of the problem solver in each par-
ticular system depends on its target, classes of solved
problems, subject area and other factors. In general, a
problem solver provides the ability to solve problems
related both to the core functionality of the system
and to ensure its efficient operation and development

automation. A problem solver that performs all these
functions is called a unified problem solver for a given
IS.

Expanding the areas of application of ISs requires
their ability to solve complex problems, which involve
the joint use of different models of knowledge represen-
tation and problem solving models. In addition, solving
complex problems involves the use of shared information
resources, such as a knowledge base, by different com-
ponents of the solver that specialize in solving different
subproblems. Since a complex problem solver integrates
different problem solving models, it is called a hybrid
problem solver.

Examples of complex problems are:
• problems related to understanding natural language
texts (both printed and handwritten), understanding
speech messages and images. In each of these cases
it is required to perform syntactic analysis of the
processed file or signal, remove insignificant frag-
ments, classify significant fragments, relate them to
concepts known to the system, etc.;

• automation of adaptive learning for schoolchildren
and students, which implies that the system is ca-
pable of autonomously solving various problems
from a certain subject area, as well as managing
the learning process, generating tasks for students
and controlling their independent fulfillment by the
student;

• the problems of planning the behavior of intelli-
gent robots, which involve both understanding a
variety of external information and making various
decisions using both credible methods and methods
that rely on probabilistic estimates and plausible
assumptions;

• problems related to complex and flexible automation
of various enterprises.

• etc.
The use of different problem solving models within

an IS implies decomposition of a complex problem into

229



subproblems that can be solved using one of the known
IS problem solving models. Due to the combination of
different problem solving models, the set of problems
solved by the hybrid solver will be much wider than the
combination of sets of problems solved separately by all
problem solvers included in its composition [1].

The existing variety of approaches to problem solving
in computer systems can be divided into two classes:

• problem solving using stored programs. In this case,
it is assumed that the system has a program for
solving a problem of a given class in advance,
and the solution is reduced to searching for such a
program and interpreting it on the given input data.
The systems oriented on such approach to problem
solving include systems using:
– programs written in both imperative and declar-

ative programming languages, including logical
and functional programming [2];

– genetic algorithm implementations [3], [4];
– neural network models of knowledge processing

[5], [6], [7].
It should be noted that even in the case of using a
stored program, the solution of the problem is not
always trivial, because, first, it is required to find
such a stored program on the basis of some specifi-
cation, and second, to provide its interpretation;

• solving problems in conditions where the solution
program is not known.

In this case, it is assumed that the system does not
necessarily contain a ready-made solution program for
the class of problems to which some formulated problem
to be solved belongs. In this connection, it is necessary to
apply additional methods of searching for ways to solve
the problem, which are not designed for any narrow class
of problems (e.g., splitting the problem into subproblems,
methods of searching for solutions in depth and width,
method of random solution search and trial-and-error
method, etc.), as well as various models of logical
inference (classical deductive, [8], inductive [9], [10],
abductive [8]; models based on fuzzy logics [11], [12],
[13], the logic of default [14], temporal logic [15], and
many others).

For example, currently one of the most popular ap-
proaches to text generation for natural language problems
is the use of large language models [16], which are mod-
els consisting of neural networks with many parameters
trained on a large amount of unlabeled text, but these
models have a number of disadvantages, partial solution
of which can be prevented by integration of such systems
with knowledge bases [17], but this approach is not able
to solve all the disadvantages of large language models
in solving complex problems.

Thus, although there have been significant advances
in the development of problem solvers for ISs, there are
still outstanding challenges related to provisioning:

• compatibility of different private problem solvers,
i.e. the possibility of their coordinated use in solving
the same complex problem;

• possibilities to modify the hybrid solver without sig-
nificant additional costs in the process of operation
of the IS. This includes expanding the number of
used problem solving models without restrictions
on their type. This requirement is due to the fact
that when solving a complex problem, it may be
unknown what specific problem-solving models and
types of knowledge will be needed.

The modern development of artificial intelligence is
moving towards the creation of intelligent computer
systems of a new generation [18]. These systems are
capable not only of solving problems from various fields
of knowledge, but also of explaining their solutions.
However, the disadvantages described above do not al-
low such systems to be built solely on the basis of
existing solutions. Instead, new-generation ISs are built
on a unified knowledge base that integrates problems,
subject domains, and methods of their solution. Thus,
we conclude that the use of modern solutions such
as neural networks, models using specialized software
interfaces between different system components, large
language models can and should become a powerful
tool for solving problems of ISs [19], but they cannot
completely replace these systems [20].

