УДК 519.6

ОПТИМАЛЬНАЯ ФУНКЦИЯ ДЛЯ МАКСИМИЗАЦИИ СКОРОСТИ ПЕРЕДАЧИ ИНФОРМАЦИИ В ОПТИЧЕСКИХ КАНАЛАХ СВЯЗИ

Вилкина К. А.¹, студент гр. 2535504, Носкович П. Н.², студент гр.253504

Белорусский государственный университет информатики и радиоэлектроники¹, г. Минск, Республика Беларусь

Анисимов Владимир Яковлевич – канд. физ.-мат. наук, доцент

Ключевые слова: скорость передачи информации, оптический каналах связи, энтропия, амплитудная модуляция.

Аннотация. В данной статье был рассмотрен метод нахождения оптимальной вероятности посылки сигнала для максимального значения скорости передачи информации, путем составления функции Лагранжа и нахождения его множителей.

Основная часть. Для канала с амплитудной модуляцией и приемом, основанном на счете фотонов можно обозначить следующие величины: среднее число фотонов n, P(x) — вероятность посылки X-го сигнала, P(n|x) — вероятность регистрации n фотонов и ширина полосы B. Тогда безусловная вероятность принять n фотонов определяется по формуле:

$$\rho_n = \int_0^\infty P(x)P(x)dx,\tag{1}$$

А скорость передачи данных

$$R = \frac{B}{2\pi} \left\{ -\sum_{n=0}^{\infty} \rho_n \ln \ln \left(\rho_n \right) + \int_0^{\infty} P(x) \left[\sum_{n=0}^{\infty} P(x) \ln \ln \left(P(x) \right) \right] dx \right\}, \tag{2}$$

Из структуры формулы (2) заметим, что скорость передачи определяется лишь заданными статистическими свойствах источника сообщений, шириной полосы В и безусловным средним $< N > = \int_0^\infty x P(x) dx$, #(3)

или же однозначно связанной с ним мощностью излучения $P = \frac{(h\omega < N > B)}{2\pi}$.

В случае, когда передатчик генерирует когерентные состояния, его шумы описываются распределением Пуассона в виде:

$$P(x) = x^n \frac{e^{-x}}{n!},\tag{4}$$

тогда x есть просто квадрат модуля когерентной амплитуды α на выходе модулирующего устройства.

Исходя из данных условий формула скорости передачи информации примет вид:

$$R = \frac{B}{2\pi} \left\{ -\sum_{n=0}^{\infty} \rho_n \ln \ln \left(\rho_n \right) + \int_0^{\infty} P(x)S(x)dx \right\}, \tag{5}$$

где S(x) – энтропия пуассоновского поля, которая представлена в виде $-\sum_{n=0}^{\infty} P(x)$ $\ln \ln \left(P(x) \right)$.

Чтобы найти оптимальную P_{max} (x), обеспечивающую максимальное значение скорости передачи данных (5), составим функцию Лагранжа:

$$L(\lambda, \mu) = R + \frac{B}{2\pi} \{\lambda \int_0^\infty P(x)dx + \mu \int_0^\infty xP(x)dx\}$$

60-я юбилейная научная конференция аспирантов, магистрантов и студентов БГУИР

Продифференцировав ее по P(x) и приравняв $\frac{dL}{dP(x)}=0$ получим:

$$P_{max}(x) = e^{1-\lambda + \mu x - S(x)},\tag{6}$$

Определим условия нормировки и среднего значения для последующего нахождения множителей Лагранжа:

$$\int_0^\infty P(x)dx = 1, \int_0^\infty xP(x)dx = < N >$$

В случае $\langle N \rangle \gg 1$ асимптотическое выражение для энтропии S(x) записывается в виде

$$S(x) = \frac{1}{2}lnx,\tag{7}$$

Подставим значение (7) в выражение (6). Получим:

$$P_{max}(x) = e^{1-\lambda + \mu x - \frac{1}{2}lnx},\tag{8}$$

Теперь найдем множители Лагранжа, подставив выражение (8) в условие нормировки и среднего значения. Получим систему уравнений:

$$\{ \int_{0}^{\infty} e^{1-\lambda + \mu x - \frac{1}{2}lnx} dx = 1 \int_{0}^{\infty} xe^{1-\lambda + \mu x - \frac{1}{2}lnx} dx = < N > \}$$

Упростим выражения

$$e^{1-\lambda} \int_0^\infty e^{\mu x} \frac{1}{\sqrt{x}} dx = 1$$

$$e^{1-\lambda} \int_0^\infty e^{\mu x} \sqrt{x} dx = \langle N \rangle$$

Получим, что $\mu = -\frac{1}{2N}$ и $e^{1-\lambda} = \frac{1}{\sqrt{2\pi N x}}$. Следовательно:

$$P_{max}(x) = \frac{1}{\sqrt{2\pi Nx}} e^{-\frac{x}{2N}},\tag{9}$$

Оценим теперь скорость передачи данных, если теперь передатчик посылает сигналы с вероятностью (9):

$$R = \frac{B}{2\pi} \left\{ -\sum_{n=0}^{\infty} \rho_n \ln \ln \left(\rho_n \right) + \int_0^{\infty} P_{max}(x) S(x) dx \right\}, \tag{10}$$

