МОДИФИКАЦИЯ ТАБЛИЦ ПЕРЕСТАНОВОК АЛГОРИТМА ШИФРОВАНИЯ MV2

Е. Г. Шалёв

Кафедра интеллектуальных информационных технологий, Белорусский государственный университет информатики и радиоэлектороники

Минск, Республика Беларусь E-mail: evheny.shaliov@tut.by

Приведены результаты исследования изменения параметров алгоритма шифрования MV2. Предложены меры усиления защищённости алгоритма.

Ключевые слова: криптография, шифрование, алгоритм шифрования MV2, таблица перестановок.

Введение

Одним из последних достижений в криптографии является алгоритм шифрования MV2[1]. Алгоритм зашифрования с помощью алгоритма MV2 представлен ниже.

- На вход подаётся исходный текст (Т), ключ (К) для выполнения процедуры забеливания текста, а также генерируется 32 таблицы замены (ТЗ) с длиной слова 8.
- С помощью таблиц замен бинарное представление забелённого текста преобразуется в текущие остаток и флаги. К флагам добавляется блок служебной информации о текущем шаге: номер использованной таблицы (0-31) и результат остатка от деления длины текущего остатка на длину слова в таблице замен, а именно 8. Таким образом, для указания номера использованной таблицы необходимо выделение 5 бит (log₂(32)) в служебной области, для указания остатка от деления 3 бита (log₂(8)). Текущие остаток и флаги добавляются к результирующим флагам и ядру.
- 3. Предыдущий шаг повторяется несколько раз. Вместо забелённого текста передаются текущие флаги.

На выходе алгоритма получаем следующие данные, необходимые для восстановления исходного текста:

- 1. результирующие флаги,
- 2. результирующее ядро,
- 3. 32 таблицы замен,
- 4. ключ, необходимый для забеливания[1].

В этой работе выполнен анализ реализаций алгоритма MV2, выполненных с помощью изменения различных параметров алгоритма, и предложены меры для усиления криптостойкости алгоритма.

Анализ характеристик алгоритма MV2

Для анализа криптостойкости алгоритма MV2 сделаем допущения, позволяющие упростить процедуру взлома алгоритма:

после процедуры забеливания текст не изменяется,

- 2. в таблице перестановок содержатся такие записи, согласно которым перестановки не совершаются,
- 3. криптоаналитику известны флаги и ядро, но неизвестна таблица перестановок,
- 4. криптоаналитику известен алгоритм шифрования,
- 5. минимально допустимый ключ имеет длину 128 бит[2].

Пусть таблица перестановок содержит записи по n бит. Тогда количество возможных комбинаций (k) в таблице можно рассчитать по формуле

$$k(n) = n! * 2^n.$$

Очевидно, при построении таблицы перестановок нужно учитывать количество и объём (р) всех записей. Это значение вычисляется по формуле

$$p(n) = n * 2^{n+1}.$$

Поскольку минимальные длины ключей большинства современных алгоритмов симметричного шифрования равны 128 битам, а также учитывая, что алгоритм MV2 является симметричным алгоритмом шифрования, предположим, что минимально допустимый размер ключа будет равен 128 битам. Таким образом, минимальное количество раундов (r), необходимых для достижения длины ключа в 128 бит, рассчитывается по формуле

$$r(n, k(n)) = 128/log_2(k(n)).$$

Очевидно, что после каждого раунда скрывается как минимум 1 бит блока данных. Таким образом, после п раундов отношение объёма данных флагов к объёму данных исходного текста (h), который можно рассчитать по формуле

$$h(n, r(n, k(n))) = (1 - ((n-1)/n)^{r(n)}) * 100.$$

Результаты вычислений количества возможных комбинаций (k), объёма (p) всех записей в таблице перестановок, минимальное количество раундов шифрования (r), отношение объёма данных флагов к объёму данных исходного текста (h) для длины слова от 1 до 32 бит представлены в таблице 1.

