
Zhong Wu, Rybak V.A.

EVALUATION METHODS FOR CODE GENERATION
MODELS

This article discusses evaluation methods for code generation models, focusing on BLEU scores and Pass@k
metrics.BLEU scores are used to measure the similarity and consistency between generated code and reference code,
while Pass@k metrics evaluate the pass rate of generated code on predefined test cases. Some other assessment
methods are also presented.These assessment methods are important for improving and optimising code generation
models

Introduction

Code generation models are a key class of
AI models that show great potential for automatic
source code generation. However, these models
need to be effectively evaluated in order to ensure
the quality and accuracy of the generated code.
Evaluating the quality of code generation models
is a complex and critical task, and researchers and
developers need to consider a variety of metrics
and methods. In this paper, we will focus on two
commonly used evaluation metrics: the BLEU score
and the Pass@k metric.

I. BLEU SCORE

BLEU (Bilingual Evaluation Understudy) is a
commonly used evaluation metric primarily used to
assess the quality of machine translation tasks. It
measures the similarity and consistency between the
automatically generated text and the reference text
[1].

The calculation of the BLEU score is based on
n-gram matching, where "n"represents the length of
the n-gram. The score is calculated by comparing
the matches between the n-grams in the generated
text and the n-grams in the reference text. Here are
the specific steps involved in calculating the BLEU
score:

N-gram match counting: For each n-gram
(typically ranging from 1 to 4 words), the number of
matches between the n-gram in the generated text
and the n-gram in the reference text is counted.

N-gram count truncation: To avoid over-
reliance on longer n-gram matches, the count of
each n-gram is truncated or limited to the maximum
count in the generated text and the reference text.

Short-text penalty: To address the issue of
excessively short generated texts receiving higher
BLEU scores, a penalty term is introduced to
prevent short texts from inflating the scores.

Comprehensive calculation: The results of
the n-gram matching calculation are combined to
obtain the final BLEU score.

The BLEU score typically ranges from 0 to 1,
with a score closer to 1 indicating a higher degree
of similarity and consistency between the generated
text and the reference text.

While BLEU is widely used in machine
translation, it can also be applied to other
generative tasks such as automatic summarization
and text generation. However, it’s important to
note that the BLEU score does not fully capture
the semantic accuracy and fluency of the generated
text. Therefore, when evaluating code generation
models, it is recommended to combine BLEU
with other metrics and methods to obtain a more
comprehensive evaluation result.

II. PASS@K METRICS

The Pass@k metric is a metric for evaluating
code generation models that focuses on whether
the generated code can pass a set of predefined
test cases. It is used to measure the pass rate of
generated code for a given set of test cases [2].

The Pass@k metric is calculated as follows:
Predefined set of test cases: defines a set of

test cases that cover the functional requirements
and boundary conditions that the generated code
should have.

Execution of Generated Code: Apply the
generated code to the set of test cases, execute and
observe how the generated code passes on each test
case. If the generated code can pass the test cases,
it is considered to pass; otherwise, it is considered
to fail.

Pass Rate Calculation: Calculate the
percentage of generated code that passes on
the set of test cases. The pass rate can be
calculated in different ways depending on the
specific requirements and evaluation objectives, for
example, calculating the ratio of the number of
passed test cases to the total number of test cases.

The advantage of the Pass@k metric is that it
directly measures the functionality and usefulness
of the generated code. By focusing on how well the
generated code passes on actual test cases, it can
provide important information about the quality
and accuracy of the generated code. However, the
Pass@k metric has some limitations, such as its
inability to capture other quality characteristics of
generated code, such as code style, readability, and
maintainability.

When evaluating code generation models,
Pass@k metrics can be combined with other
evaluation methods, such as static analysis of

45



code and manual evaluation, to obtain more
comprehensive evaluation results.

III. Other evaluation methods

When evaluating code generation models,
in addition to BLEU and PASS@k, there are
several other commonly used evaluation metrics and
criteria, including:

ROUGE (Recall-Oriented Understudy for
Gisting Evaluation): Used to evaluate the similarity
between automatically generated summaries and
reference summaries. ROUGE metrics include
ROUGE-N (matching of N-grams) and ROUGE-
L (matching of the longest common subsequence),
among others.

METEOR (Metric for Evaluation of
Translation with Explicit Ordering): Used to assess
the quality of machine translation tasks. METEOR
combines exact matching and partial matching,
considering word sense and syntactic information.

CIDEr (Consensus-based Image Description
Evaluation): Used to evaluate the quality of image
captioning tasks. CIDEr considers the diversity
and consensus of generated captions and uses
a consensus measure to assess the consistency
between generated and reference texts.

Perplexity: Used to evaluate the quality of
language models. Perplexity measures the model’s
predictive ability for a given text, with lower values
indicating a better fit to the data.

F1-Score: Used to evaluate the accuracy and
recall of entity recognition or syntax analysis tasks
in the generated code.

Compilation Success Rate: Used to evaluate
whether the generated code successfully passes
compilation checks by a compiler.

These evaluation metrics and criteria can be
chosen and used based on the specific task and
requirements to provide a more comprehensive and
holistic evaluation of code generation models.

IV. Summary

To summarize, evaluating code generation
models is crucial to ensure the quality and
accuracy of the generated code. Two commonly

used evaluation metrics are the BLEU score and
the Pass@k metric.

The BLEU score is primarily used for machine
translation tasks and measures the similarity
and consistency between the generated text and
reference text. It calculates the score based on n-
gram matching and ranges from 0 to 1, with higher
scores indicating greater similarity.

The Pass@k metric focuses on whether the
generated code can pass a set of predefined test
cases. It measures the pass rate of the generated
code for the test cases, providing insights into the
functionality and usefulness of the code.

Other evaluation methods include metrics like
ROUGE, METEOR, CIDEr, Perplexity, and F1-
Score. These metrics assess different aspects of
the generated code, such as similarity to reference
text, image captioning quality, language model
performance, and accuracy of entity recognition or
syntax analysis.

When evaluating code generation models, it
is recommended to combine multiple metrics and
methods to obtain a comprehensive evaluation
result. This may involve considering factors such as
semantic accuracy, fluency, code style, readability,
maintainability, and manual evaluation, along with
the quantitative metrics.

By employing a variety of evaluation metrics
and methods, researchers and developers can gain
a better understanding of the strengths and
weaknesses of code generation models and make
informed decisions regarding their quality and
applicability.

1. Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. ‘BLEU: A Method for Automatic Evaluation
of Machine Translation’. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics - ACL ’02, 311. Philadelphia, Pennsylvania:
Association for Computational Linguistics, 2001.
https://doi.org/10.3115/1073083.1073135.

2. Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, et al. ‘Evaluating Large Language
Models Trained on Code’. arXiv, 14 July 2021.
http://arxiv.org/abs/2107.03374.

Zhong Wu, master’s student in the Faculty of Information Technology and Management of BSUIR,
2921123673@qq.com.

Rybak V.A., PhD, Associate Professor, vice-Rector for Academic Affairs, Belarusian State
University of Informatics and Radioelectronics.

46


	Секция <<Интеллектуальные информационные технологии>>-0,5cm
	Н. Ю. Гесман, E. A. Pублевская, Д. П. Сергиевич Сравнение подходов к определению понятия Искусственного интеллекта -0,5cm