Заменим в выражении (1) значение P(x) на значение $P_{max}(x)$ из выражения (9):

$$\rho_n = \int_0^\infty \frac{1}{\sqrt{2\pi Nx}} e^{-\frac{x}{2N}} x^n \frac{e^{-x}}{n!} dx$$

Упростим данное выражение, вынося константные значения за знак интеграла:

$$\rho_n = \int_0^\infty \frac{1}{\sqrt{2\pi Nx}} e^{-\frac{x}{2N}} x^n \frac{e^{-x}}{n!} dx \implies \frac{1}{\sqrt{2\pi N}} \int_0^\infty \frac{1}{\sqrt{x}} e^{-\frac{x}{2N}} x^n \frac{e^{-x}}{n!} dx$$

Представим *n!* по формуле Стирлинга в виде:

60-я юбилейная научная конференция аспирантов, магистрантов и студентов БГУИР

$$n! = \sqrt{2\pi} n^{n - \frac{1}{2}} e^{-n},\tag{11}$$

Используя значение из (10) продолжим упрощать выражение для ρ_n и получим:

$$\frac{1}{\sqrt{2\pi N}} \int_{0}^{\infty} \frac{1}{\sqrt{x}} e^{-\frac{x}{2N}} x^{n} \frac{e^{-x}}{n!} dx => \frac{1}{\sqrt{2\pi N}} \int_{0}^{\infty} \frac{1}{\sqrt{x}} e^{-\frac{x}{2N}} x^{n} \frac{e^{-x}}{\sqrt{2\pi} n^{n-\frac{1}{2}} e^{-n}} dx => \\
=> \frac{e^{-n} \sqrt{n}}{2\pi n^{n} \sqrt{N}} \int_{0}^{\infty} e^{-\frac{x}{2N} - x} x^{n-\frac{1}{2}} dx , \qquad (12)$$

Получение выражение из (12) затем подставим в формулу (10):

$$R = \frac{B}{2\pi} \left\{ -\sum_{n=0}^{\infty} \frac{e^{-n}\sqrt{n}}{2\pi n^n \sqrt{N}} \int_0^{\infty} e^{-\frac{x}{2N}-x} x^{n-\frac{1}{2}} dx \quad \ln \ln \left(\frac{e^{-n}\sqrt{n}}{2\pi n^n \sqrt{N}} \int_0^{\infty} e^{-\frac{x}{2N}-x} x^{n-\frac{1}{2}} dx \right) + + \int_0^{\infty} \frac{1}{\sqrt{2\pi Nx}} e^{-\frac{x}{2N}} x \ln(x) - e^{-\frac{x}{2N}-x} x^{n-\frac{1}{2}} dx \right\}$$

Для выражения с суммой в правой части (13) заметим, что при $< N > \gg 1$ основной вклад в интеграл дадут большие значения параметра x, следовательно сумму по n можно заменить интегральной формой, выразив n! по формуле (11).

С учетом этой замены, можем переписать выражение (13). Конечное значение скорости передачи данных примет вид:

$$R \approx \frac{B}{2\pi} \left\{ \frac{\ln \langle N \rangle}{2} \right\},\tag{14}$$

Заключение. В ходе научной работы была выведена формула для оптимального значения вероятности P(x) посылки X-го сигнала, которая впоследствии максимизировала значение скорости передачи информации R. Данная формула была найдена из составленной функции Лагранжа, путем определения множителей Лагранжа из условий нормировки и безусловного среднего значения <N>.

Все параметры определялись в условиях когерентного состояния, то есть при условии, что собственные шумы передатчика описываются пуассоновским распределением. Оценка максимальной скорости передачи данных была произведена в случае <N> >> 1.

Список использованных источников:

- 1. Лебедев Д. С, Левитин Л. Б. Максимальное количество информации, переносимое электромагнитным полем. Докл. АН СССР, 1963, 149, 6, 1299—1302.
 - 2. Митюгов В. В. Физические основы теории информации. М., «Сов. радио», 1976, 216 с.
- 3. Konrad Banaszek, Senior Member, IEEE, Ludwig Kunz , Michał Jachura , and Marcin Jarzyna. Quantum Limits in Optical Communications. Journal of lightwave technology , VOL. 38, NO. 10, 2020
- 4. Р. Л. Стратонович, Скорость передачи информации в некоторых квантовых каналах связи, Пробл. передачи информ., 1966, том 2, выпуск 1, 45–57
- 5. Р. Л. Стратонович, Количество информации и энтропия отрезков стационарных гауссовских процессов, Пробл. передачи информ., 1967, том 3, выпуск 2, 3–21
 - 6. Shannon C.E. A Mathematical Theory of Communication // Bell Syst. Tech. J. 1948. V. 27.
- 7. Karol Łukanowski and Marcin Jarzyna. Capacity of a Lossy Photon Channel With Direct Detection. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 8, AUGUST 2021

UDC 519.6

OPTIMAL FUNCTION FOR MAXIMIZING INFORMATION TRANSMISSION RATE IN OPTICAL COMMUNICATION CHANNELS

Vilkina. K. A. 1, Noskovich P. N.2

Belarusian State University of Informatics and Radioelectronics¹, Minsk, Republic of Belarus

Anisimov V.Y. — PhD in Mathematical Sciences, Associate Professor at the Department of Informatics

Annotation. This article examined a method for finding the optimal probability of sending a signal for the maximum value of the information transmission rate by composing the Lagrange function and finding its multipliers.

Keywords: information transmission rate, optical communication channel, entropy, amplitude modulation.