That is, despite the fact that currently there is a large
number of problem-solving models, many of which are
implemented and successfully used in practice in various
systems, the problem of low consistency of the principles
underlying the implementation of such models and the
lack of a single unified framework for the implementation
and integration of different models remains relevant,
which leads to the fact that:

• it is difficult to simultaneously use different models
of problem solving within one system when solving
the same complex problem;

• it is practically impossible to use technical solutions
realized in one system in other systems;

• in fact, there are no complex methods and tools
for building problem solvers, which would provide
the possibility of designing, realizing and debugging
solvers of different kinds.

Therefore, the ability of an IS to independently solve
non-trivial problems will expand the possible function-
ality of the IS, detail and improve the accuracy of its
answers.

The purpose of this study is to refine the ontologies of
actions and problems, to develop a collective of agents
that allows to divide the problem into subproblems, as
well as to develop a methodology for the application of
the obtained subsystem in specific application systems
on the example of an IS for geometry.

230



II. Proposed approach

In the development of the module of building plans
for solving the problems of the IS, it is proposed to
use the OSTIS Technology, focused on the development
of a class of systems, which are called knowledge-
managed computer systems, as well as its basic principles
[21], since any ostis-system consists of knowledge base,
problem solver and user interface, which corresponds to
the classical definition of an IS [22].

This technology uses a unified semantic network with
a set-theoretic interpretation as a formal basis for knowl-
edge representation. This representation model is called
SC-code (Semantic computer code). Elements of such
semantic network are called sc-nodes and sc-connectors
(sc-arc, sc-edges). Agents in the developed system de-
scribed by means of SC-code will be called a semantic
agent or simply sc-agent.

As it was mentioned earlier, in order to be able to
solve some non-trivial problems it is necessary to be able
to divide them into trivial ones, i.e. to build a plan for
problem solving. When constructing plans for solving
the problem of an IDS, it is suggested to divide the main
problem into separate subproblems taking into account
various separate independent components necessary for
solving the main problem.

Let us introduce the concepts problem, subproblem,
action, subaction.

A. Fragment of the obtained ontology

planning of IDS problems
:= [partitioning a problem into smaller problems - allo-

cation of separate subproblems for solving the main
problem]

The concept of problem is directly related to the
concept of action, so let’s consider the classification of
the concept of action.

1) action classification: Let us consider the specifica-
tion of the concept of action in SCn code.
action
:= [impact, in which the subject ′ carries out the action

purposefully, i.e. according to some target*]
:= [targeted action performed by one or more actors

(cybernetic systems) with the possible application
of some tools]

⊂ impact
:= [a process in which at least one influencing entity

(subject of influence ′) and at least one entity
to be influenced (object of influence ′) can be
clearly distinguished]

⊂ process
:= [a purposeful ("conscious") process performed (con-

trolled, realized) by a certain subject]
:= [work]

:= [problem solving process]
:= [target-oriented process]
:= [holistic piece of some activity]
:= [A purposeful process controlled by some entity]
:= [the process of performing some action by some

subject (executor) on some objects]

target*
:= [target situation*]
⊂ specification
:= [description of what is to be obtained (what situation

is to be achieved) as a result of performing a given
(specified) action*]

Each action performed by one or another subject is
interpreted as a process of solving a certain problem,
i.e., a process of achieving a given target* under given
conditions, and, therefore, is performed purposefully.
However, an explicit indication of the action and its re-
lation to a particular problem may not always be present
in memory. Some problems may be solved by certain
subjects permanently, e.g., optimizing a knowledge base,
searching for incorrectness, etc., and for such problems
it is not always necessary to explicitly introduce the
structure that is the formulation of the problem.

In its turn, the concept of a subproblem or action
is a separate independent problem (action), which is
performed within the framework of some other extensive
problem (action).

B. Architecture of a problem solver for partitioning prob-
lems into subproblems

To realize an IS, which includes methods and means
of constructing plans for solving problems of the IS, it
was necessary to build a decomposition of the problem
solver of the system, where the key agent of the IS is an
abstract non-atomic sc-agent of constructing a plan for
solving problems of the IS, taking into account the above
classification.