Таблица 1 – Результаты вычислений характеристик алгоритма MV2 в зависимости от длины слова

n (бит)	k	p	r	h
1	1	0,5(б)	128	100
2	3	2(6)	43	100
3	5	6(б)	26	99,9974
4	8	16(б)	16	99,9977
5	11	40(б)	12	93,13
6	15	96(б)	9	80,62
7	19	224(б)	7	66,01
8	23	512(б)	6	55,12
9	27	1,125(Кб)	5	44,51
10	31	2,5(Кб)	5	40,95
11	36	5,5(Кб)	4	31,7
12	40	12(Кб)	4	29,39
13	45	26(Кб)	3	21,35
14	50	56(Кб)	3	19,93
15	55	120(Кб)	3	18,7
16	60	256(Кб)	3	17,61
17	65	544(Кб)	2	11,42
18	70	1,125(Мб)	2	10,80
19	75	2,375(Мб)	2	10,25
20	81	5(Мб)	2	9,75
21	86	10,5(Мб)	2	9,3
22	91	22(Мб)	2	8,88
23	97	46(M6)	2	8,51
24	103	96(Мб)	2	8,16
25	108	200(Мб)	2	7,84
26	114	416(M6)	2	7,54
27	120	864(Мб)	2	7,27
28	125	1,75(Гб)	2	7,02
29	131	3,625(Γ ₆)	1	3,45
30	137	7,5(Γ ₆)	1	3,33
31	143	15,5(Гб)	1	3,24
32	149	32(Гб)	1	3,13
	-	(')		, -

Заключение

Дальнейшие исследования перспективны при использовании длины слова в таблице перестановок от 12 до 28 бит. При этом отношение объёма данных флагов к объёму данных исходного текста — от 7% до 35%. Достаточное количество раундов шифрования данных — от 2 до 5 в зависимости от длины слова.

Перспективным направлением может быть разработка переменной длины заменяемых слов в зависимости от раунда. Другими словами в первом раунде происходит замена слов, например, длиной 16 бит, на втором раунде — 22 бита,

и т. д. Таким образом, при использовании слов с длиной от n до m бит при r раундах, длина ключа будет увеличена до значения, которое может быть рассчитано по формуле:

$$r * (m - n) * ((log_2(n!) + log_2(m!))/2).$$

Другими словами, количество раундов умноженное на арифметическую прогрессию перестановок для каждой из длин слов.

На основании проведённых теоретических исследований сделаны следующие предположения.

- 1. Для повышения криптостойкости алгоритма можно использовать переменную длину слова в таблице перестановок.
- 2. Минимально допустимым числом раундов шифрования алгоритмом MV2 является 2.
- 3. Также для повышения криптостойкости алгоритма и уменьшения количества раундов можно использовать длину слова в таблице перестановок от 12 до 24 бит.
- 4. В случае передачи таблицы перестановок по закрытому каналу длина слова в таблице перестановок ограничивается 20 битами, поскольку большее количество бит в слове существенно увеличивает объём передаваемых данных.

В таком случае ожидаемый результат может быть следующим.

- 1. Отношение объёма данных флагов к объёму данных исходного текста составит от 12% до 17,6%.
- 2. Улучшение криптостойкости при применении грубой силы при тех же затратах количество вариантов ключа возрастает до

$$3*8*((log_2(16!) + log_2(24!))/2) = 1480(bit).$$

Для подтверждения или опровержения перечисленных гипотез необходимы дальнейшие исследования модификаций таблиц перестановок, алгоритма MV2 и шифртекста.

- 1. Мищенко, В. А. Ущербные тексты и многоканальная криптография / В. А. Мищенко, Ю. В. Виланский. Минск: Энциклопедикс, 2007. -292 с.
- 2. Панасенко, С. П. Алгоритмы шифрования. Специальный справочник / С. П. Панасенко. СПб.: БХВ-Петербург, 2009. 576 с.