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Abstract. Downsampling plays a crucial role in the field of accelerometer data analysis, especially 
in applications that require optimizing computing resources while ensuring minimal loss of signal 
integrity. This study examines the influence of downsampling on accelerometer signal quality, 
critical for optimizing activity recognition and health monitoring applications. Utilizing the Sisfall 
dataset, which captures diverse physical activities through triaxial accelerometers, the research 
evaluates the influence of downsampling on signal quality using metrics such as Mean Squared Error 
(MSE), energy, and Cumulative Explained Variance (CEV). The findings reveal that a specific 
downsampling factor, effectively balances data volume reduction with signal integrity preservation.
This optimal factor enhances computational efficiency without significantly compromising signal 
quality, pivotal for the accurate analysis and recognition of physical activities. The study 
underscores the importance of selecting an appropriate downsampling rate to maintain the fidelity 
of accelerometer data in wearable technologies and health monitoring systems, providing a guideline 
for signal processing optimizations in such applications.
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In tro d u c tio n

The advent o f  wearable technology and the proliferation o f  devices equipped with accelerometers 
have ushered in a new era o f  data driven insights into hum an m otion and activity [1]. Accelerometers, 
sensors capable o f  detecting and recording movements in dimensional space, are now ubiquitous in 
smartphones, fitness trackers, and medical monitoring devices [2]. They generate vast amounts o f  data, 
enabling the detailed analysis o f  physical activities, from daily routines to specialized athletic 
performance. However, the sheer volume o f  data produced poses significant challenges in terms o f 
storage, processing, and analysis, necessitating efficient strategies to manage this deluge o f information 
without compromising the quality and integrity o f  the signal [3].

Downsampling [4], the process o f  reducing the sampling rate o f  a signal by removing some o f  its 
components, emerges as a critical technique in addressing these challenges. It holds the promise o f 
significantly reducing the data volume, thereby easing the demands on computational and storage 
resources. Nevertheless, downsampling is not without its pitfalls; it risks degrading the signal quality by 
omitting potentially crucial information, a consequence that must be m eticulously managed, especially 
in applications where data integrity is param ount [5].

The Sisfall dataset, a comprehensive collection o f  accelerom eter data focused on physical 
activities and falls, provides a rich foundation for exploring these challenges. It encompasses data 
meticulously recorded to capture the nuances o f hum an motion, offering a unique opportunity to study 
the impact o f  downsampling on signal integrity within the context o f  activity recognition. Given the 
critical role o f  accelerometer data in applications ranging from healthcare monitoring to emergency 
response systems, understanding the effects o f  downsampling is paramount. Notably, in reference [9], 
researchers have utilized this dataset for fall detection, achieving commendable results, which 
underscores the dataset's value and applicability in practical scenarios.

This paper delves into the optimization o f  accelerometer data processing, with a specific focus on 
the influence o f  downsampling on signal quality. Through a systematic analysis using various metrics
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such as M ean Squared Error (MSE) [6 ], energy, Cumulative Explained Variance (CEV) [7], and a novel 
ratio measure, the study aims to identify an optimal downsampling strategy. This strategy seeks to 
balance the compromise between reducing data volume and preserving the fidelity o f  the original signal, 
thereby enhancing the computational efficiency o f  data processing without sacrificing the accuracy o f 
activity recognition.

The implications o f  this research extend beyond academic interest, offering practical insights for 
the design and optimization o f  wearable technologies and health m onitoring systems. By establishing a 
guideline for selecting appropriate downsampling rates, this study contributes to the advancement of 
signal processing workflows, ensuring that wearable devices and health monitoring applications can 
provide reliable and accurate data with minimized computational demands.

D ataset analysis

The module raw accelerometer data serves as a pivotal foundation for our research, encapsulating 
a comprehensive accelerometer sensor dataset tailored for the analysis o f  physical activities, the module 
is shown as Figure 1. This dataset is distinguished by its focus on five classes o f  physical activities, each 
m eticulously recorded to capture the nuances o f human m ovem ent and potential falls. The essence of 
this dataset is summarized in two essential tables, in the Table 1, which outlines the key characteristics 
o f  the Sisfall dataset [8 ], and in the Table 2, which categorizes the activities and falls under investigation.
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Figure 1. Block diagram of accelerometer data downsampling algorithm 