The following is the decomposition of the IS problem
solver in the form of SCn-code:

Problem solver for partitioning a problem into
subproblems of an intelligent system
⇒ decomposition of abstract sc-agent*:

{{{• Abstract sc-agent for classifying a message by
topic
⇒ realization*:

C++ language
• Abstract sc-agent for classifying a message by
type
⇒ realization*:

C++ language
• Abstract sc-agent for generating a problem
condition from a template
⇒ realization*:

231



C++ language
• Abstract sc-agent for finding the meaning of a
problem
⇒ realization*:

C++
• Abstract sc-agent targeting
⇒ realization*:

C++ language
• Abstract non-atomic sc-agent for constructing a
problem-solving plan for an intelligent dialog
system
⇒ realization*:

C++ language
• Abstract sc-agent for knowledge base
replenishment
⇒ realization*:

C++ language
• Abstract sc-agent for generating a response to a
message
⇒ realization*:

C++ language
}}}

In this article we consider the approach to solving
complex problems, so we will consider in detail the ab-
stract non-atomic sc-agent of building a plan for solving
problems of the IS.

As a part of the abstract non-atomic sc-agent of
constructing a plan for solving problems of an intelligent
dialog system, the following group of agents that break
the problem into separate subproblems was identified:

Abstract non-atomic sc-agent for constructing a plan
for solving problems of an intelligent system
⇒ decomposition of abstract sc-agent*:

{{{• Abstract sc-agent for solving a composite
problem
⇒ realization*:

C++ language
• Abstract non-atomic sc-agent for solving a
simple problem
⇒ realization*:

C++ language
• Abstract sc-agent for interpreting a non-atomic
action
⇒ realization*:

C++ language
}}}

C. Principles of application of the developed solver in
application systems

The approach proposes the introduction of separate
modules with their ontologies and problem solvers into
the developed system, which will increase the range of
capabilities of the developed system.

Let us consider abstract non-atomic sc-agent of con-
structing a plan for solving problems of an IS on the
example of a system with implemented module of an IS
on geometry.

Examples will be considered on the basis of dialog-
based ISs.

The abstract sc-agent for solving a composite problem
takes as input one parameter, which specifies the con-
dition of the composite problem written in the form of
sc-code and a node denoting the target of solving the
problem. The task of this agent is to divide the original
problem into simple subproblems, and also to call for
each simple subproblem one of the agents for solving
simple problems in a certain sequence, which is set by
the abstract sc-agent of the interpretation of non-atomic
action, in some cases there is a need to execute the agent
of the application of the logical formula [23]. The result
of solving the subproblem is recorded in the decision tree,
which is ultimately the solution of the user’s problem.

That is, the abstract non-atomic sc-agent of construct-
ing a plan for solving the problems of the IS involves
breaking the main problem-request into separate subprob-
lems to form a better response to the user’s message, i.e.,
solving smaller problems allows increasing the quality
of knowledge immersed in the database. As an input
construct, we obtain a situation that is formed due to
an abstract sc-agent of target-setting developed within
the framework of the IS under development, the input of
which is a user’s user’s message. As an example, let us
take the user’s request "What is the area of the figure?".

Depending on the knowledge in the KB, the formed
target may not be deployed at all, or it may be more
deployed, which allows to break the problem into sub-
problems more qualitatively, i.e., to solve the problem in
the most accurate way in the future.

The figure 1 shows an example of a more extended
generated situation, namely the target of "find out the
area of a figure".

When receiving a question from a user about the
area of a figure without additional instructions, it is
impossible to answer it directly. As a result of the abstract
target-setting agent’s work in the IS, a situation arises
that requires solving a non-trivial problem. To break
this problem into simpler subproblems, an abstract non-
atomic sc-agent of constructing a problem-solving plan
is used.

We apply a depth-first search method over a graph
in which we define the corresponding subproblems that
are trivial. Unknown values for these subproblems can
be discovered by searching the KB or by using an agent
included in the IS module on geometry. If it is still not
possible to solve the problem, we ask for clarifications
from the user to obtain additional information that will
contribute to expanding the description about the situa-
tion.

232



Figure 1. Example of a detailed situation generated as a result of a
dialog with a user

Therefore, the agent of building a plan for solving
problems of the IS in turn consists of an agent for
solving a composite problem and an agent for solving a
simple problem. That is, in the context of the developed
dialog system, a simple problem will be an indivisible
problem that does not require additional information,
such a problem, the result of which can be solved as
a result of a search in the KB, or as a result of the
work of an abstract sc-agent from additional implemented
modules.