T a b l e  1 .  The key characteristics o f  the Sisfall dataset

P a r a m e t e r S i s f a l l  d a t a s e t

S a m p l i n g  f r e q u e n c y 2 0 0 H z

N u m b e r  o f  a c t i v i t i e s  o f  d a i l y  l i v i n g 1 9

N u m b e r  o f  f a l l  a c t i v i t i e s 1 5

S e n s o r s  u s e d A c c e l e r o m e t e r

P o s i t i o n  o f  s e n s o r W a i s t

W i n d o w  s i z e 1 . 2 5  s e c o n d s

W i n d o w  o v e r l a p  r a t e 5 0 %

T a b l e  2 .  Five classes o f  activities and falls selected for this work

C o d e A c t i v i t y T r i a l s D u r a t i o n

F 0 1 F a l l  f o r w a r d  w h i l e  w a l k i n g  c a u s e d  b y  a  s l i p 5 1 5  s e c o n d s

F05 F a l l  f o r w a r d  w h i l e  j o g g i n g  c a u s e d  b y  a  t r i p 5 1 5  s e c o n d s

F 1 3 F a l l  f o r w a r d  w h i l e  s i t t i n g ,  c a u s e d  b y  f a i n t i n g  o r  f a l l i n g  a s l e e p 5 1 5  s e c o n d s

D08 Q u i c k l y  s i t  i n  a  h a l f  h e i g h t  c h a i r ,  w a i t  a  m o m e n t ,  a n d  u p  q u i c k l y 5 1 2  s e c o n d s

D 1 3 S i t t i n g  a  m o m e n t ,  l y i n g  q u i c k l y ,  w a i t  a  m o m e n t ,  a n d  s i t  a g a i n 5 1 2  s e c o n d s

Boxplots are a standardized way o f  displaying the distribution o f data based on a five metrics: 
minimum, first quartile, median, third quartile, and maximum. In the context o f  accelerom eter data for 
physical activities, boxplots can reveal a lot about the nature o f  movements associated with each activity 
class. The boxplot o f fall activity is shown as Figure 2.

From the boxplot, we can observe that fall activities display outliers, reflecting the sudden nature 
o f  falls. The range o f  acceleration values (indicated by the whiskers) m ight be w ider due to the abrupt 
start and end points o f  a fall. Dynamic activities show a larger interquartile range (IQR), indicating 
variability in movem ent speed and style among different trials or subjects. Therefore, using boxplots
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allows us to more clearly observe the distribution and characteristics o f  the data, w hich helps us better 
analyze the data o f  different activities.
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Figure 2. The boxplot of fall activity

By comparing these aspects across the classes o f  activities, we can glean insights into the 
characteristics o f  each activity type, such as the consistency o f  movement, the presence o f  abrupt starts 
or stops, and the overall intensity.

Assessing th e  influence of dow nsam pling  on signal quality

In this study, we aimed to evaluate the im pact o f  downsampling on the quality o f  accelerometer 
signals across various physical activities, including walking, jogging, sitting, and dynamic postural 
transitions. Given the critical role o f  accurate accelerometer data in applications ranging from healthcare 
monitoring to activity recognition, understanding the effects o f  downsampling is param ount for 
optimizing signal processing workflows. The formula o f  downsampling by using the expression

y \n \  — x \n M  ] , ( 1 )

where y \n \  is the accelerom eter signal after downsampling. x \n \  is the accelerometer original signal, 

with n  is the sample num ber in the original signal. M  is the downsampling factor, determining the 
interval at which samples are selected from the original signal. For example, if  M  — 2 ,  every other 
sample is taken from the original signal for downsampling, if  M  — 3 , every third sample is taken.
By selecting every M th  data point from the original signal, the downsampling process lowers the 
signal's sampling rate. This means i f  the original signal has a sampling rate o f  f s , the sampling rate o f  

the downsampled signal will be f s  /  M . Downsampling is a common operation in signal processing, 
especially when there's a need to reduce the volume o f  data to simplify analysis or decrease processing 
load. However, downsampling can lead to the loss o f  some high frequency information in the signal, 
known as aliasing. Therefore, appropriate antialiasing filtering, according to the N yquist theorem, is 
usually performed before downsampling to prevent this loss o f  information.

1. M etrics for evaluating the im pact o f  downsampling on signal quality.
Evaluating the im pact o f  downsampling on signal quality involves assessing how well the 

downsampled signal retains the essential characteristics o f  the original signal, considering the inherent 
compromise between reducing data size and maintaining fidelity. Several metrics can be employed to 
quantify this impact, each offering insight into different aspects o f  signal quality.

1.1. M SE. This metric measures the average error between the downsampled data and the original 
data, serving as a direct metric for assessing data loss during downsampling. By measuring the average 
error between the downsampled data and the original data, it provides a direct quantification o f the 
extent o f information loss during the downsampling process.
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where N  is the num ber o f  samples, V, is the signal after downsampling, is the original signal.

1.2. Energy. this m etric is used to calculate the energy ratio o f the downsampled data. This helps 
to assess the im pact o f  downsampling on signal energy and the degree o f information loss in the signal 
during the downsampling process.

V k nx [ i f
E n erg y  =  ± N0 , (3)

V  « x[i]2

where x[i] is the signal after downsampling, N  is the num ber o f  samples, k  is the maximum frequency 

f m x l  V  -
1.3. CEV. This m etric is applicable for assessing the percentage o f  the total variance explained by 

the first K  principal components in PCA  analysis o f  downsampling data. It helps us understand how 
much o f  the original data's variability is retained during the downsampling process.

V K x
C E V  = V N ^ T , (4)

V i =1 x

where Xi is the eigenvalue o f the ith  principal component, N P C  is the num ber o f  principal component,

K  is the num ber o f principal components chosen for the calculation.
1.4. Ratio (Ratiodown). By computing and comparing metric, we can quantify the im pact o f  

downsampling on the signal structure. A downsampled ratio value close to 1 indicates that the 
downsampling has preserved the signal's recursive similarity structure, while a value far from 1  indicates 
a significant im pact on the signal structure. This approach provides a basis for choosing the 
downsampling rate, specifically selecting those that minimize the im pact on the signal's intrinsic 
similarity while reducing the am ount o f  data.

S
R a tio d o w n  =  —^ , (5 )

S ,

S , d = ^  V i r ' i  x ,  -  i, «;>

where X  d is the signal obtained by downsampling the original S  , X  is the the value o f  the

downsampled signal at time ,  , N d is the length o f  the downsampled signal, i is the lag step size, Si
is the recursive similarity measure o f  the original signal at the same delay i .

1.5. The difference between downsampled signal and original signal (Diff). The m etric serves as 
a quantitative measure o f  the effectiveness o f  the signal reconstruction process, specifically after a signal 
has undergone downsampling and subsequent upsampling with interpolation. It calculates the average 
absolute difference between the original signal x[n] and its reconstructed version z[n] , effectively 
capturing the fidelity o f reconstruction. A  lower m etric value indicates a closer m atch between the 
original and reconstructed signals, suggesting minimal loss o f  information and high preservation o f 
signal quality through the downsampling and upsampling process. Therefore, this metric is very 
important in the evaluation o f  signal downsampling and upsampling data quality. It can more intuitively 
show the changes after data sampling.

V N |z[i] -  x[i]|D if f  = V i —̂  [ ] l , (7)
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L - \  r J n  . , n  -  k M .
t =0  y [ k ] • sin ( 8 )

where z[n] is the signal obtained after upsampling y \n ]  back to the original sampling rate and applying 

interpolation to fill in the gaps, L  is the length o f  the downsampled signal y [ n ] , sin  c(n  -  k M / M ) is 
the sinc function used for interpolation. It acts as an ideal low pass filter kernel to reconstruct the signal 
at intermediate points.

E xperim en t an d  analysis

This chapter is founded on a comprehensive evaluation utilizing a range o f  metrics, including 
M SE, Energy, CEV, and ratio. Each m etric is tailored to scrutinize distinct aspects o f  signal integrity 
following downsampling. Through systematic experimentation with these metrics, the study aims to 
discern the m ost effective downsampling strategy, ultimately minimizing inform ation loss.

M SE  offers insights into the average discrepancy between the downsampled and original signals, 
highlighting the overall fidelity o f  the downsampling process. Energy m etrics delve into the distribution 
o f  signal energy, shedding light on potential alterations in signal dynamics downsampling. C E V  analysis 
contributes to understanding the variability o f  signal characteristics, aiding in identifying regions where 
downsampling m ay have a more pronounced impact.

The utilization o f normalized values o f  M SE, energy, and C E V  activities and bandwidths, as 
depicted in Figure 3, further enhances the depth o f  analysis. This visualization allows for a comparative 
examination o f  downsampling outcomes across different signal types and processing configurations. By 
scrutinizing the im pact o f  downsampling under varying conditions, researchers can glean valuable 
insights into the robustness and versatility o f  different downsampling strategies.

Ultimately, the amalgamation o f  diverse evaluation metrics and systematic experimentation 
enables the identification o f  optimal downsampling approaches tailored to specific application 
requirements.