In general, a problem solving plan consists of a se-
quence of simple and compound problems. The compos-
ite problems are solved by Abstract sc-agent for interpret-
ing non-atomic action. It receives 1) a processing pro-
gram in the form of a template and 2) sets of arguments
that it retrieves from the semantic neighborhood of the
composite problem. The template data is matched with
the arguments and the corresponding agents are invoked,
to solve the atomic actions belonging to the composite
problem. The invoked agents perform the actions of the
composite problem.

In essence, this agent is an interpreter that generates
a processing program, i.e., a program that includes a
sequence of agent executions. A processing program —
is a description of a non-atomic action to be performed
to solve a composite problem. Sequential execution of
agents is produced by sequential processing of transitions
between agents.

The transition to the next action depends on the result
of the previous one. After the action is completed, i.e.
after it is added to the problem_executed class, its success
is checked to determine the required transition. There are
3 variants of transition:

1 Transition on successful completion of the action. It

Figure 2. An example of recording a transition between two actions,
depending on the result of the previous action

is defined by the then* relation. Transition by this
relation is performed at successful completion of
the action from which the transition is performed
(its addition to the class of successfully completed
action).

2 Transition at unsuccessful completion of the action.
It is set by the then* relation. The transition by this
relation is performed at the successful completion
of the action from which the transition is performed
(its addition to the class of unsuccessfully completed
action).

3 Unconditional transition.
The figure 2 shows an example of recording a transi-

tion between two actions, depending on the result of the
previous action.

In addition to transitions depending on the result of the
previous action, conditional transitions are introduced by
means of the state* relation. The first element of pairs
of this relation are pairs (arcs) of transitions according
to the success of action completion, the second element
is a logical formula. In this case, an additional condition
is imposed on the transition pair (besides the success /
failure of action completion) - the truth of the logical for-
mula. In this case, the truth of the formula is calculated
for the same substitutions that were used to generate the
process by the program.

The figure 3 shows an example of writing a conditional
transition between two actions.

Figure 3. Example of writing a conditional transition between two
actions

However, in order to constantly replenish the knowl-
edge base during the dialog process, it is necessary to
extract knowledge from the user’s messages and immerse
them into the knowledge base. For this purpose, the prob-
lem solver of the described system implements an action
whose problem is to transform the natural-language text
of messages into knowledge base constructs.

Such a solution allows the system to better utilize
knowledge for a more accurate and coherent answer,

233



taking into account the previously mentioned entities
and understanding how they relate to the current topic
of conversation. This makes the dialog with the system
more productive and natural, similar to talking to a
person who remembers all the details to solve a problem.

III. Example of application of the results obtained
An example of realization of the proposed approach

is an intelligent geometry learning system consisting of
three components: a KB, a problem solver and a UI.

Below is a decomposition of the Geometry Intelligent
System Problem Solver. It consists of a search module
— agents that search for constructs in the KB and a
computational problem solver, i.e., agents that implement
algorithms for solving geometry problems.

Solver of intelligent system problems in geometry
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract non-atomic sc-agent search agent
• Computational Problem Solver
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for interpreting
arithmetic expressions

• Abstract non-atomic sc-agent for
interpreting logical rules

• Abstract sc-agent of constructing a
strategy for finding a solution to a
problem in width

}}}
}}}

Next, a decomposition of Abstract non-atomic sc-agent
search is presented. It consists of a necessary set of sc-
agents that can be used in solving specific problems.
For example, if a theorem proving problem needs to
be solved, it is appropriate to use Abstract sc-agent for
searching axioms of a given ontology or Abstract sc-agent
for searching theorems of a given ontology.

Abstract non-atomic sc-agent search agent
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for finding an annotation for a
given section

• Abstract sc-agent for searching axioms of a
given ontology

• Abstract sc-agent for searching theorems of a
given ontology

• Abstract sc-agent for finding direct links between
two objects

• Abstract sc-agent for searching concepts through
which a given concept is defined

• Abstract sc-agent for searching the scope of a
relation definition

• Abstract sc-agent to find a definition or
explanation for a given object

• Abstract sc-agent for finding examples for a
given concept

• Abstract sc-agent for finding a formal statement
record for a given statement sign

• Abstract sc-agent for finding illustrations for a
given object

• Abstract sc-agent of finding key sc-elements for
a given subject area

• An abstract sc-agent searches for concepts that
are defined on the basis of a given

• Abstract sc-agent search for all constructs
isomorphic to a given pattern

• Abstract sc-agent for finding the sc-text of a
proof for a given assertion

• Abstract sc-agent for searching relations defined
on a concept

• Abstract sc-agent for searching sc-text of
condition and problem solution

• Abstract sc-agent for searching statements about
an object

}}}

The following is a decomposition of the Abstract non-
atomic sc-agent problem solver.

Abstract non-atomic sc-agent problem solving agent
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for searching the value of an
unknown quantity

• Abstract sc-agent for verifying the truth of an
assertion

• Abstract sc-agent application of problem-solving
strategies

• Abstract sc-agent of performing logical inference
• Abstract non-atomic sc-agent for calculating
mathematical expressions
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for coordinating the
calculation of mathematical expressions

• Abstract sc-agent for degree expansion,
root extraction and finding the natural
logarithm

• Abstract sc-agent for addition and
subtraction of quantities and numbers

• Abstract sc-agent of product and division
of quantities and numbers

• Abstract sc-agent for comparing
quantities and numbers

• Abstract sc-agent for calculating
trigonometric expressions

}}}
}}}

Abstract sc-agent for coordinating the calculation of
mathematical expressions takes a formula as a parameter.
An example is shown below in Fig. 4.

234



Figure 4. Example formula as input parameter of sc-agent

A formula is represented as an sc-structure, which
contains sc-bindings of mathematical operation relations
and sc-nodes, which are signs of numbers or variables
whose value is known or to be calculated. In this example,
the formula consists of:

• variables:
– a,
– b,
– c,
– d,
– f,

• relations:
– nrel_sum_of_numbers,
– nrel_multiplication_of_numbers,

• arcs and edges.
The abstract sc-agent of coordination of calculation

of mathematical expressions of formula processing after
initiation searches for all sc-edges of relations of arith-
metic operations and forms a structure for calling the
operation calculation agent with the parameter of the sc-
edges connecting the node of the relation and the binary
arc of the basic kind. In turn, each of the sc-agents for
operation computation checks whether it can compute
an operation of the given type. If it can, it computes
the operation and creates an sc-node with the answer,
otherwise it does not continue its work.

Thus, the abstract sc-agent coordinating the compu-
tation of mathematical expressions processing formula
does not know in advance which agent to call specifically.
All agents react to the initiated action by checking the
input parameters as the initial condition of the problem.

The values of the variables in the formula can be
specified in advance, or they can be found in the course
of solving the problem. Below are the steps of calculating
the values of the variables in the formula, if the values
of a, d, c are known in advance (otherwise the formula
would not have a specific value).

Since the values of a and b must be known to compute
f , the sc-agent checks if their values are known. Since
the value is known only for a, the agent will generate a

Figure 5. Example formula as input parameter for sc-agent

Figure 6. Example of operation calculation agent initiation

structure to initiate the agent to compute an arithmetic
operation, after which the value of b will be known.

An example of such a structure for initiating the sc-
agent is given below in Fig.6.

Once completed, the agent will create the following
construct in the KB. 7

Thus, if all initiated agents are successfully executed,
the value of the value of f .

This agent can be used to calculate the values of area,
perimeter, etc. using predetermined formulas.

Figure 7. Example of the result of the operation calculation agent
execution

235



IV. Conclusion

The paper proposes an approach to the development
of methods and means of constructing plans for problem
solving in ISs, which allows us to improve the accuracy
of answers, as well as to overcome the shortcomings of
modern ISs.

The proposed model allows us to consider the devel-
oped problem solver at different levels of detail, which
provides the possibility of step-by-step design of solvers,
as well as their modifiability.

Classification and specification of actions, problems
are specified.

The architecture is considered and the IS itself, realiz-
ing the proposed approach, is described.

The obtained results will allow to increase the effi-
ciency of designing ISs and means of automating the
development of such systems, as well as to provide an
opportunity not only for the developer, but also for the
IS to automatically supplement the system with new
knowledge and skills.

Acknowledgment

The authors would like to thnk the research groups of
the Department of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics.

References

[1] I. Z. Batyrshin, Fuzzy hybrid systems. Theory and practice,
H. G. Y. M., Ed. Physmatlit, 2007.

[2] T. Pratt, Programming languages: development and realization
: transl. from English / T. Pratt, M. Zelkovits, A. Matrosov, Ed.
SPb. Peter Print, 2002.

[3] L. A. Gladkov, Genetic algorithms : textbook, V. M. K. n. r.
L. A. Gladkov, V. V. Kureichik and supplementary ed. M., Eds.
Physmatlit, 2006.

[4] V. V. Emelyanov, Theory and practice of evolutionary modeling,
V. M. K. V. V. Emelyanov, V. V. Kureichik, Ed. Physmatlit,
2003.