Figure 3. Comparative analysis three metrics of different bandwidths for activities

As shown in the Figure 3, from the experiments conducted, it is apparent that the optimal 
bandwidth hovers around 15 Hz. The experiments lead us to conclude that at this bandwidth, data volume 
is effectively reduced, facilitating more efficient storage and faster processing, w ithout considerably 
compromising the signal's overall quality and usability. The bandwidth range o f 12 H z  to 17 H z  emerges 
as the most favorable, crucial for diminishing data volume whilst m aintaining the signal's core attributes. 
This balance ensures that computational efficiency and the retention o f  premium signal are optimized, 
enabling precise activity analysis and recognition.
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Im pact of Downsampling on Signal Structure

2 4 6 8 10 12
Factor

Figure 4. Comparative analysis of downsampling factors using downsampling ratio

As shown in the Figure 4, we observe that although different activities have their optimal 
downsampling factors at different time intervals, a common trend emerges. For m ost activities, the ratio 
is still closest to the ideal value o f 1  at the initial interval, but grows to a certain trend and is relatively 
flat or declines. Choosing a downsampling factor in this range may improve data reduction and maintain 
signals in different types o f  activities. Produces an optimal balance between structural integrity.

T a b l e  3 .  Difference between downsam pled signal and original signal

F a c t o r F 0 1 F 0 5 F 1 3 D 0 8 D 1 3

2 0 . 1 2 2 8 7 3 5 6 2 0 . 2 4 3 0 2 0 2 9 6 0 . 0 3 6 2 1 8 5 0 4 0 . 0 4 1 5 4 5 7 4 3 0 . 0 1 4 3 3 7 7 9

4 0 . 1 0 4 1 0 6 9 5 7 0 . 1 4 7 9 2 4 8 3 8 0 . 0 2 4 7 3 5 7 0 6 0 . 0 2 7 4 3 1 3 4 5 0 . 0 1 2 3 2 2 7 7 5

6 0 . 0 7 7 4 1 9 4 9 5 0 . 1 1 4 9 1 7 7 7 5 0 . 0 1 8 3 2 2 8 2 0 . 0 2 0 3 9 0 1 8 0 . 0 0 9 0 0 7 9 7 2

8 0 . 0 5 3 7 6 4 8 6 4 0 . 0 9 1 2 2 2 8 6 5 0 . 0 1 1 4 3 4 9 7 1 0 . 0 1 6 1 5 5 1 4 5 0 . 0 0 7 6 3 6 4 0 1

1 0 0 . 0 5 0 4 0 1 6 6 4 0 . 0 8 7 7 2 9 2 7 4 0 . 0 1 0 0 5 7 7 5 0 . 0 1 6 2 1 9 3 3 6 0 . 0 0 7 2 9 7 1 5

1 2 0 . 0 7 8 6 7 2 1 8 9 0 . 0 9 9 8 5 5 7 6 8 0 . 0 1 7 6 1 9 4 6 2 0 . 0 2 4 7 6 2 0 0 8 0 . 0 0 9 3 4 1 2 8 1

B e s t  f a c t o r 1 0 1 0 1 0 8 1 0

Table 3 indicates that a downsampling factor o f 10 show the smallest difference between 
downsampled and original signals for m ost activities, suggesting it is the optimal choice for preserving 
signal quality while reducing data. The exception is activity D08, which has an optimal factor o f  8 , 
indicating that this activity retains signal integrity better at a slightly higher sampling rate. This 
information is essential for efficiently processing accelerometer data without compromising on quality.

Figure 5. Bland altman plots for original and downsampled data across various downsampling factors
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The use o f bland altman plots, as shown in Figure 5, complements the findings presented in table
4, serving as a visual affirmation o f  the quantitative analysis. Bland altman plots are effective for 
assessing the agreem ent between two different measurements, in this case, between the downsampled 
and original data. If  the plots show that the differences mostly lie within acceptable limits o f  agreement 
and the mean difference is close to zero, it implies a strong consistency between the two sets o f  data. 
This visual tool thus provides a clear and intuitive confirmation that a downsampling factor o f  10 is 
indeed effective in retaining the integrity o f  the signal while significantly reducing the data size, 
consistent with the analytical results in Table 3.

C onclusion

The study successfully identified an optimal downsampling factor for accelerometer data, 
balancing data reduction with signal quality preservation. This finding is crucial for enhancing the 
processing efficiency o f  wearable technologies and health monitoring systems without sacrificing the 
accuracy o f  activity recognition. The results o f  this research serve as a m etric for optimizing signal 
processing in applications where maintaining data integrity is as important as m inimizing computational 
load.
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