[5] M. B. Berkinblit, Neural networks : an experimental textbook,
M. B. Berkinblit, Ed. MIROS : All-Russian extramural multidis-
ciplinary school of the Russian Academy of Sciences., 1993.

[6] V. A. Golovko, Neural networks: training, organization, and
applications : a textbook, V. A. Golovko, Ed. Journal. "Ra-
diotekhnika", 2001.

[7] A. N. Gorban, Neural networks on a personal computer, D. A. R.
A. N. Gorban, Ed. Novosibirsk : Nauka, 1996.

[8] V. N. Vagin, Reliable and plausible inference in intelligent
systems, 2nd ed., D. A. P. B. N. Vagina, Ed. Fizmatlit, 2008.

[9] B. A. Kulik, The logic of natural reasoning, B. A. Kulik, Ed. St.
Petersburg. : Nev. dialect, 2001.

[10] D. Poya, Programming languages: design and implementation :
transl. from English, M. Z. e. b. A. M. T. Pratt, Ed. Peter Print,
2002.

[11] I. Z. Batyrshin, Basic operations of fuzzy logic and their
generalizations, I. Z. Batyrshin., Ed. Kazan : Fatherland, 2001.

[12] N. P. Demenkov, Fuzzy control in technical systems : textbook,
N. P. Demenkov, Ed. Moscow State Technical University
Publishing House, 2005.

[13] D. A. Pospelov, Modeling reasoning: experience in analyzing
thought acts. Radio and communications, 1989.

[14] R. A. Reiter, A logic for default reasoning, R. Reiter, Ed. Arti-
ficial Intelligence., 1980, vol. 13, no. 13.

[15] A. P. Eremeev, Construction of ternary logic-based decision
functions in decision-making systems under uncertainty, A. P.
Eremeev, Ed. Famous Russian Academy of Sciences. Theory
and systems of management., 1997.

[16] A. Tamkin, M. Brundage, J. Clark, and D. Ganguli,
“Understanding the capabilities, limitations, and societal impact
of large language models,” CoRR, vol. abs/2102.02503, 2021.
[Online]. Available: https://arxiv.org/abs/2102.02503

[17] K. Bantsevich, M. Kovalev, and N. Malinovskaya, “Integration
of large language models with knowledge bases of intelligent
systems,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. pp 213–219, 2023.

[18] V. V. Golenkov and N. A. Gulyakina, “Next-generation intelligent
computer systems and technology of complex support of their
life cycle,” Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelli-
gent systems], pp. 27–40, 2022.

[19] M. V. Kovalev, “Convergence and integration of artificial neural
networks with knowledge bases in next-generation intelligent
computer systems,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 173–186, 2022.

[20] (2023, March) Opinion | Noam Chomsky: The False Promise of
ChatGPT. [Online]. Available: https://www.nytimes.com/2023/
03/08/opinion/noam-chomsky-chatgpt-ai.html

[21] V. Golenkov, N. Gulyakina, and D. Shunkevich, Open technology
for ontological design, production and operation of semantically
compatible hybrid intelligent computer systems, G. V.V., Ed.
Minsk: Bestprint, 2023.

[22] A. N. Averkin, A Comprehensive Dictionary of Artificial
Intelligence, H. G. Yarushina, Ed. Radio and communications,
1992.

[23] “Github:scl-machine [electronic resource].” [Online]. Available:
https://github.com/ostis-ai/scl-machine

МЕТОДЫ И СРЕДСТВА ПОСТРОЕНИЯ
ПЛАНОВ РЕШЕНИЯ ЗАДАЧ В

ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМАХ
НА ПРИМЕРЕ ИНТЕЛЛЕКТУАЛЬНОЙ

СИСТЕМЫ ПО ГЕОМЕТРИИ
Малиновская Н. В., Макаренко А. И.

В данной работе предлагается подход к разработке
методов и средств построения планов решения задач
в интеллектуальных системах на примере интеллек-
туальной системы по геометрии. Описанный подход
направлен на повышение точности ответов засчет
возможности декомпозиции задач на более простые,
а также направлен на преодоление недостатков совре-
менных интеллектуальных систем. Описана интеллек-
туальная система, реализующая предлагаемый подход.

Received 01.04.2024

236

https://arxiv.org/abs/2102.02503
https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html
https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html
https://github.com/ostis-ai/scl-machine

	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\pdf\5. papers OSTIS24.pdf
	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\papers\24. OSTIS24_ID32_Malinovskaya_MetodaMoCPfSPiISoEoISoG_08_04.pdf


